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Abstract 
 
In this short article, we have studied the controllability result for neutral impulsive differential inclusions 
with nonlocal conditions by using the fixed point theorem for condensing multi-valued map due to Martelli 
[1]. The system considered here follows the P.D.E involving spatial partial derivatives with α-norms. 
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Fixed Point Theorem 

1. Introduction 
 
In this paper we have discussed the controllability of 
nonlocal Cauchy problem for neutral impulsive differen- 
tial inclusions of the form  
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Since F  and  involve spatial partial derivative, 
the results obtained by other authors cannot be applied to 
our system even if . This is the main motivation 
of this paper. 

G

g(.) = 0

The existence and controllability of the following sy- 
stem is studied by Benchohra and Ntouyas [2]  
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Here authors have proved exact controllability by 
using fixed point theorem for condensing multi-valued 
maps due to Martelli. In this paper, we have discussed 
controllability results with α-norms as in [3] with de- 
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viating arguments in terms involving spatial partial de- 
rivatives. 

As indicated in [4], and reference therein, the nonlocal 
Cauchy problem 0(0) ( ) =x g x x  can be applied in di- 
fferent fields with better effect than the classical initial 
condition 0(0)x x . For example in [5], the author 
described the diffusion phenomenon of a small amount 
of gas in a transparent tube by using the formula  

=0

( ) = ( ),
p

i i
i

g x c x t  

where  are given constants and 

0 1  In this case the above equation 
allows the additional measurement at i , . 
In the past several years theorems about controllability of 
differential, integro-differential, fractional differential 
systems and inclusions with nonlocal conditions have 
been studied by Chalishajar and Acharya [6-9], Ben- 
chohra and Ntouyas [10,11], and Hernandez, Rabello and 
Henriquez [12] and the references therein. In [13], 
Chalishajar discussed exact controllability of third order 
nonlinear integro-differential dispersion system without 
compactness of semigroup. 

, = 0,1, ,ic i p
, , , .pt t t b0 <

t = 0,1, ,i  p

Xianlong Fu and Yueju Cao [14], has discussed the 
existence of mild solution for neutral partial differential 
inclusions involving spatial partial derivative with -  
norms in Banach space. However in their work authors 
impose some severe assumptions on the operator family 
generator by ( )A , i.e. ( ) : ( )A D A X X  

 ( )T t

 is an 
infinitesimal generator of a compact analytic semigroup 
of a uniformly bounded linear operator 

0t
, which 

imply that underlying space X  has finite dimension 
and so the example considered in [14], and subsequently 
in Section 4 is ordinary differential equation but not 
partial differential equation which shows lack of exi- 
stence (exact controllability) in abstract (control) system 
(refer [15]). This fact and several other applications of 
neutral equation (inclusions) are the main motivation of 
this paper. 

In Section 3 (followed by Preliminaries) of present 
paper we discuss the controllability of neutral impulsive 
differential inclusion with nonlocal condition with devi- 
ating arguments with α-norm, which is the genera- 
lization of [14], in a finite dimensional space. The ex- 
ample is given in Section 4 to support the theory. In 
Section 5 we study exact controllability of same system 
in infinite dimension space by dropping the compactness 
assumption of semigroup   0

( )
t

T t


e generalized 
the result proved in Section 3. 

. Here w

 
2. Preliminaries 
 
In this section, we shall introduce some basic definitions, 
notations and lemmas which are used throughout this 

paper. 
Let  ,X   be a Banach space.  is the 

Banach space of continuous functions from 
( , )C J X
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1
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L
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X

. 

We use the notations  ( ) = 2 :P X Y Y   , 
 closed( ) = ( ) :clP X Y P X Y , 
 ounded( ) = ( ) :bP X Y P X Yb , 
 onvex( ) = ( ) :cP X Y P X Yc , and 
 Ycompact

: 2XG X 
( ) = ( ) :cpP X Y P X . 

A multi-valued map  is convex (respec- 
tively closed) valued if  is convex (respectively 
closed) for all 

( )G x
x X . 

The map  is bounded on bounded sets if G
( ) = ( )x BG B G x  is bounded in X  for any bounded 

set  of B X .    . . sup : ( ) < sup x Bi e x x G x   . 

G  is called upper semi-continuous (u.s.c.) on X  if for 
each 0x X , the set 0  is a nonempty closed 
subset of 

( )G x
X  and if for each open set  of B X  

containing 0 , there exists an open neighborhood ( )G x
A  of 0x  such that  ( )G A B .

The map  is said to be completely continuous if 
 is relatively compact for every bounded subset 

 

G
( )G B

B X .
If the multi-valued map  is completely continuous 

with nonempty compact values, then  is u.s.c. if and 
only if  has a closed graph, That is, if 

0 0 ,

G
G

G
,n nx x y y  where n n  then 0 0(y G x ) ( )y G x . 

 has a fixed point if there is G x X  such that 
( )x G x . 

A multi-valued map  is said to be 
measurable, if for each 

: BC ( )G J C X
x X , the distance function 

 defined by  :Y J R

   ( ) = , ( ) = inf : ( )Y t d x G t x z z G t   

is measurable. 
An upper semi-continuous map  is said 

to be condensing, if for any bounded subset , 
with 

: 2XG X 
B X

( ) 0B  , we have , where   < ( )B( )G B   
denotes the Kuratowski measure of non-compactness. 
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We remark that a completely continuous multi-valued 
map is the easiest example of a condensing map. For 
more details on multivalued maps see the books of 
Deimling [17]. 

Throughout this paper, : ( )A D A X X   will be 
the infinitesimal generator of a compact analytic semi- 
group of uniformly bounded linear operator  Let ( ).T t
0 ( )A


, then it is possible to define the fractional 

power , as a closed linear operator on 
its domain 

,  0 1A for  
( )D A . Furthermore, the subspace ( )D A  

is dense in X and the expression  

= ;  ( )x A x x D A 


  

defines a norm on ( )D A . Hereafter we denote by 
,X  the Banach space ( )D A  normed with x
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t
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A T t t
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For more details about the above preliminaries, we re- 
fer to ([18,19]). 

In order to define the solution of the system (1) we 
shall consider the space  



0

= :[0, ] ; ( , ); = 0,1, ,  

and there exist ( ) and ( ); = 0,1, ,  

with ( ) = ( ), (0) ( ) = ,

k k

k k

k k

x b X x C J X k m

x t x t k m

x t x t x g x x

 

 



  





  

which is a Banach space with the norm  

 = ; = 0,1,k Jk
,x max x k m


  

where kx  is the restriction of x  to 
 1 , = 0,1, ,k= ,k kJ t t k m    and 

= ( )up x s .k s J kJ kk
x s

  

For the system (1) we assume that the following hypo- 
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that  
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is completely continuous map. 
(H5) ( , ), = 1,2, , ,

stant 1M  and 2M  such that and 1B M  and 

kI C X X k m    are all bounded, 
that is, there exist constants , = 1, 2kd k , , ,m  such that 

( ) ,k kI x d  f x X . 


or each 

Now we define the mild solu system (1).  
- 

lo

tion for the 
DEFINITION 2.1 The system (1) is said to be non
cally controllable on the interval J  if for every 
(0) ( ) ( )x g x D A   and 0 1,x z X , there exists a con- 

   0, : = ,u L b L L J U 0, 2π  such that the 2 2 2trol 

 of (1) satcorresponding solution ( )x  isfies 
i) 1( ) ( ) =x b g x z  w 0(0) ( ) ;ith x g x x   

1, 2, , ;ii) ));  =t t k kk
| ( (x I x t  k  m  

there exists a function 1v Liii) J( , )X  such that 
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We will verify that N1 is a contraction while 2 is a 
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Thus, 1 1 2 2 0 1 2N x N x L x x
 

  
tion 00 < < 1L , 1N  is a contraction. 

Next we show that 

. Therefore by 
assump

s.c. and condensing. 
i)  
ii)  is equi-continuous. 
Let 

2

is clearly bounded. 
N  is u.

2 ( )lN H  
( )N H2 l

1 2 1 2, , <J    . Let  lx H  and 2 ( )y N x . 
Then th suc r eacere exists ,v S G x  h that fo h t J , we 
have  

)

Then,  

0 0

0
0< <

( ) = ( ) ( ) ( ) ( )d

( )( )( )d ( ) ( ( )

t

t

k k k
t tk

y t T t x g x T t s v s s

T t s Bu s s T t t I x t

    

   




 

 

 1 0 1( ) (0, ( (0)))z g x x F x h
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0
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( ) ( )
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(

b

b
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T T x g x
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T s T s BW

T b x g
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2

1
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1

2

1 0 1
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1 2

) ( ( )) d

( ) ( ) ( ) (0, ( (0)))

( , ( ( ))) ( ) ( , ( ( )))

( ) ( )d ( ) ( ( )) d

k k k

b

b

k k k
tk

t I x t s

z g x T b x g x F x h

F b x h b AT b F x h d

v T t t I x t s



0
T b

)d (T t

 

   

  







 

      

  

   




 

The right hand side tends to zero as 0

   



 

  



2 1( )   , 
 compactness 

 in the uniform ope- 
uous on .l

since is strongly continuous and the
of implies the continuity
rator . Thus  is equi-contin

( )T t  
  0

( )
t

T t


 topol
 

ogy 2 (.)N H  
act for each ,t Jiii) 2( )(l t  ) is relatively compN H   

where  2 2( ) = ( ) : ( )l ly t y N H . 
condition ( 4)( ), (

( )N H t
Obviously, by 2 )( )lH ii N H t  is rela- 

tively compact in X  for = 0t . Let 0 < t b  be 
fixed and 0 < < t . For lx H  and 2 ( )y N

ch that  
x , there 

exists a 

)

Define, 

)

Since is compact, the set 

function ,G xv S  su

0 0

0

0< <

( ) = ( )[ ( )] ( ) ( )d

( ) ( )d ( )( )( )d

( )( )( )d ( ) ( ( )

t

t t

t

t

k k kt
t tk

y t T t x g x T t s v s s

T t s v s s T t s Bu s s

T t s Bu s s T t t I x t
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y t T t x g x T t s v s s

T t s Bu s s T t t I x t
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0
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( ) = ( ) ( ) ( ) ( ) ( )d
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( ) ( ( ))

t

t
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t tk

y t T t x g x T T t s v s s

T T t s Bu s s

T t t I x t






 

 







     

  

 






 

( )T t  
 2( ) = ( )lY t y N H( ) :y t   is relatively compact in 

X  for ,0 < < tevery   . 
More or every  y N2 ( ),lH   over, f 

1 2 1

0 1( ) ( ) (0, ( (0)))

( , ( ( )))

t

T b x g x F x h

F b x h b

  

1

10

0< <

( ) ( )

= ( ) ( )d ( )( )( )d

( )d

( )

)d

(

t t

t t

t

t

t

t tk

y t y t
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b
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0
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( )
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( )
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C
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Therefore, letting 0 
act sets arb

, we see that there re 
relatively comp itrarily close to the set 

a

 2( ) : ( )ly t y N H
is relatively comp

. Hence the set  2( ) : ( )ly t y N H  
act in X . 

As a consequence of (i),(ii), (iii) and together with the 
can conclude that 

:
Arzela-Ascoli theorem we 

2 2Hl
lN H   

map and, th
is a comp ly continuous multi-valued 

erefore, a condensing mu  valued map. 
lete

lti-
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iv) has a closed graph. 
Fro e above steps we can see, for every 

2N  
m th

We must prove that there exists  such that 

)

where 

,G xv S 


,lx H  
which can 

pact set. 
2 ( )N x  

be testified as i
Let 

0 0

0
0< <

( ) = ( ) ( ) ( ) ( )d

( )( )( )d ( ) ( ( )

t

t

k k k
t tk

y x T t x g x T t s v s s

T t s Bu s s T t t I x t

  


 

    

   




 

is relatively compact and closed set, 
n Step 3. Hence is a com2 ( )N x  
,nx x  )2n l n n, (x H y N x  and .y yn   

We m
that there

ust show that 
 exists 

2 2 (N
for each 

( );y N x y  
,n G xn

v S  such that , 
)n nx  means 

.t J   

0 0

0
0< <

( ) = ( ) ( ) ( ) ( )d

( )( )( )d ( ) ( ( )

n n n

t

n k k
t tk

y t T t x g x T t s v s s

T t s Bu s s T t t I x t

    

   




 

t

)n k

where 

1

n k

1
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0
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( , ( ( ))) ( ) ( , ( ( )))d
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b
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W z g x T b x g x F x h
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, = 1,2, ,kI k m  and gClearly, since  are continu- 
ous we have that 

 

 

0 0
0< <
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( ) ( ) ( ) ( )( )( )d ( ) ( ( ))

( ) ( ) ( ) ( )( )( )d ( ) ( ( )) 0, as .

t

n n n k k n k
t tk

t
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t tk

y t T t x g x T t s Bu s s T t t I x t

y x T t x g x T t s Bu s s T t t I x t n




   



 
         

 

 
            
 





 



 
Consider the linear continuous operator 

.

From Lemma (H3) it follows that is a closed 
graph operator. 

Moreover, we obtain that 

 

G x


Since 

GOS  

      1

0
: , ( , ), = ( )d

t
L J X C J X v v t T t s v s s     

0 0
( ( ) ( )( )(n n ny t x g x T t s Bu     


 ,

0< <

) ( ) )d ( ) ( ( ))  ( ).
t

k k n k n
t tk

T t s s T t t I x t S
 

     

,nx x  it follows from (H3) that 

has a i
u -val p

value, c. On the other hand is a con- 
traction. nce is u.s.c. and ng

By L a fixed point 

0 0
( ) ( ) ( ) ( )( )y t T t x g x T t s Bu    

 
that is, there must exist a ,( ) G xv t S 

  such that  

,
0< <

( )d ( ) ( ( ))  ( )
t

k k k G x
t tk

s s T t t I x t S
 

       

0( ) ( )y T t x g x   

0
0< <

( )( )( )d ( ) ( ( ))
t

k k k
t tk

t

T t s Bu s s T t t I x t     

0
= 

Therefore, 2N closed graph. Since s a 
completely continuous m lti ued map with c act 

( )

( ( )) = ( ) ( )d .

t

v t T t s v s s

 



 



 

 

is u.s.
 

 2.3,

2N  
om

nsi
)

2N  
 He

emma

 1N  
conde

(.
1 2=N N N  

 there exists 
. 

x  for N  
on .lH  Therefore, the nonlocal Cauchy m

ffect (1) is controllable on 
 proble  with 

impulsive e .J  
Particularly, if is a single-valued map, 

then the system (1) will become  

     
 

1 2

=

0

d
( ) , ( ) = ( ) ( ) , ( ) ;

d

:= 0, ;

| = ( ( )); = 1,2, , ;  ;  

(0) ( ) =

t t k k kk

x t F t x h t Ax t Bu t G t x h t
t

t J b

x I x t k m t t

x g x x



      

 
 

 


 

(4) 

by using Sadovskii’s fixed-point theorem for condensing 
map, we can analogously study the controllability of the 
system (4). 

(H3)’ The function satisfies the fo- 
llowing conditions: 

i) for each 

:G J X X   

2( , ( ( )))G t x h t  ,t J  the function  is ( ,.) :G t X X 
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continuous; and for each ,x X  the ion funct

is stro ble. 
positive num  there exists a 

 such that  

(., ) :G x J X  
ii) for each 

positive function 

ngly measura
ber 

 dependent
,l N

 on l( )w l

( )
( , ) ( )  and  li

l
l


m = <

w l
sup G t x w

l
   

where  

0

= (sup
s

x x ) .s
 

 

THEOREM 3.2 Let

 

 0x X . If the hypotheses 
( 1), ( 2), ( 3) , ( 4) and ( 5)H H H H
the system (4) is controllabl

H
e on 

 are satisfied, then 
J  provided (1), (2) 

and (1) hold.  
Proof The mild solution of the system (4) is given by 

1

0 1

20 0
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( ) = ( ) ( ) (0, ( (0)))

)))d
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t
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T t t I x t t J

   

   

  

 


 

We define the operator :N   by  

Then we can decompose  as  where  

1

an

 ve
e po orem 

can be applied to the operato
ws th  (4) 

is controllable on the interval 

0 1
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t

t
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0

and rify that 1N  is a contraction while 2N  is a 
compact operator, thus Sadovskii’s fix d-

( )( )(s Bu s

int the

at syste
r N  and hence N  has 

atleast a fixed point on ,  which sho
.

m
J  T

π

0

2

2

( , ) ( , , ) (sin , ) (sin , ) d
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= ( , ) , (sin , ), (sin ,
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) ,

= 0;  ( ) (
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p

i i
i
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(4.1) 

where p is a positive integer, 
and 
is defi





0 10 < < < < < 1,ps s s  
2

0; ( ) = ([0,π]).z x X L  A 


1 20 < < < < < 1mt t t 
ned by =A   with the domain  





2( ) = ([0, ]) = (.) : ,

ous,

( ) = 0

D A H X0

are absolutely continu

, (0) =X

  

 



  

 

Then A generates a strongly continuous semigroup 
which is compact, analytic and self-adjoint. 

a’) Also A has a discrete spectrum re resentation  

;

(.)T  
p

2

=1

= ( ) < , > , ( ),n n
n

A n D    


   A n N

where 
2

( ) = ( ); = 1, 2,
πn x sin nx n   is the orthogonal 

set of eigenvector of A. The eigenvalues are 

b’) The operator 

2 , .n n N   
1

2A  is given by  

he desire of is 
similar to Step 4 of Theorem 3.1.  
 
4. Example  
 
As an application of Theorem 3.2, we study the 
following impulsive partial function differential system 
with nonlocal condition  

d pro

1

2 =A
=0

< , >n n
n

n   


  

on the space 2
=1

( )= ( < , >n nn
D A n   

perator 2: ( , )B L J X X


1

.) : .X X   

The control o  is defined by 
( )( )( ) = ( , ); (0,π)Bu t y u t y y  which satisfies condition 
(H5). Here B is dentity operator and the contan i
function u(.) is given in

We assume that the fo

 
 2 ([0,π], )L U .  
llowing conditions hol

rol 

d: 
unction b is measurable and  i) The f

π π 2
0 1 0 0

sup ( , , )d d < .t b t y x y x     

ii) The function 
2 ( ,b t

easurable, 

( , ,0) = ( , ,π) = 0,b t y b t y  and 

2

, )y x

x
 is m

1
2 22

π π ( , , )
= sup d d < .

b t y x
N y x

   
1 0 1 20 0t x   
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iii) For the function R  the fo- 
llowing three conditions are satisfied: 

1) For each  is continuous. 
2) For each 

: [0,1]h R R  

[0,1], ( ,.,.)t h t
1

2

, (., ,z X h z z )  is measurable. 

3) There is a positive number 1 such thatc  

1( , , ) ,g t z z c z   

for all 1

2

( , ) [0,1] .t z X   

iv) 1 1

2 2

, , = 1,kI C X X k
 

   
 

  

, = 1, , ,kd k m  such that 

, and there exist cons- 

tants 

1 1
2 2

( ) , .k kI z d z X   

Here we choose 
1

= = .
2

   According to paper [21], 

we know that, if 1

2

,z X  then z is absolutely 

ous ,  In view of 

this result, for 

continu ,z X  and (0) = (π) = 0.z z

1

2

( , )t z [0,1] X ,    (  is defined 

as in Section 3), we can define respectively that 

 π

0
( , )( ) ( , , ) ( ) ( ) d .=F t z x b t y x z y z y y

( , )( ) = ( , ( ( )),G t z x h t z x z x  

and  

1( ( )) = ( ),
p

i ig t K s 

 

),

=0

,
i

  

where 1 1

2 2

:iK X  X  is completely continuous [16] 

such that 
π

0
( )( ) = ( , ) ( )di iK z x k y x z y y  and 

1

2

: [0,1]G X X   It is easy to see that  

1

2
1 1 1 1

2 2 2 2
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 In fact, 
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2
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2 20
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π

nF t z
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This shows that F and 
1

2A F  both take values in 1

2

X  

e the in terms of properties (a’) and (b’), and therefor
function g. Since, for any 1 2 1

2

,x x X ,  

2 22 2
2 1 2 1 2 1= , ,n n

=0 =0

2

n n

x x x x z n x x z
 

    

12 1
2

.x x 

This inequality alongwith condition (ii) says that (H2) 
is satisfied. Also G satisfies  and g satisfies (H4). 

 

( 3)H 
By (i), ( , )F t z  is a boun aded line r operator on X . 

( ), ( 3) , (1), ( 2 4), ( 5)H H H H HThus  are satisfied and 

 
5. lla nite 

Dimensional Space  
 
It has been observed that the example in ([2-11,22]) 

overed as special case of the abstract result. 
up is compact then the assumption (H1) in 

Se  finite dimension
applications are restricted to 

 overcome to this problem in 
Se other 
w he system (4) in 
infinite dimension space.  

LEMMA 5.1 Let 

the system (1) is controllable on [0,1].  

 Exact Contro bility in Infi

cannot be rec
If the semigro

ction 2 is valid only in al space so the 
ordinary differential control 

system but not to partial differential equations (refer 
[15]). We have tried to

ction 3 for the inclusion (1). Here we present an
ay of exact controllability result of t

 ([0, ]), )X  be a space 
formed by normalized   piecewise continuous function
([0, ], ).X  Let   h tha    suc

 = :k kV V   ;  where 

tively compact if an
e space 

 Assume that the function F and G 
ve mptions

 

 1( );  ,
( )

( );  =

k k

k

k k

V t t t t
V t

V t t t





    


  

The set    is rela d only if 
each set k

  is relatively compact in th  
).C  1([ , ];k kt t X

THEOREM
rify the assu

 5.2 
 ( 1)H  and ( 2)H   respectively 

an ndi are fulfilled: d suppose that the following co
a1) For every > 0r  and all

tions 
 > 0  there are com- 

pact sets  su, 1, 2,i
rU X

( , )F s

, =i 
1U

ch that 

,r
( )T A    and  2

,( ) rT G U( , )s  for every   

( ) : (0, ).rF J    
b1) Conditions ( 3)H  and ( 4)H  

e 
are satisfied. Then 

there exists a m of th
Proof Consider the system (3.4). As a main portion of 

eorem, we prov  completely continuous 
operator. 

ild solution system (3.4).  

the th e that N  is
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The mild solution given in Theorem (3.2) can be 
splitted up into following four parts:  

 (1)

1

( ) = ( ) (0) ( ) (0, ( (0)))

( , ( ( )))

N t T t x g x F x h

t x h t

  1

F
 

(2) ( ) = ( , ( ( )))d
t

N t AT s x h s s  

(3)

0
( ) = ( , ( ) ( )d

t
N t z T s x h s Bu s s  

(4)

0

( ) =
t tk

N t
 



( )iN

10
( )t s F

2 0
( ) ( )))d (

t
t s G s s T t  

( ) ( ( )), for each .k k kT t t I x t t J  

Obviously each  is continuous. To prove that 
is compact operat we will show separately that 

 is relatively compact in  for every 
.

is relatively com

 
or 

( )  

N  
( )iN

x
( (0, ))r 

= (0r r  
 1: Let 



pact in 
, )  

(1)NStep r .  
oundLet  is uniformly b ed 

on [0, us fo norm of the operator in 
(0,b], we can observe that the sets 

is relatively compact for every 

act in 

(1)= ( ).  Let rV N
b] and continuo

(.)T
r the 

1
,)) ;k rV T A U 

    it follows that kV  

1[ ,k kt t t 
( )r  is relatively comp

1( ) (0, ( (0)t F x h

], = 0,1,2, , .k m  
Step 2: Let (2)N  .  

ompWe first sh vely c act 
for each  For vial. Assume that 

ow that 2 ( ( ))rN t  is relati
.t J

t b
= 0t  it is tri

0 < 2 <   and let 1
,rU  

pothesis ( 1a
be the com

 the hy . Since
pact set 

introduced in )  (.)A T  is 
strongly c s on [ , ]bontinuou  , it fo

1 1

llows that 

  is relatively com-  

pact in 

 ,= ( ) : [ , ], rU A T s x s b x U  

.X  
usinNow g mean value theorem for Bochner inte al, 

we can write 
gr

2(2)N 1
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1
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t

t

t
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x t A T t s T A F s x h s s

A T t s A F s x h s s

t co U X

  

 


 

 

 

 





 

 

  






 

for each  where ( ),rx  ( )co U  denotes convex hull 
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(2)
0( );N x te the elements   are 

included in a compact set, it follows that th  on 
ght hand side converge y to zer

 

e first term
o as 
he fun

ri s uniforml 0.t t  
ctionSimilarly it follows from ( 1)b  that t

1( ) ( , ( ( ))), rt s F s x h s xAT    are equi-int
rm on ri

egrable, which 
nd sideimply that the second te ght ha   also

converges uniformly to zero as 0.t t  
This show that (2) ( )rN   is equi-continuous from the 

right at 0.t  Similarly it can be prove that 2 ( )rN   is 
equi-continuous from the left at 0 > 0.t  Thus (2) ( )rN   
is equi-continuous and hence (2) ( )rN   is relatively 
compact in  . 

Step 3: By using same argument as in Step 2 we can 
prove that the set (3) ( ).rN   is relatively compact in .  

Step 4: The relatively compactness of (4) ( ).rN   is 
consequence of assumption (H4) and Lem nce 
th

compactnes ption o .2 (a1) and growth 
condition (H2) ( 5). If the maps F and 

ma 5.1 He
e proof. 
Remark Throughout Section 5 we have used 

s assum f Theorem 5
ii) and (H

, = 1,2, ,kI k m  
(i) and (H5) instead 

satisfy some Lipschitz conditions (H2) 
of compactness in (a1) then also we 

can prove controllability result. 
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