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ABSTRACT 

In this paper, a new method on constructing 
analytical potential energy functions is pre-
sented, and from this a analytical potential en-
ergy function applied to both neutral diatomic 
molecules and charged diatomic molecular ions 
is obtained. This potential energy function in-
cludes three dimensionless undetermined pa-
rameters which can be determined uniquely by 
solving linear equations with the experimental 
spectroscopic parameters of molecules. The 
solutions of the dimensionless undetermined 
parameters are real numbers rather than com-
plex numbers, this ensures that the analytical 
potential energy function has extensive uni-
versality. Finally, the potential energy function is 
examined with four kinds of diatomic molecules 
or ions—homonuclear neutral diatomic mole-
cule 1

2 gH (X ) , 1
2 uK (B )  and 1

2 uLi (B ) , 

homonuclear charged diatomic molecular ion 
 2
2 uHe (X ) ,  2

2 gN (X )  and  2
2 gO (X ) , heter-

nuclear neutral diatomic Molecule 1AlBr(A ) , 

)PuO(X g
1   and 1

gNaLi(X ) , heternuclear ch- 

arged diatomic Molecular ion  3BC (X ) , 
 1MgH (X )  and )(XHCl i

2  ,as a conseque- 
nce, good results are obtained. 
 
Keywords: Diatomic Molecules And Ions; Potential 
Energy Function; Force Constants; Spectroscopic 
Parameters; Phase Factor 

1. INTRODUCTION 

Analytical potential energy functions are of great sig- 
nificance in the study of material science, molecular 
spectrum, reaction dynamics of atoms and molecules, 
vibrational and rotational energy-level structures of 
molecules, interactions between laser and matter, 
photoionization etc. [1-3] Due to the importance and 

extensive applications of the potential energy function, 
the corresponding research works have been carried on 
all along [4-6]. So far, the representative analytical po-
tential energy function proposed have Morse potential 
[7], Rydberg potential [8], Murrell-Sorbie potential (M-S) 
[9] and Huxley-Murrell-Sorbie potential (HMS) [10] etc. 

Recently, Sun Weiguo et al have proposed an energy 
consistent method (ECM) and constructed a new phy- 
sically well behaved analytical potential function of a 
diatomic system called ECM potential [11]. These po-
tential functions above have merits and defects respec-
tively, they are valid in describing the behaviors of some 
individual or classificatory diatoms and molecules. But 
none of them can describe both neutral diatomic mole-
cules and charged diatomic molecular ions and describe 
precisely the behaviors of potential energy function over 
the whole range of internuclear distance. Seen from ex-
pressional forms, most of these potential energy func-
tions adopt the forms of ploynomial and exponential. In 
this paper, a cosine function with a phase factor is used 
as basic potential energy function and, through renor-
malization to the phase factor, a universal potential en-
ergy function applied to four kinds of diatomic mole-
cules or ions — homonuclear neutral diatomic molecules, 
homonuclear charged diatomic molecular ions, heternu-
clear neutral diatomic molecules and heternuclear charged 
diatomic molecular ions is given. Finally, the potential 
energy function is examined with twelve different kinds 
of diatomic molecules and ions etc., as a consequence, 
good results are obtained. 

 
2. FUNDAMENTAL SUPPOSITIONS, 

AND DERIVATION OF A UNIVERSAL 
ANALYTIC POTENTIAL FUNCTION 

 
Suppose that the potential function of diatomic molecu-
lar satisfies the following relation 

( ) cos ( )V r A r B              (1) 

where ( ) arccos( / )r r               (2) 

where, BA,  are undetermined constants, )(r is a 
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phase factor related to  ,   and the internuclear dis-

tance r , here   is equivalent phase difference be-
tween two interacting atoms,   is equilibrium internu-

clear distance. Substituting Eq.2 into Eq.1, yields 

 ( ) cos arccos( / )V r A r B     

 2 2( / ) cos 1 / sinA r r B             (3) 

Eq.3 is a basic analytical potential energy function. In 
order to obtain the universal analytical potential function 
of diatomic molecules and ions, renormalization should 

be needed for the term 221 r  in Eq.3, so as to 

ensure that the derivatives of each order of the Eq.3 are 
continuous and finite at equilibrium distance r . 

Thus we can expand the term into binomial series  

i
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Here, Eq.4 is a infinite series, it need to be truncateed 
into finite terms and its following infinite terms should 
be absorbed into three undetermined coefficients 

, ,a b c  , so from Eq.4, we have  
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Generally, the potential energy function satisfies  
asymptotic condition lim ( ) 0

r
V r


 ,so from Eq.3 

we have sinAB                 (7)  

Substituting Eq.5 and Eq.7 into Eq.3, and notice 
1)0( H , yields  
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In Eq.8, the undetermined constant A  can be deter-
mined according to the properties of potential energy 
function. At the equilibrium distance r , the potential 

value is equal to the negative value of dissociation en-
ergy eD , i.e. 

eDV )( , and the first derivatives of 

)(rV  with respect to r is zero. 

So from Eq.8, we obtain 
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 0)62()42()22(  ncnbna        (10) 

From Eq.9 and Eq.10, the solutions of A  and 
cos  can be given as follows 
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Substituting Eq.11 and Eq.12 into Eq.8, yields 
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Eq.13 is the universal analytical potential energy 
function that is required. The undetermined parameters 

cba ,,  can be determined with the experimental 

spectroscopic parameters ( eeeee B ,, ) of mole-

cules or fitting method using singlepoint potential en-

ergy scanning. When 3,2,1n , from Eq.13,we have 
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3. USING EXPERIMENTAL  

SPECTROSCOPIC PARAMETERS TO 
DETERMINE a,b,c 
 

The undetermined parameters , ,a b c  can be deter-
mined with the experimental spectroscopic parameters 
(

eeeee B ,, ) of diatomic molecules or ions. The 

principle of this method is, according to the relationship 
between undetermined parameters and force constants, 
to obtain cba ,,  by solving linear equations. From 
Eq.13, the general expression of force constants at the 
equilibrium internuclear distance can be given as follows 
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From Eq.17 and Eq.18, when 3,2,1n , the fol-
lowing linear equations can be obtained  
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In Eqs.19-21, the relationships between force con-
stants and spectroscopic parameters are as follows 
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The Eqs.19-21 above are all linear equations, when 
the conditions of 03242562  ZYX , 98 31X Y  

4 80 0Z   and 160437142  ZYX 0  are satisfied 
with respect to Eqs.19-21, they have unique real number 

solutions for the undetermined parameters cba ,, . 
Calculations show that the conditions above are always 
tenable in general. This ensures that the analytical poten-
tial function Eq.13 has extensive universality, which can 
describe any of diatomic molecules and ions especially 
the behaviors of molecules near equilibrium internuclear 
distance. So far, the most extensively used analytical 
potential energy function is Murrel-Sorbie (M-S) poten-
tial. The undetermined parameters in Murrel-sorbie po-
tential which are determined by experimental spectro-
scopic parameters have no unique solutions and contain 
complex number solutions. Thus, the M-S potential is 
extremely limited in applications to some diatomic 
molecules and ions. [12] 

 
4. APPLIED EXAMPLES OF THE  

UNIVERSAL ANALYTICAL  
POTENTIAL ENERGY FUNCTION 

 
For examining potential energy function Eq.13, fifty 
kinds of neutral diatomic molecules and charged diatomic 
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Table 1. Experimental spectroscopic parameters of diatomic molecules and ions. 

states         eV/nm/cm/cm/cm/cm/ 1111
eeeeee DB          Refs. 

)(XH g
1

2
       4401.21        121.34         60.809         3.062        0.0741       4.747        [13] 

)B(K u
1

2       75.00          0.3876         0.04824        0.000235     0.4235       0.514        [14] 

)B(Li u
1

2       270.7         2.9530          0.5770         0.0083       0.2936       0.3700       [15] 

)(XHe u
2

2
       1698.52       35.30           7.211          0.2240       0.1080       2.475        [16] 

)X(N g
2

2
      2207.20       16.1360         1.9320         0.0200       0.1116       6.341        [14] 

)X(O g
2

2        1905.30        16.304          1.6905         0.0189       0.1117       6.7792       [17] 

)AlBr(A1       297.2         6.400           0.1555         0.00216      0.2322       2.400        [14] 

)X(PuO g
1      822.28        2.500           0.3365         0.00146      0.1830       7.3372        [18] 

)X(NaLi g
1     256.80        1.610           0.3960         0.0036       0.2810       0.8570        [13] 

)(XBC 3       1301.4        9.820           1.418          0.0155       0.1445       5.588        [19] 

)X(MgH 1      1226.60       16.300          3.321          0.0640       0.16530      2.100        [14] 

)X(HCl i
2       2675.4        53.50           9.9463         0.3183       0.13152      4.480        [14] 

Table 2. Potential parameters and force constants of diatomic molecules and ions. 

states     44
4

33
3

22
2 nmaJ10/nmaJ10/nmaJ10/.nm/eV/   fffcbanDe   

)(XH g
1

2
    4.747     0.0741      1     –0.4615     0.2008    –0.0367      5.752       –37.43      238.7 

)B(K u
1

2     0.514     0.4235      3     –0.64605    0.47875   –0.10628     0.0646      –0.1035     0.045 

)B(Li u
1

2     0.370     0.2936      3     –0.69431    0.57753   –0.14667     0.1463      –0.3177     0.4546 

)(He 2
2

 uX    2.475     0.1080      3     –0.8073     0.6766    –0.1729      3.401       –20.97      101.23 

)X(N g
2

2
     6.341     0.1116      3     –0.5889     0.44335   –0.10575     20.11       –160.61     1059.1 

)X(O g
2

2     6.7792    0.1117      3     –0.55136    0.37972    –0.0829     17.09       –142.33     918.04 

)AlBr(A1   2.400     0.2322       1     –0.4874     0.2759    –0.0577     1.049        –7.357     21.837 

)X(PuO g
1    7.3372     0.183       3     –0.64234    0.49584   –0.11975     5.959       –27.03      98.61 

)X(NaLi g
1   0.857     0.281       3     –0.78369    0.67093   –0.17435     0.2095      –0.4434     0.7012 

)X(BC 3   5.588     0.1445       3     –0.6900     0.5404    –0.1317      5.677       –31.49      140.50 

)X(MgH 1    2.10     0.1653       3     –0.74505    0.62333   –0.15926     1.6468      –6.5343     19.547 

)X(HCl i
2    4.480    0.13152      3     –0.80085    0.66178    –0.16814     4.3433      –25.61      138.1 

Table 3. Potential parameters of Murrel-Sorbie potential of diatomic molecules and ions. 

states         eV/nm/nm/nm/nm/ 3
3

2
2

1
1 eDaaa    

)(XH g
1

2
       39.601             405.91              3577.1             0.0741           4.747 

)B(K u
1

2        1.227              –38.457            161.65              0.4235           0.514 

)B(Li u
1

2        28.79              291.03             1317.4              0.2936           0.370 

)(He 2
2

 uX      32.363             94.792              584.08             0.108            2.475 

)X(N g
2

2
        70.966             1528.3              15675             0.1116           6.341 

)X(O g
2

2        1.376              68.968              1085.1             0.1117           6.7792 

)AlBr(A1       9.1044            –95.068             2072.2              0.2322            2.400 
)X(PuO g

1        30.377            207.88               804.25             0.183            7.3372 

)X(NaLi g
1      19.865            121.01               329.24             0.281            0.857 

)(XBC 3       27.880            71.540               634.30             0.1445           5.588 
)X(MgH 1       33.953            331.66               1450.8             0.1653            2.10 

)X(HCl i
2       29.618            150.74               1133.1             0.13152          4.48 
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Figure 1. Potential curve of  g
1

2 XH . 

 

Figure 2. Potential curve of )(He 2
2

 uX  

 

Figure 3. Potential curve of  1AAlBr . 
 
molecular ions have ever been investigated and good results 
are obtained. Calculations show that two common poten-
tial energy curves, i.e. steadystate and metastable state 

 

Figure 4. Potential curve of )(XBC 3 . 

can be given by using the potential energy function de-
termined with experimental spectroscopic parameters. 
The experimental spectroscopic parameters of 1

2 gH (X ),  
2

2 uHe (X ) ,  )1AlBr(A  and )(XBC 3  etc. are listed 

in Table 1. According to Eqs.22-24, the corresponding 
force constants can be obtained by using the experimen-
tal spectroscopic parameters above, and substituting 
these force constants into Eq.19 or Eq.21, then the un-

determined parameters ,, ba c  can be calculated by 
solving the linear equations. The calculation values are 
listed in Table 2. The potential energy curves (to be cal-
culated and plotted by using Eq.14 and Eq.16 directly 
with Origin 7.0 software) plotted by Eq.14 and Eq.16 of 

1
2 gH (X ) ,  2

2 u
1He (X ) , AlBr(A )    and )(XBC 3  

are illustrated in Figures 1-4. As comparison, in the 
Figs., the dot lines are the potential curves which are 
plotted by using the most extensively used Mur-
rel-Sorbie Potential. The M-S potential expression is as 
follows 

   

   

2

1 2

3

3 1

( ) 1

exp

eV r D a r a r

a r a r

 

 

     
     

        (25) 

The relationships between undetermined parameters 
of M-S potential and force constants are as follows 

22
2
1 )2( faaDe                (26) 

3
3
1321 )33(2 faaaaDe           (27) 

4312
2
1

4
1 )24123( faaaaaDe          (28) 

 

5．CONCLUSIONS  
 
In this paper, we first introduce the phase concept to the 
studies of analytical potential energy functions and get 



C. F. Yu et al. / Natural Science 2 (2010) 184-189 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

189

good results. This shows that the method of constructing 
analytical potential energy function by means of phase is 
effective and reliable. Compared with other potential 
energy functions, the potential energy function given in 
this paper has two merits: 1) The undetermined parame-
ter equations determined by experimental spectroscopic 
parameters are linear equations. Because these linear 
equations have unique real number solutions, so this 
potential energy function has a extensive universality; 2) 
This potential energy function can describe four different 
kinds of diatomic molecules or ions—homonuclear neu-
tral diatomic molecules, homonuclear charged diatomic 
molecular ions, heternuclear neutral diatomic molecules 
and heternuclear charged diatomic molecular ions; In 
addition, This potential energy function can also de-
scribe accurately the behaviors of potential curves over a 
fairly wide range of internuclear distance. 

Potential energy functions of diatomic molecules are 
the basis to the studies of multi-atomic molecules, ions 
and clusters, which have extremely significances and 
applied values in the study of material science, molecu-
lar spectrum chemical reaction etc. Chemical reaction, 
molecular collision and many other problems need pre-
cise analytical potential energy functions. Thus, the stud-
ies of analytical potential energy function will still be 
important subject in atomic and molecular physics. 
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