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Abstract

The exact solutions of the Einstein field equations for dark energy (DE) in Locally Rotationally Symmetric
(LRS) Bianchi type-I metric under the assumption on the anisotropy of the fluid are obtained for exponential
volumetric expansion within the frame work of Lyra manifold for uniform and time varying displacement

field. The isotropy of the fluid and space is examined.
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1. Introduction

After the discovery that the cosmic expansion is acceler-
ating [1-3] and the first cosmic microwave background
(CMB) radiation observation of a flat universe [4], the
current standard model of cosmology implies the exis-
tence of dark energy which accounts for about 70% of
the total energetic content of the universe, which ac-
cording to the observations is spatially flat [5]. The na-
ture of the dark energy is still a mystery [6]. Several
models have been proposed to explain dark energy
[7-15]. An alternative consists of to consider a phe-
nomenological decaying dark energy density with con-
tinuous creation of matter [15] or photons [16,17].The
dark energy might decay slowly in the course of the
cosmic evolution and thus provide the source term for
matter and radiation. Different such models have been
discussed and strong constraints come from accurate
measurements of the CMB. Although some authors [18]
have suggested cosmological model with anisotropic and
viscous dark energy in order to explain an anomalous
cosmological observation in the cosmic microwave
background (CMB) at the largest angles. The binary
mixture of perfect fluid and dark energy was studied for
Bianchi type-I and for Bianchi type-V [19] and [20] re-
spectively. Akarsu et al. [21] have studied the Bianchi
type-I1I with anisotropic dark energy.

Bianchi type models have been studied by several au-
thors in an attempt to understand better the observed
small amount of anisotropy in the universe. The same
models have also been used to examine the role of cer-
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tain anisotropic sources during the formation of the
large-scale structures we see in the universe today. Some
Bianchi cosmologies, for example, are natural hosts of
large-scale magnetic fields and therefore, their study can
shed light on the implications of cosmic magnetism for
galaxy formation. The simplest Bianchi family that con-
tains the flat FRW universe as a special case are the
type-I space-times.

Lyra [22] proposed a modification of Riemannian
geometry by introducing a gauge function into the struc-
ture-less manifold, as a result of which the cosmological
constant arises naturally from the geometry. This bears a
remarkable resemblance to Weyl’s [23] geometry. In
subsequent investigations Sen [24] and Sen & Dunn [25]
formulated a new scalar-tensor theory of gravitation and
constructed an analog of the Einstein field equations
based on Lyra’s geometry. Halford [26] has shown that
the scalar-tensor treatment based on Lyra’s geometry
predicts the same effects as in general relativity. Several
authors studied cosmological models based on Lyra’s
manifold with a constant displacement field vector ¢ .
However, this restriction on the displacement field to be
constant is only for convenience and there is no prior
reason for it. Many authors studied the cosmological
models with constant and time dependent displacement
field [27-38]. Recently, the FRW cosmological model
within the frame of Lyra geometry has been studied with
variable Equation of state (EoS) parameter [39].

In the present paper, a spatially homogeneous and ani-
sotropic LRS Bianchi type-I cosmological model with
anisotropic dark energy in Lyra’s geometry for uniform
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and time varying displacement field has been studied.
The geometrical and physical aspects of the model have
been studied.

2. Metric and Field Equations:

The LRS Bianchi type-I metric is given by
ds” =dt* —a’dx* —b* (dy’ +dz*), (1)

where the scale factors a and b are functions of cosmic
time t only.
The energy-momentum tensor of anisotropic fluid is

Ty = diag[ T, T 12,17 .
By parametrizing it, we get
T, =diag[ p,— .~ P, — D, |
=diag[l,—a)x,—a)y,—a)z]p 2)
=diag[l, -, — (0+6), - (0 +5)] p,

where p is the energy density of the fluid; p,, p, and
p, are the pressures and w,,w, and @, are the di-
rectional equation of state (EoS) parameters of the fluid.

Now, parametrizing the deviation from isotropy by
setting @, =®, =w, = , then introducing skewness
parameter & which is the deviation from @ ony and
z axis. Here @ and J are not necessarily constants
and can be functions of the cosmic time t.

The field equations in Lyra’s manifold as obtained by
Sen [24] are (8aG =1 and c=1)

1 3
R _ERg"V +E¢”¢v
3 A3)
_Z gpv¢m¢m = _Tyv’

where g,,u“u" =1, u*=(1,0,0,0) is the four velocity
vector,

¢, is the displacement vector, R
sor; R is the Ricci scalar,

T, 1s the energy-momentum tensor .

In a co-moving coordinate system, above field Equa-
tions (3), for the anisotropic space-time (1), with Equa-
tions (2) yield

is the Ricci ten-

uv

ab b* 3

ey 4
a o 4’ F )
b b 3,
2—+—+= B =- 5
b 4ﬂ wp ®)
b & a 3 ,
—+—+—+=p =—(w+9)p, 6
b a ab 4ﬁ (a) )p ©

where the overhead dot (") denote derivative with respect
to the cosmic time't .
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3. Isotropization and the Solution

The spatial volume is given by
V=R’=ab’, @)

where R is the mean scale factor.
Subtracting Equation (5) from Equation (6), we get

dfa b) (a bV
—| === |+ == ==
dtia b a b)v
This on integrating gives
=2

Pt
(e'_g]:ie = .

a b)) VvV

where A is constant of integration.
In order to solve the above equation (8), we use the
condition

i5=D0

)

Using Equation (9) in the Equation (8), we obtain

a b)) 1,
(E—Ejzve . (10)

To solve the system of equations completely we use
law of variation for the Hubble parameter which yields
the constant value of deceleration parameter proposed by
[40] for FRW metric and then by [41] and [42] for Bian-
chi type space-times.

According to this law, the variation of the mean Hub-
ble parameter for the metric (1) is given by

H =k(ab?) ™, (1n

where k>0 and m>0 are constants.

Here, in particular, we consider the model for m=0
only. i.e. we consider the model for exponential expan-
sion.

The directional Hubble parameters in the direction of X,
y and z axis respectively for the LRS Bianchi type-I met-
ric are

b

a
szg,and Hy:HZ:B. (12)
The mean Hubble parameter is given as
poR_IV_1fa by (13)
R 3V 3la b
The volumetric deceleration parameter is
RR
4=-%- (14)
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On integrating, after Equatings (11) and (13), we get
V =ab>=ce™ for m=0, (15)
where C, is a positive constant of integration.
Using (11) with (15) for m=0, we get
H=k (16)

Using Equations (15) and (7) in equation (14) we get,
constant values for the deceleration parameter for mean
scale factor as:

g=-1 for m=0, (17)

For this model q=-1 which implies the fastest rate
of expansion of the universe. The deceleration parameter
of the universe is in the range —1<q<0 and the pre-
sent day universe is undergoing accelerated expansion
[2,3,43].

4. Model for Exponential Expansion i.e. for
m=0 (q=-1)

Using Equation (15) in the Equation (10), we get
E_E :ie(l—3k)t
a b)) ¢ '
This on integrating gives

i
a=cbexp| — et | 18
: eXle(l—Sk)t (1%)

where A is a constant of integration.
Using Equation (18) in Equation (15), we get the value
of scale factors as

1
c )3 22 )
a=| =L kt+——2 g3k 19
[c§j eXp{ 3c,(1-3k) (19)

1
¢ ) A (1-3K)t
& ke g ROY)
(03] exl{ 36, (1-3K) (20)

The directional Hubble parameters are

b

H, =k + 2% g0 1)
3¢,
and
H, = H, =k -2 gl (22)
Y 3¢,

The anisotropic parameter of the expansion (A) is

defined as
43(%—*4)2
350 H ’

where H,;(i=1,2,3) represents the directional Hubble
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parameters in the direction of X, y and z respectively.

Case (I): Uniform displacement field i.e. when
B = B, , constant.

Here, we assume the vector displacement field ¢, to
be the time like constant vector ¢, =(£,0,0,0), where
B =/, isaconstant.

The anisotropic parameter of the expansion (A) is
found as

22° 2(1-3K)t
=" ¢ . 23
9k’c/ @)
The expansion scalar & is given by
6=3H =3k . (24)

The shear scalar ¢° is given by

ot=1 23: H2-3H? |=2 AH? _ A g . (25)
207 2 3¢/
Using Equations (21) and (22) in Equation (4), we ob-
tain the energy density for the model as
A% st 3
_2e —_——
3c; 4
Using Equations (21), (22) and (26) in Equation (9),
we obtain the deviation parameter as

A o
Cl

A% a0t 3 '
CEETER

3¢’

p=3Kk - B (26)

1-3k)t

S=-

@7

Using Equations (21), (22), (26) and (27) in Equation
(6), we obtain the deviation-free parameter as

=
3K 4 - 22609 ok 24(1-3k) ] 3,
+e g T T A |t
3¢, 3¢, 3¢, 477 (28)
SIS e |
3¢ 4

The anisotropy of the expansion (A ) is not promoted
by the anisotropy of the fluid and decreases to null ex-
ponentially as t increases provided k >1/3.

The space approaches to isotropy in this model since
A—>0 as t—>ow.

Also the spatial volume V — o and

p=(3k2—%ﬂ02j>0 as t—>oo for k>1/3.

Here A and p, contribute to the energy density of
the fluid p negatively.

The energy density of the fluid p, the deviation-free
EoS parameter @ and the deviation parameter & are
dynamical.
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For k>1/3 and as t—>o, the anisotropic fluid
isotropizes since o -0 and the model exhibits like
phantom energy model having EoS parameter

®—> —(3k2 +%ﬂ02 )/(3k2 —iﬁozj which is equivalent

to w<-1 provided that k* > %ﬂoz .

In this case (model), we get @ —> -1 as £, > 0.i.e.
for very very small positive value of f;, the model ap-
proaches [nearer to] the cosmological constant (A ).

Also for k =1/3, our model does not survive.

Case (I1): Time varying displacement field i.e. when
B=pBt".

Here, we assume the vector displacement field ¢, to
be the time varying vector ¢, =(A(t),0,0, 0) , where
B=pBt".

We consider a=-1 i.e.
p= % . (29)

The anisotropic parameter of the expansion (A) is
found as

A= 24° e2(1—3k)t

9k’c;
Using Equation (29) in the Equations (26), (27) and
(28) we obtain, the energy density, deviation parameter

and the deviation-free parameter for the model respec-
tively as fallows:

(30)

A% aassor 3[82
=3k*-—-e -0 31
P 3¢ 40 Gb
ﬂe(l-zk)t
S=— G 32
N E 2020130 5 , )
3kr_-2= 2
3¢} 4ﬂ0
=
2173kt 22(1-3k
o s e 2 22020, 3
C, 3¢, 3c, 47 (33)
) 3k2_ﬂ_gﬂ2
3c] 47"

Here, the anisotropy of the expansion (A) is not pro-
moted by the anisotropy of the fluid and decreases to null
exponentially as t increases provided k >1/3

The space approaches to isotropy in this model since
A—>0 as t—>o.

The spatial volume V — o
t—>oo for k>1/3.

Here A and f, contribute to the energy density of
the fluid p negatively.

and p=3k’>0 as
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The energy density of the fluid o, the deviation-free
EoS parameter @ and the deviation parameter o are
dynamical.

For k>1/3 and as t—>o, the anisotropic fluid
isotropizes and mimics to the vacuum energy which is
mathematically equivalent to the cosmological constant
(A). ie. we get § >0,0—>—-1 and p—3k> which
matches with the result obtained by Akarsu et al. [21].
Also, in this case for k = 1/3 , our model does not sur-
vive.

5. Conclusions

In case I and Case II, it is observed that the universe can
approach to isotropy monotonically even in the presence
of an anisotropic fluid in the model. The anisotropy of
the fluid also isotropizes at later times and evolves into
the well known cosmological constant in the model for
exponential volumetric expansion. Also, for k=1/3
our model does not survive. In case-I, the model evolves
to the phantom energy and in case-II, it evolves to the
cosmological constant ( A ).Thus, even if we observe an
isotropic expansion in the present universe we still can-
not rule out possibility of DE with an anisotropic EoS in
Lyra geometry. Also, the role of displacement field S
plays a crucial role in the dynamics of the universe.
Therefore, we cannot rule out the possibility of an ani-
sotropic nature of the DE at least in the framework of
Lyra geometry. These observations are worth to pay at-
tention.
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