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Abstract

In this short article, we have studied the controllability result for neutral impulsive differential inclusions
with nonlocal conditions by using the fixed point theorem for condensing multi-valued map due to Martelli
[1]. The system considered here follows the P.D.E involving spatial partial derivatives with a-norms.
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Fixed Point Theorem

1. Introduction

In this paper we have discussed the controllability of
nonlocal Cauchy problem for neutral impulsive differen-
tial inclusions of the form

%[x(t)—F(t,x(hl (t)))] e Ax(t)+Bu(t)+G (t,x(hy (1)) );
teJ:= [O,b];t #1,

Ax|t:tk=lk (x(t,:));k= L2,---m; x(0)+g(x)=x,e X

(1
where the linear operator (—A) generates an analytic

semigroup {T (t)} G is a multi-valued map and

20’
A, =)= x(), x(6) = limyox(t +5) and
x(t; ) =1limso*x(t, —h) represent the right and left
limits of x(¢) at ¢=¢, respectively, x, € X,
F:JxX —> P(X)\¢ is a multi-valued map [ P(X) is
the family of all subsets of X] and ge C(J,X). Also
the control function u € L*(J,U), a Banach space of
admissible control functions with U as a Banach space. B
is a bounded linear operator from U to X and X is
a separable Banach space with norm || ||
I, : X > D(4); k=1,2,---,m and h,h, e C(J,J).
As a model we consider the following system of heat
equations;
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g|:z(t, x)—F(t,z(cost, x)),%(cost,x)}
ot Ox

0% z(t,x)

2
X

z(¢,0) = z(t,m) = 0;

2(t) = 2(t,) = I, (z(¢,)),

t#£t k=1,2,--,m

z(0,x) + g(z(t,x)) = z,(x),0 < x < m,t €[0,1]

+u(t,x)+G (t, z(cost, x), % (cost, x)j ,
X
()

Since F and G involve spatial partial derivative,
the results obtained by other authors cannot be applied to
our system even if g(.)=0. This is the main motivation
of this paper.

The existence and controllability of the following sy-
stem is studied by Benchohra and Ntouyas [2]

%[x(t) —g(t,x,) |€ Ax(t)+ Bu(t) + F(1,x,);
teJ =[0,b];t =1,
Axl, = L3t )k =1,2,,myx(t) = §(1), 1 € (—o0,0).

3)

Here authors have proved exact controllability by
using fixed point theorem for condensing multi-valued
maps due to Martelli. In this paper, we have discussed
controllability results with a-norms as in [3] with de-
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viating arguments in terms involving spatial partial de-
rivatives.

As indicated in [4], and reference therein, the nonlocal
Cauchy problem x(0)+ g(x)=x, can be applied in di-
fferent fields with better effect than the classical initial
condition x(0)=x,. For example in [5], the author
described the diffusion phenomenon of a small amount
of gas in a transparent tube by using the formula

£ = (s,

where c,,i=0,1,---,p are given constants and

0<ty,t4, .1, <b. In this case the above equation
allows the additional measurement at ¢,, i=0,1,---,p.
In the past several years theorems about controllability of
differential, integro-differential, fractional differential
systems and inclusions with nonlocal conditions have
been studied by Chalishajar and Acharya [6-9], Ben-
chohra and Ntouyas [10,11], and Hernandez, Rabello and
Henriquez [12] and the references therein. In [13],
Chalishajar discussed exact controllability of third order
nonlinear integro-differential dispersion system without
compactness of semigroup.

Xianlong Fu and Yueju Cao [14], has discussed the
existence of mild solution for neutral partial differential
inclusions involving spatial partial derivative with a-
norms in Banach space. However in their work authors
impose some severe assumptions on the operator family
generator by (—A4), ie. (w4):D(A)c X > X is an
infinitesimal generator of a compact analytic semigroup
of a uniformly bounded linear operator {T(¢){ _ , which
imply that underlying space X has finite dimension
and so the example considered in [14], and subsequently
in Section 4 is ordinary differential equation but not
partial differential equation which shows lack of exi-
stence (exact controllability) in abstract (control) system
(refer [15]). This fact and several other applications of
neutral equation (inclusions) are the main motivation of
this paper.

In Section 3 (followed by Preliminaries) of present
paper we discuss the controllability of neutral impulsive
differential inclusion with nonlocal condition with devi-
ating arguments with a-norm, which is the genera-
lization of [14], in a finite dimensional space. The ex-
ample is given in Section 4 to support the theory. In
Section 5 we study exact controllability of same system
in infinite dimension space by dropping the compactness
assumption of semigroup {T (t)}t> , - Here we generalized
the result proved in Section 3.

2. Preliminaries

In this section, we shall introduce some basic definitions,
notations and lemmas which are used throughout this
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paper.

Let (X, "") be a Banach space. C(J,X) is the
Banach space of continuous functions from J into X
with the norm defined by

I, = sun{JeC0]:¢ <7}

Let B(X) be the Banach space of bounded linear
operators from X into X with standard norm

M) = sup{IN GO : ] = 1}

A measurable function x:J — X is Bochner inte-
grable if and only if ||x|| is Lebesgue integrable. (For
properties of the Bochner integral see [16]). Let
L'(J,X) denotes the Banach space of Bochner inte-
grable functions x:J — X with norm

o, = [lx@)|de forall xel'(J,X).
Il =1,

We use the notations P(X) = {Y e’ v« ¢} ,

P,(X)= {Y e P(X): Yclosed} ,
F(X)= {Y e P(X): Ybounded} ,
P.(X)={Y e P(X):Yconvex}, and

P, (X)= {Y e P(X): Ycompact} .

A multi-valued map G:X — 2% is convex (respec-
tively closed) valued if G(x) is convex (respectively
closed) forall xe X .

The map G is bounded on bounded sets if
G(B)=u__;G(x) is bounded in X for any bounded

set B of X. (i.e. supxeB{sup{"x":xe G(x)}} <oo).

G is called upper semi-continuous (u.s.c.) on X if for
each x, € X, the set G(x,) is a nonempty closed
subset of X and if for each open set B of X
containing G(x,), there exists an open neighborhood
A of x, suchthat G(4)c B.

The map G is said to be completely continuous if
G(B) is relatively compact for every bounded subset
BcX.

If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and
only if G has a closed graph, That is, if
X, > X,,¥, >V, where y eG(x,) then y, eG(x,).
G has a fixed point if there is xe X such that
xeG(x).

A multi-valued map G:J — BCC(X) is said to be
measurable, if for each xe X , the distance function
Y:J — R defined by

Y(t)=d(x.G(t))=inf{|x-z]:z € G()}

is measurable.

An upper semi-continuous map G:X — 2% is said
to be condensing, if for any bounded subset Bc X,
with a(B)#0, we have a(G(B))<a(B), where a
denotes the Kuratowski measure of non-compactness.
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1488 D. N. CHALISHAJAR ET AL.

We remark that a completely continuous multi-valued
map is the easiest example of a condensing map. For
more details on multivalued maps see the books of
Deimling [17].

Throughout this paper, 4:D(4A)c X > X will be
the infinitesimal generator of a compact analytic semi-
group of uniformly bounded linear operator 7(¢). Let
0e€ p(4), then it is possible to define the fractional
power A%, for0<a <1, as a closed linear operator on
its domain D(A”). Furthermore, the subspace D(A“)
is dense in X and the expression

1. =|
a

defines a norm on D(A4”). Hereafter we denote by
X,, the Banach space D(4“) normed with ||x||a
Then for each 0<a <1, X_ is a Banach space, and
X, — X, for0O<pB<a<l and the imbedding is
compact whenever the resolvent operator of A is
compact.

Semigroup {T (t)}t>0 satisfies the following properties:

a)thereisa M >1 such that
||T(t)|| <MforalO0<t<a;

A%x

; xeD(A”)

b) for any 0<a <1, there exists a positive constant
C, such that

For more details about the above preliminaries, we re-
fer to ([18,19]).

In order to define the solution of the system (1) we
shall consider the space

Q={x:[0,6] > X%, € C(J;, X,);k =0,1,--,m
and there exist x(¢,) and x(#; ); k =0,1,---,m
with x(t7) = x(2,),(0) + g(x) = %, },

which is a Banach space with the norm

||x||Q = max{"xk"Jk k= 0’1’...’m}

A"T(t)” 5%;0 <t<a

where x, is the restriction of x to
Ji =1ty [ k=0,1,---,m and
el = supocs, e, -
For the system (1) we assume that the following hypo-
theses are satisfied for some « € (0,1):

(H1) Let W:I*(J,U)— X, be the linear operator
defined by

Wu = J:T(b —5)Bu(s)ds

The W:L'(J,U)/kerW — X, induces a bounded
invertible operator W' and there exists positive con-
stant M, and M, such thatand ||B||SM1 and
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<.

(H2) i) there exists a constant S e(0,1) such that
F:[0,b]xX, —> X, is a continuous function, and
A’F :[0,b]x X, —> X, satisfies the Lipschitz condition,
that is, there exists a constant L >0 such that

”AﬂF(tl,xl)—AﬂF(l‘z,xz)"a < L(|tl _t2|+"xl _x2||a)’

forany 0<¢,t, <b;x,x, € X,.
ii) Moreover, there exists a constant L, >0 such that
the inequality

||AﬂF(t, x)"a <L (|, + 1),

holds forany xe X, .

(H3) The multi-valued map G:JxX, > P, (X)
satisfies the following conditions:

i) for each 7eJ, the function G(z,.): X, —>PF, ,(X)
isu.s.c. and for each xe X, the function
G(.,x):J —> P (X) is measurable. Also for each fixed

c,cp

yeQ the set
S ={veL'(J,X):v(t) € G(t,x(hy (1)) forae.t e J}

is nonempty.
ii) for each positive number /e N, there exists a
positive function w(/) dependenton [ such that

W"G(t,x)” < w(l)

and liminf @ =y <o where

>

6.0l =su{Jo:ve 6.0} [+, =supy.c (o),
(H4) h eC(J,J),i=1,2. g:Q— X, is continuous
and satisfies that
1) there exists positive constants L, and L, such
that

e, <L, ||, +L; for all y e .

ii) A“g is completely continuous map.
(H5) I, eC(X,,X,),k=1,2,---,m, are all bounded,
that is, there exist constants d,,k =1,2,---,m, such that

||Ik (x)"a <d,, foreach xeX,.

Now we define the mild solution for the system (1).

DEFINITION 2.1 The system (1) is said to be non-
locally controllable on the interval J if for every
x(0)+g(x)e D(A) and x,,z, € X, there exists a con-
trol wel’(0,b:(0,2m)) =L (J,U) such that the

corresponding solution x(-) of (1) satisfies
1) x(b)+g(x)=1z with x(0)+g(x)=xy;
i) Axl, = LGt k=1,200,m;
iii) there exists a function vel'(J,X) such that
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v(t) € G(t,x(h,(t))) a.e.onJand
x(t) = T(0)] x, — g(x) = F(0,x(, (0))) |+ F (¢, x(hy (¢)))
+ _[(;A T(t —5)F (s, x(h,(s)))ds + _[(;T(t —s)v(s)ds
+ [7(2 - $)(Bu)(s)ds
+ Y Tt ) (x(t);teJ,vesS,;,.

0<tk<t
2.1)

The following lemmas are crucial in the proof of our
main theorem.

LEMMA 2.2 [20] Let X be a Banach space. Let
G:JxX — B, (X) satisfies that

i) For each xe X, (t,x)> G(,x) is measurable
with respect to ¢ and for each reJ, (¢,x) > G(t,x)
is u.s.c. with respect to x .

i) For each fixed x e C(J,X), the set

Sgx = {v e L'(J,X):v(1) e G(t,x(hy (1)), for ae. t e J}
is nonempty.

Let T' be a linear continuous mapping from
L'(J,X) to C(J,X) then the operator
ros,:C(J,x)- P, (C(J.X)),

x—(TOS,)(x) = F(SG’X) is a closed graph operator in

C(J,X)xC(J,X).

LEMMA 2.3 [17] Let Q be a bounded and convex
set in Banach space X. F:Q —2°\¢ be an upper
semi-continuous and condensing multi-valued map. If for
every x€Q, F(x) is closed and convex set in Q,
then F has a fixed pointin .

3. Controllability Result

We are now able to state and prove our main contro-
llability result.

THEOREM 3.1 Let x, € X,. If the hypotheses (H1)-
(H5) are satisfied, then the system (1) is controllable
provided

Ly=L|(M+1)M, +%q —,Baﬂ} <l 3.1
(ML, + L, )M +M,L,

1 1 3.2
+EC1—ﬂaﬁL1+—Caal’”}/<l (3.2

(i)
and
My =z, + My [xo], + (M + 1)Lyt + L)

C.
+(M+1)M0Ll(l+l)+7ﬂLl(l+l)bﬂ (3.3)

+

S w(h)b™* + MYd,,
a k=1
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where, M, = "A_ﬂ " .

Proof. Let C:=C(J,D(4)) denote the Banach space
of continuous functions from J to D(A4) normed by

I, = sup{xc0]: 1 .1

Using hypothesis (H5) for an arbitrary function x(.)
and z, € D(4) define the control

u, ()= W' 2~ g(0) ~T(0)x, ~ ()~ F(O.x( (0)))]
—F(b,x(h (b)) + J'ObA T(b—-s)F(s,x(h(s)))ds

+ I;T(b—s)v(s)ds+ > T(-1)1,(:(5,) ]

0<tk <t

Using the above control, define a multi-valued map
N:Q—2% by

N(x) = {y e Q: y() = T(1)] x, — g(x) ~ F(0,x(, (0))) ]
+ F (6, x(h () + [ AT(t = $)F (s, x(hy (5)))ds
+ J;T(t —s)v(s)ds + J;T(t —5)(Bu)(s)ds

+ 2 Tt =t ()it e Jve S, |.

0<tk<t

By assumption on F,g,/, and the fact that x, e X,
it is obvious that y(¢t)e X, .

Clearly the fixed points of N are mild solutions to (1).
We shall show that N satisfies the hypotheses of Lemma
2.3. The proof will be given in several steps. Step 1:
There exists a positive number /€ N such that
N(H,)c H,, where
H, = {er:"x(t)"a Sl,OStéa}.

For each positive number /, H, is clearly a bounded
closed convex set in . We claim that there exists a
positive integer / suchthat N(H,)c H,, where
N(H,) =,y N(x). If it is not true, then for each
positive integer /, there exist the functions x,(.) € H,
and y, € N(x), but y()eH,, that is |y,()], >!
for some #(/) €[0,b], where #(/) denotes ¢ is depen-
dent on /. However on the other hand we have,

1<y @], =7O[x - 2(x) = FO,x (k)]
+ Pt (0) + [LAT (¢ = $)F (s,,(hy (5)))ds
+ _[(;T(t —5)v,(s)ds + _[(;T(t —$)(Bu, )(s)ds

+ Z T@—t )1, (x(t; ))"a , wWherev, € SG,xl

0<tk <t

Hence,
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<[5 —gt-a” A FO.x oM ]|
a4 Pz ()|

+H J;Al’ﬂT(t—s)AﬁF(s,x,

J;T(t—s)(Bu,

@),

+H J;T(t—s)v, (s)ds”a +
Y

<M (|||, + Lol + Ly + M, L (1+1)]+M0L,(1+1)

L (1+1)ds+j — _w ()ds

ey -

+ C,
+
J; (t )
Dividing on both sides by / and taking the lower
limit as [ — +o we get

MMMds+MZd

s 1-a
%L1+Calb y=1.
24

(ML +L))M + ML, + leﬂ

This is a contradiction with Formula (2). Hence for
some positive integer N(H,)c H, .

Step 2: N(x) is convex foreach xe Q.

Indeed if y,,y, € N(x) then there exists v,,v, €S, .
such that for each ¢t eJ , we have

y,(t) =T(O] x, = g(x) = F(0,x(, (0))) |
+ (6 x(y (0)+ [ AT (6= 5)F (5, x(h (5)))ds
+ _[(;T(t —5)v,(s)ds + j(:T(t —5)(Bu,)(s)ds
+ D Tt ) (x(t)i=1,2.

0<t, <t
Let 0< A ﬁkl. Then for each ¢t eJ we have
[0+ (1= 22, [() =T (@) x, — g(x)— F(0,x(h (0))) ]
+ F(t,x(h () + [ AT(t = 5)F (5, x(hy (5)))ds
+ [Tt =)[ v, (5)+ (1= v, (s)] ds
+ [T(e=5)B[ A, (5) + (1= Dy (5)] ds
+ > T =t ) (x(t;)

0<[A <t
Since S, is convex because G has convex values,
Ay +(1- ﬁ)yz eN(x).
Step 3: N(x) isclosed foreach xeQ.

Let {yn}nzo € N(x) such that y, -y in Q. Then
y€Q and there exists v, €S, such that for every
ted,

2,(6)= T x, = g(x) = F(0,x(, (0))) J+ F (1, x(h, (1))
+ J‘;A T(t—5)F(s,x(h (s)))ds
+ [Tt =5y, (s)ds + [ T(t - 5)(Bu)(s)ds
+ Y T(t—t ), (x(t,))

0<tk <t
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Using the fact that G has compact values, we may pass
to a subsequence if necessary to get that v, conver-ges to
veL'(J,X) andhence veS, . Then foreach reJ,

¥, () > y(6) = T(1)] x, = g(x) = F(0,x(, (0))) ]
+F(tx(h (1) + [ AT (¢ = )% (5, x( (s)))ds
+ _[(:T(t —s)v(s)ds + j;T(t —5)(Bu)(s)ds

+ Y T(t—t ) (x(t;))st e J.

0<ty <t

Hence ye N(x).

Step 4: Next we show that the operator N is u.s.c
and condensing.

For this purpose, we decompose N as N = N; + N,, where
the operators N;, N, are defined on H, respectively by

(Nx)(@) = F (2, x(h )(#) = T () F (0, x(h, (0))
+ I;A T(t—5)F (s, x(h,(s)))ds

Nyx=1{y € Qi y(0) = (1) x, — g(x)~ F(0,x(h, (0)))]
+ F(t,x(h (1) + L;AT(t — $)F (s, x(h (s)))ds
+ [7(2 = s)v(s)ds + [ T(e - 5)(Bu)(s)ds
£ TU=1)],(x(t))iv € S5, |-

0<tk <t

We will verify that N; is a contraction while N, is a
completely continuous operator.

To prove that N, is a contraction, we take x,,x, € H,
arbitrarily. Then for each ¢e€.J and by condition (H2),
we have that

[N )0 - (Ne)O),
< |F (0 ~ F e, (@),
HTOLFO,% (1 (0)) - F(0,x, (0],

+ HISAT (t = $)[ F (s, %, (A (5)) = F(s,x, (h(5)))]ds
=4’ [ 4P xmom- 2 Fax,in@n ]|

@ a? [ 47 F .5 000 - 4" FO.x, ) ]|

t —
+ jOA‘ PT(t—s)

[ resmo-AFexnte) ],

<M +1)M, L+j —Lds} sup [, ()= x,(5)],

)’
< L{(M +1)M, +%c1_ ﬂaﬂ} sup [x, ()= x,(5),

=, sup () =2, 5],
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Thus, ||N1x1 - N,x, "a <L, ||x1 - X, ||a . Therefore by
assumption 0<L, <1, N, isa contraction.

Next we show that N, is u.s.c. and condensing.

i) N,(H,) is clearly bounded.

il) N,(H,) isequi-continuous.

Let 7,7,eJ,7,<7,. Let xeH, and yeN,(x).
Then there exists ve S, such that for each reJ, we
have

()= T %~ () ]+ [Tt = 5)v(s)ds

+ [T =) Bu)(s)ds+ Y T(t =), (x(5,)

0<tk <t

Then,
||y(12 )= (7 )"a
<|IT(x) =T (@)](x, —g ()],

+H [T (e, = 9)-T(z, - 5)(s)ds

+
o

I:ZT(rz —s)v(s)ds

a

+HIOT1 [T(T2 -85)—T(z, —s)]BVf/’1
{2 = g(x) =T (B) x, — g(x) ~ F(0,x(h (0)))]
— F(b.x(h (b)) - || AT(b =) F (7. x(h, (m))d 7y

~[;re=myandn= 3 Ta—1)1,(x )}as|

0<ty <7

+

LTZT(TZ —5)BW™!
: {Zl —8(x) =T (b)] %, — g(x) = F(0,x(h, (0))) ]
— Fb,x(h (b))~ [ AT (b =) F (. x( (7))l

= [T e=myvandn+ ¥ Ta-1), (s
z'litkﬁz'z

The right hand side tends to zero as (r,—17,) =0,
since T'(¢) is strongly continuous and the compactness
of {T(1)},_, implies the continuity in the uniform ope-
rator topology. Thus N, (.) is equi-continuous on H,.

iii) (N,H,)(t) is relatively compact for each teJ,
where (N,H,)(t) = {J’(t) A (NZH])} .

Obviously, by condition (H4)(ii),(N,H,)(t) is rela-
tively compact in X, for t=0. Let 0<¢<bh be
fixed and 0<e<t.For xe H, and ye N,(x), there
exists a function ve S, such that

Y0 = T(@O)[x, - g1+ [ T(t=s5)v(s)ds
[ T=syis)ds + [T s)(Bu)(s)ds

+[ Ta-$)Bu)s)ds + ¥ T ~1)1,(x(1})

0< <t

Define,

Copyright © 2011 SciRes.

2, () =T x, — g(x) ]+ J.;_ST(t —s)(s)ds

[T ) Bu)s)ds+ Y T~ (x(5,)

0<tk <t

2,0 =T(O)[x - g [+ T(&)], T(t-&-s5)(s)ds
+T(¢) j;"T(z —&—5)(Bu)(s)ds
+ 2 Tt =)L (x(%,)
0<tk <t
Since T(¢) is compact, the set
Y,(t)={»,(t): ye N,(H,)} is relatively compact in
X, forevery ,0<g<t¢t.

a

Moreover, for every y € N,(H,),
|y -y, @),

= HLT(: —s)(s)ds

L HJ-LST(I —s)(Bu)(s)ds

a

<M wh)ds

Y { L+,

T @l + g Cll+ £ 0. x @]
+|[F @, x (i o))

+|[rar@ -mF e x|
}ds

+ M [ |+ (Ll + L3) + My L (1 +1) ]

+|[r@-mvanai]

+ Z T@-t )1, (x(%,))

0<t <t

<Mw(l)e

+MM M, Lig {||z1 |+ (Lot + L))

b C]—,B
+ ML+ 1)+j0 (b—Ll (I+1)dp

— n)(lfﬂ)

+ jo (b_; % w(l)d77+M;dk}ds

<Mw(l)e + MM M, M &

< Me[w(l)+M MM, |

Therefore, letting £—0, we see that there are
relatively compact sets arbitrarily close to the set
{(t):y € N,(H,)} . Hence the set {y(1):yeN,(H,)}
is relatively compactin X .

As a consequence of (i),(ii), (ii1) and together with the
Arzela-Ascoli theorem we can conclude that
N, :H, — 2" is a completely continuous multi-valued
map and, therefore, a condensing multi- valued map.
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iv) N, has a closed graph.

From the above steps we can see, for every xe€ H,,
N,(x) is relatively compact and closed set, which can
be testified as in Step 3. Hence N, (x) is a compact set.

Let x, »>x,, x,€H,,y,€N,(x,) and y, > y,.
We must show that y, € N,(x,);y, € N,(x,) means
that there exists v, € S5, such that, for each re.J.

2, (=T x, —g(x,) ]+ _[(;T(t —s)v, (s)ds

+ [T = 5)(Bu,)s)ds + Y T(t =), (x, (1)
0<tk<t

where
u, (0)=W"[2,-g(x,)~T() x,~2(x,)~FO.x(4(0)) ]

— F(b,x(h (b)) + [ AT (b= )F (5,0 (s))ds
+[TB-spv,()ds+ Y T(t—1,)1,(x, ()]

0<tk <t

—[y*(x)—T(f)[xo —g(x*)]—J;T(f—S)(Bu*)(S)dS— ) T(t_tk)lk(x*(tk))J
0<tk<t

Consider the linear continuous operator

F:LI(J,X)—> C(J,X),vI—>F(v)(t)=J-(;T(t—S)v(s)ds.

We must prove that there exists v, € S such that

2.(0) =T x, — gx) ]+ [T(t = 5)v. (s)ds
+ [T =s)Bu)$)ds + Y Tt 1)1, (x.(5)

0<ty <t
where

u, (t)
=7 [z~ g(x) = T(B)x, ~ g (x) = FO.x( (0))]

—F(b,x(h (b)) + f:A T(b—s)F(s,x(h(s)))ds

+[TB-sw.()ds+ 3 Tt (x.()]

0<tk <t

Clearly, since [,,k=1,2,---,m and g are continu-
ous we have that

[y,, (O -TOx% - (x,) - [T~ ) Bu,)()ds — ¥ T(t~1)],(x, m»J

0<ty <t

— 0, asn —> .

Q

From Lemma (H3) it follows that T'OS,; is a closed
graph operator.
Moreover, we obtain that

(yn O -TO[x - g, ]~ [Tt -5)Bu,)s)ds— ¥ Tt~1,)L,(x, (a))} er(S,. ).

Since x, — x,, it follows from (H3) that

0<ty <t

V.0 =TO[x, ~ g) [T~ 5)(Bu ))ds = 3 T(e=1)1,(x.(5;) €T(S,,,.)

that is, there must exista v,(r) € S; . such that

2. =T x, —g(x.)]
[T (= s)Bu)(s)ds = Y T(t—t)1,(x, ()

0<tk <t
=T, (1) = j;T(z — )V, (s)ds.

Therefore, N, has a closed graph. Since N, is a
completely continuous multi-valued map with compact
value, N, is us.c. On the other hand N, is a con-
traction. Hence N =N, + N, isu.s.c. and condensing.

By Lemma 2.3, there exists a fixed point x(.) for N
on H,. Therefore, the nonlocal Cauchy problem with
impulsive effect (1) is controllable on J.

Particularly, if G(¢,x(h,(¢))) is a single-valued map,

Copyright © 2011 SciRes.

O<ty <t
then the system (1) will become

%[x(f)—F(taX(hl(t)))] =Ax(t)+Bu(D)+G (t,x(hy (1)) );
ted:= [O,b];

AY],, = L ) k= 1,2, ms £ %,
%(0)+ g(x) = x,

“
by using Sadovskii’s fixed-point theorem for condensing
map, we can analogously study the controllability of the
system (4).

(H3)” The function G:JxX, —» X satisfies the fo-
llowing conditions:
1) for each teJ, the function G(t,.): X, > X is
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continuous; and for each x e X, the function
G(.,x):J > X is strongly measurable.

ii) for each positive number /e N, there exists a
positive function w(/) dependenton / such that

sup |G(t,x)| < w(l) and }im@ =y<o

where
[, = sup x5,
0<s<a

THEOREM 3.2 Let x,€X,. If the hypotheses
(H1),(H2),(H3)',(H4) and (H5) are satisfied, then
the system (4) is controllable on J provided (1), (2)
and (1) hold.

Proof The mild solution of the system (4) is given by

xX(1) =T(0)[ x, — g(x) = F(0,x(h, (0))) ]
+ F(t,x(h (1)) + [ AT (¢ = $)F (s, x(h, ()))ds
+ j(:T(z —$)G (s, x(h, (s))ds + j;T(t — 5)(Bu)(s)ds

+ Z T@—t ), (x(t)));ted.

odr<t
We define the operator N:QQ — Q by
(Nx)(1) = T(0)] x, — g(x) — F(0,x(h,(0))) |
+ F(t,x(h (0) + [ AT (¢ = $)F (s, x(hy(5)))ds
+ [Tt~ )G(s, x(hy ()))ds + [Tt = 5)(Bu)(s)ds
+ Y T(t—t)1,(x(t,))

Then we can decompose N as N =N, +N,, where
(Nyx)(@) = F (2, x(h)(0)) =T () F (0, x(1,(0))
+ [[AT (1= 5)F (s, x( (s)))ds
and
(N,2)(0) = T(O %, — g() Jr [T (= )Gs.x(hy (5)))ds
+ I;T(t—s)(Bu)(s)ds

and verify that N, is a contraction while N, is a
compact operator, thus Sadovskii’s fixed-point theorem
can be applied to the operator N and hence N has
atleast a fixed point on Q, which shows that system (4)
is controllable on the interval J. The desired proof is
similar to Step 4 of Theorem 3.1.

4. Example
As an application of Theorem 3.2, we study the

following impulsive partial function differential system
with nonlocal condition

Copyright © 2011 SciRes.

%{z(t, x)— L:b(t, ¥,X) {z(sint, y)+ 2—; (sint, y)} dy:l

2
= &tz,x) +u(t,y)+h| t,z(sint, x),@(sint,x) ,
ox ox

0<t<1,0<x<mt#t,k=12,--,m

z(¢,0) = z(t, 1) = 0; z(¢])—z(t,) =1, (z(¢,)),
k=1,2,--.m

.
z(0,x)+ ZJO k(y,x)z(s;,y)dy =z,(x),0<x<m
i=0

4.1
where p is a positive integer, 0<s, <s <---<s <I,
and 0<t <t, <.t <--<l;z(x)e X =L ([0,n]). 4
is defined by Aw = @" with the domain

D(A)=H; ([0,7])={o() e X : o,
" are absolutely continuous,

o" e X,w(0) = o(r) =0}

Then A generates a strongly continuous semigroup
T'(.) which is compact, analytic and self-adjoint.
a’) Also A has a discrete spectrum representation

Aw=>(-n")<w,0,> 0,0 D(4),nc N,

n=1

2 .
where @, (x)=,|—sin(nx);n=1,2,--- is the orthogonal
T

set of eigenvector of 4. The eigenvalues are —n’,n € N.
1

b’) The operator A? is given by

l 0
2 —
A’w= En<a),a)">a)n
n=0

1

on the space D(A? ):{a)(.) eX: Z::1n<a), w,>o, eX}.

The control operator B:L*(J,X)— X is defined by
(Bu)(®)(y)=u(t,y);y €(0,m) which satisfies condition
(HS). Here B is an identity operator and the control
function u(.) is given in L*([0,n],U).

We assume that the following conditions hold:

i) The function b is measurable and

SUPg</<1 J:Jl:bQ (¢, y,x)dydx < oo

o’b(1,y,x)
ox?
b(t,y,0)=b(t,y,m) =0, and

1
b0 I
N, =sup,, jo .[0 (#j dydx | <oo.

X

i1) The function is measurable,
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iii) For the function #4:[0,1]xRxR— R the fo-
llowing three conditions are satisfied:
1) For each ¢€[0,1],A(t,.,.) is continuous.
2)Foreach ze X,,h(.,z,z") is measurable.
2
3) There is a positive number ¢, such that

"g(t, z,z')" <q "z
forall (¢,z)e [O’l]XXl'

2

B

2 2

iv) 1, eC(Xl,le,k=1,~~, and there exist cons-

tants d,,k=1,---,m, such that

7.2 <d,.ze X,.
2 2

1 .
Here we choose a = f = 3 According to paper [21],

we know that, if zeX,, then z is absolutely
2

continuous , z'€ X, and z(0)=z(n)=0. In view of
this result, for (¢,z) €[0,1]xX,,0eQ (Q is defined

2
as in Section 3), we can define respectively that

F(t,2)(x) = [[b(t, y,0)[2(3) +2'()] -

G(t,2)(x) = h(t, 2(x),2' (),
and
g(@() = YKo (s)we,

where K,:X, - X, is completely continuous [16]
2 2

such that K, (z)(x) = jo"k,. (y,x)z(y)dy and
G:[0,1]x X, > X Itis easy to see that

2
1
F:[0,1]xX, > X,,A?F:[0,1]x X, > X, -+ In fact,
2 2 2 2
for each 7€<[0,1], we have

<F(t,z),a)n>
= l\/%@;‘%[z(y) + z’(y)]dy,cos(nx)>,

n

also,
(F(t.2),m,)

=1 [2 /= 07b(t,,x)
e

e [z(y)+z’(y)]dy,sin(nx)>.
Copyright © 2011 SciRes.

1
This shows that F and A4%F both take values in X,
2
in terms of properties (a’) and (b’), and therefore the
function g. Since, forany x,x, € X,
2

2 & 2 &, 2
||x2—x1|| :Z<x2—xl,zn> SZn (xz—xl,zn>

n=0 n=0

2
<l -
2

This inequality alongwith condition (ii) says that (H2)
is satisfied. Also G satisfies (H3)' and g satisfies (H4).
By (i), F(t,z) is a bounded linear operator on X .
Thus (H1),(H2),(H3),(H4),(H5) are satisfied and
the system (1) is controllable on [0,1].

5. Exact Controllability in Infinite
Dimensional Space

It has been observed that the example in ([2-11,22])
cannot be recovered as special case of the abstract result.
If the semigroup is compact then the assumption (H1) in
Section 2 is valid only in finite dimensional space so the
applications are restricted to ordinary differential control
system but not to partial differential equations (refer
[15]). We have tried to overcome to this problem in
Section 3 for the inclusion (1). Here we present another
way of exact controllability result of the system (4) in
infinite dimension space.

LEMMA 51 Let PC ([0,7]),X,) be a space
formed by normalized piecewise continuous function
([0,7],X,). Let B<PC suchtha

B, = {I;k 4 eB}; where

7 (- {V(t); te(t ]

V) t=t,

The set B < PC is relatively compact if and only if

each set B, is relatively compact in the space
Clt st 5 X,)-

THEOREM 5.2  Assume that the function F and G
verify the assumptions (H1) and (H2) respectively
and suppose that the following conditions are fulfilled:

al) For every »r>0 and all £>0 there are com-
pactsets U., < X,,i=1,2, such that
T(e)A’F(s,&)eU}, and T(£)G(s,&)eU;, forevery

F(&):JxB.(0,Q).

bl) Conditions (H3) and (H4) are satisfied. Then
there exists a mild solution of the system (3.4).

Proof Consider the system (3.4). As a main portion of
the theorem, we prove that N is completely continuous
operator.
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The mild solution given in Theorem (3.2) can be
splitted up into following four parts:

NP(@) =T(0)[x(0) - g(x) = F(0,x( (0)))]
+F(t, x(h (1))

NP (1) = J;A T(t —$)F (s, x(h, (s)))ds
N®()z= L:T(t —$)G(s, x(hy (5)))ds + _[(;T(t — 5)Bu(s)ds
NP @)= Z T(@—1t)1,(x(t,)),for eacht e J.

0<ty <t

Obviously each N is continuous. To prove that
N is compact operator we will show separately that
NY(B.(0,Q)) is relatively compact in Q for every
xeB =B.(0,Q).

Step 1: Let N'(B.) is relatively compactin Q.

Let ¥=N"(B.). Let T(.) is uniformly bounded
on [0,0] and continuous for the norm of the operator in
(0,b], we can observe that the sets

V, € T(OF0,x(l (0))+ AU, ;

is relatively compact for every
telt,,t,,,1,k=0,1,2,---,m.

Step 2: Let N®(B,) is relatively compactin Q.

We first show that N*(B.(¢)) is relatively compact
for each teJ. For =0 it is trivial. Assume that
0<2e<t<b and let Ul,, be the compact set
introduced in the hypothesis (al). Since A”T(.) is
strongly continuous on [¢&,b], it follows that

U, = {Al‘ﬁT(s)x :sele,bl,xe Ui,,} is relatively com-

it follows that 7,

pactin X,.
Now using mean value theorem for Bochner integral,
we can write

NPx(t) = j;’”Al'ﬂT(t —5—&)T(e) A" F(s,x(h,(s))ds
+ jt’_%Al*ﬂ T(t—5)A” F(s,x(h(s))ds
e(t-2¢)co(U,)+ (B)_* )(0,X,)

for each xe(B.), where co(U,) denotes convex hull
of U, and

r =2, {n (|, +1)}%.

Thus N*(B.)(¢) is relatively compactin X, .
Next we show that N®(B,) is equi-continuous.
Let 0<t,<t<b. Then

NOx(t)- NVx(t)
= —[[AT (1 = 5)F (s, x( (s)))ds
+ [ AT(t, — $)F (5, x(y (5)))ds
=(I-T(t—1,))N?x(t,)
= [ AT =5)F (520 ()ds

Copyright © 2011 SciRes.

Since the elements N@x(z)); for xeB.; are
included in a compact set, it follows that the first term on
right hand side converges uniformly to zero as ¢ —¢,.
Similarly it follows from (bl) that the function
AT (t —s)F(s,x(h,(s))),x € B, are equi-integrable, which
imply that the second term on right hand side also
converges uniformly to zero as ¢ —¢,.

This show that N®(B.) is equi-continuous from the
right at ¢,. Similarly it can be prove that N’(B,) is
equi-continuous from the left at #, >0. Thus N?(B,)
is equi-continuous and hence N“(B.) is relatively
compactin Q.

Step 3: By using same argument as in Step 2 we can
prove that the set N (13.). is relatively compact in Q.

Step 4: The relatively compactness of N“(B.). is
consequence of assumption (H4) and Lemma 5.1 Hence
the proof.

Remark Throughout Section 5 we have used
compactness assumption of Theorem 5.2 (al) and growth
condition (H2) (ii)) and (HS5). If the maps F and
1,,k=1,2,---,m satisfy some Lipschitz conditions (H2)
(i) and (HS) instead of compactness in (al) then also we
can prove controllability result.
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