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Abstract 
 
The exact solutions of the Einstein field equations for dark energy (DE) in Locally Rotationally Symmetric 
(LRS) Bianchi type-I metric under the assumption on the anisotropy of the fluid are obtained for exponential 
volumetric expansion within the frame work of Lyra manifold for uniform and time varying displacement 
field. The isotropy of the fluid and space is examined. 
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1. Introduction 

After the discovery that the cosmic expansion is acceler-
ating [1-3] and the first cosmic microwave background 
(CMB) radiation observation of a flat universe [4], the 
current standard model of cosmology implies the exis-
tence of dark energy which accounts for about 70% of 
the total energetic content of the universe, which ac-
cording to the observations is spatially flat [5]. The na-
ture of the dark energy is still a mystery [6]. Several 
models have been proposed to explain dark energy 
[7-15]. An alternative consists of to consider a phe-
nomenological decaying dark energy density with con-
tinuous creation of matter [15] or photons [16,17].The 
dark energy might decay slowly in the course of the 
cosmic evolution and thus provide the source term for 
matter and radiation. Different such models have been 
discussed and strong constraints come from accurate 
measurements of the CMB. Although some authors [18] 
have suggested cosmological model with anisotropic and 
viscous dark energy in order to explain an anomalous 
cosmological observation in the cosmic microwave 
background (CMB) at the largest angles. The binary 
mixture of perfect fluid and dark energy was studied for 
Bianchi type-I and for Bianchi type-V [19] and [20] re-
spectively. Akarsu et al. [21] have studied the Bianchi 
type-III with anisotropic dark energy. 

Bianchi type models have been studied by several au-
thors in an attempt to understand better the observed 
small amount of anisotropy in the universe. The same 
models have also been used to examine the role of cer-

tain anisotropic sources during the formation of the 
large-scale structures we see in the universe today. Some 
Bianchi cosmologies, for example, are natural hosts of 
large-scale magnetic fields and therefore, their study can 
shed light on the implications of cosmic magnetism for 
galaxy formation. The simplest Bianchi family that con-
tains the flat FRW universe as a special case are the 
type-I space-times. 

Lyra [22] proposed a modification of Riemannian 
geometry by introducing a gauge function into the struc-
ture-less manifold, as a result of which the cosmological 
constant arises naturally from the geometry. This bears a 
remarkable resemblance to Weyl’s [23] geometry. In 
subsequent investigations Sen [24] and Sen & Dunn [25] 
formulated a new scalar-tensor theory of gravitation and 
constructed an analog of the Einstein field equations 
based on Lyra’s geometry. Halford [26] has shown that 
the scalar-tensor treatment based on Lyra’s geometry 
predicts the same effects as in general relativity. Several 
authors studied cosmological models based on Lyra’s 
manifold with a constant displacement field vector i . 
However, this restriction on the displacement field to be 
constant is only for convenience and there is no prior 
reason for it. Many authors studied the cosmological 
models with constant and time dependent displacement 
field [27-38]. Recently, the FRW cosmological model 
within the frame of Lyra geometry has been studied with 
variable Equation of state (EoS) parameter [39]. 

In the present paper, a spatially homogeneous and ani-
sotropic LRS Bianchi type-I cosmological model with 
anisotropic dark energy in Lyra’s geometry for uniform 
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

and time varying displacement field has been studied. 
The geometrical and physical aspects of the model have 
been studied. 

2. Metric and Field Equations: 

The LRS Bianchi type-I metric is given by 

2 2 2 2 2 2 2d d d d ds t a x b y z    ,        (1) 

where the scale factors a and b are functions of cosmic 
time t only. 

The energy-momentum tensor of anisotropic fluid is 
0 1 2 3

0 1 2 3diag , , ,u
vT T T T   T



. 

By parametrizing it, we get 



diag , , ,

diag 1, , ,

diag 1, , ( ), ( ) ,

u
v x y z

x y z

T p p p

   

     

     
     

     

      (2) 

where  is the energy density of the fluid; ,x yp p and 

zp  are the pressures and ,x y   and z  are the di-
rectional equation of state (EoS) parameters of the fluid. 

Now, parametrizing the deviation from isotropy by 
setting x y z      , then introducing skewness 
parameter   which is the deviation from   on y and 
z axis. Here   and   are not necessarily constants 
and can be functions of the cosmic time t. 

The field equations in Lyra’s manifold as obtained by 
Sen [24] are  and 8π 1G  1c   

1 3

2 2
3

,
4

m
m

R Rg

g T

   

 

 

 

 

  



             (3) 

where  is the four velocity 
vector, 

1, 1, 0, 0, 0g u u u  
  

 is the displacement vector, R  is the Ricci ten-
sor; R is the Ricci scalar, 

T is the energy-momentum tensor . 
In a co-moving coordinate system, above field Equa-

tions (3), for the anisotropic space-time (1), with Equa-
tions (2) yield 

2
2

2

3
2

4

ab b
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                (4) 
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               (5) 

 23

4

b a ab

b a ab
        

  
,        (6) 

where the overhead dot (.) denote derivative with respect 

3. Isotropization a

to the cosmic time t . 

nd the Solution 

                 (7) 

where is the mean scale fact
Subtracting Equation (5) from

The spatial volume is given by 
3 2 ,V R ab 

R  or. 
 Equation (6), we get 

d

d
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This on integrating gives 

dt
b a
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e
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where 

 

  is constant of integration. 
In order to solve the above equation (8), we use the 

nconditio  

b a
b a



 .                 (9) 

Using Equation (9) in the Equ

 

ation (8), we obtain 

ta b
e

a b V

 
  


.             
 

(10) 

To solve the system of equation
law of variation for the Hubble parameter which yields 
th

etric (1) is given by 

s completely we use 

e constant value of deceleration parameter proposed by 
[40] for FRW metric and then by [41] and [42] for Bian-
chi type space-times. 

According to this law, the variation of the mean Hub-
ble parameter for the m

  32 m
H k ab


 ,             (11) 

where  and  are const
Here, in particular, we consider t

0k  0m  ants. 
he model for 0m   

only. i.  consid  model for expoe. we er the nential expan-
sio

 
is respectively for the LRS Bianchi type-I met-

ric

n. 
The directional Hubble parameters in the direction of x,

y and z ax
 are 

x

a
H

a



, and y z

b
H H

b
  .        (12) 

The mean Hubble p ven as arameter is gi

1 1
2

3 3

R V a b
H

R V a b

 
    
  

.
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
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The volumetric deceleration parameter is 

2

RR
q

R
 


 .                (14) 
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On integrating, after Equatings (1

 for          (15) 

w
Usi 1) with (15) for 

1) and (13), we get 
2 3

1
ktV ab c e  0m  ,

here 1c  is a positive constant of integration. 
ng (1 0m  , t we ge

H k                    (16) 

7) i 14) we get, 
constant values for the decel
scale factor as:

el which implies the fastest rate 
of expansion of 
of

 ( 1q   ) 

Using Equations (15) and ( n equation (
eration parameter for mean 

 

1q    for 0m  ,             (17) 

For this mod 1q    
the univ

n the 
erse. The deceleration parameter 

 the universe is i range 1 0q    and the pre-
sent day universe is undergoing accelerated expansion 
[2,3,43]. 

4. Model for Exponential Expansion i.e. for 
0m 

Usin q atio  (1 n the Equation (10), we get g E u n 5) i

(1 3 )

1

e
a b c
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where   is a constant of integration. 
Using Equation (18) in Equation (15), we get the value 

of scale factors as 

 
 

1

3
1 31

2

2 k tc
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The directional Hubble parameters are 

 1 3

13x c

2 k tH k e
                (21) 

and 

 1 3

13
k t

y zH H k e
c

    .          (22) 

The anisotropic parameter of the expansion    is 
defined as 

231
,iH H      

13 i H  

where represents the directional Hubble 

parameters in the direction of x, y and z respectively. 
Case (I): Uniform displacement field i.e. when 

, constant. 
we assume t

 1, 2, 3iH i   

0 
Here he vector displacement field ,   to 

be the time like constant vector  , 0, 0, 0  , where 

0   is a constant. 
anisotropicThe  parameter of the expansion (  ) is 

found as 
22

  2(1 3 )k te  .            (23) 

on scalar 

2 2
19k c

The expansi   is given by 

3 3H k   . 

The shear scalar 

             (24) 
2  is given by 
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tain the energy density for the model as 
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Using Equations ) and (22) in Eq
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in Equation (9), 
we obtain the deviation parameter as 

Using Equations (21), (22) and (26) 
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Using Equations (21), (22), (26) and 
(6), we obtain the deviation-free paramet
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(27) in Equation 
er as 

 
   

 

1 32
1 32 2

02
1 11

2 1 32 3
3

3 33

k t
k t ke k

k e
c cc

2 1 32
2 2

02
1

4
.

3
3

43

k te
k

c



  

 







 
    

  
 

(28) 

The anisotropy of the expansion (  is not prom
by the anisotropy of the fluid and eases to null ex-
ponentially as t increases provided 

 )
 decr

oted 

1 3k  . 
The space approaches to isotropy in this model since 

0  as t  . 
Also the spatial volume V   and  

2 23  
03 0

4
k    

 
 as t   for 1 3k  . 

Here   and 0  contri  the ener
e fluid 

bute to gy density of 
th   negatively. 

The energy density e flui of th d  , viatiothe de n-free 
EoS parameter   and the deviat on parameter i   are 
dy alnamic . 
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For 1 3k  and as t , the anisotropic fluid 
is


otropizes since 0   and the odel exhibits like 

phantom energy odel having EoS parameter  
m

m

2 2 2
0 03k 23 3
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4 4
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to 1
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    provided that 2 2
0
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4
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In this case (model), we get 1    as 0 0  . i.e. 
for very very small positive value of 0 , th l ap-

hes [ mo ta
e mode

nt (proac nearer to] the cos l clogica ons  ). 
Also for 1 3k  , our model does not survive. 

laceme ld i.e. wCase (II): Time varying disp nt fie hen 

0t
  . 

Here, we assume the vector displacement fiel  ud   to 
be  varyin ere  the time g vector   , 0, 0, 0u t  , wh

0t
  . 

sWe con ider 1    i.e.  

0

t

     (29) .              

ic par of the expansion (The anisotrop ameter  ) is 
found as 

2
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19k c
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2
e


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quation (29) in the Equations (26), (27) and 
(28) we obtain, the energy density, deviation parameter 
and the deviation-free parameter fo
tively as fallows: 

k t
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Here, the anisotropy of the expansion ) is not
moted by the anisotropy of the fluid and eases to null
exponentially as t increases provided 

3) 

(
 decr

 pro-
 

1 3k 
ropy in this m

 . 
The space approaches to isot odel since 

0  as t  . 
The spatial volume V   and 23 0k   as 

t   for 



1 3k  . 
Here   and 0  contribute to the energy density of 

id the flu   ne ely. 

e fluid 

gativ

The energy density of th  , the deviation-free 
arameter   and the deviation parameter EoS p   are 

dynamical. 
For 1 3k  and as  , the anisotropic fluid 

iso uu
t 

tropizes and mimics to the vac m energy which is 
mathematically equivalent to the cosmological constant 
( ). i.e. we get 0, 1  

btained
  and  which 

s with t

23k 
matche he result o  by Akarsu et al. [21]. 
Also, in this case for 1 3k  , our model does not sur-
vive. 

5. Conclusions 

In case I and Case II, it is observed that the universe can 
approach to isotropy monotonically even in the presence 

uid in the model. The anisotropy of 
the fluid also isotropizes at later times and evolves into 
of an anisotropic fl

the well known cosmological constant in the model for 
exponential volumetric expansion. Also, for 1 3k   
our model does not survive. In case-I, the model evolves 
to the phantom energy and in case-II, it evolves to the 
cosmological constant ( ).Thus, even if we observe an 
isotropic expansion in the present universe we st -
not rule out possibility of DE with an anisotropic EoS in 
Lyra geometry. Also, the role of displacement field 

ill can

  
plays a crucial role in he dynamics of the universe. 
Therefore, we cannot rule out the possibility of an ani-
sotropic nature of the DE at least in the framework of 
Lyra geometry. These observations are worth to pay -
tention. 
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