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ABSTRACT 

Joint decisions in production allocation and ordering policies for single and multiple products in a produc-
tion-distribution network system consisting of multiple plants are discussed, production capacity constraints of 
multi-plants and unit production capacity for producing a product are considered. Based on the average total cost in 
unit time, the decisive model is established. It tries to determine the production cycle length, delivery frequency in a 
cycle from the warehouse to the retailer and the economic production allocation. The approach hinges on providing an 
optimized solution to the joint decision model through the heuristics methods. The heuristic algorithms are proposed to 
solve the single-product joint decision model and the multi-products decision problem. Simulations on different sizes of 
problems have shown that the heuristics is effective, and in general more effective than Quasi-Newton method (QNM). 
 
Keywords: Joint Decisions, Production-Distribution; Multiple Plants, Capacitated, Heuristic Algorithm 

1. Introduction 

In the past, logistic decision among material procurement 
management, production and distribution were made in 
isolation. Previous studies have examined production, 
transportation and inventory separately. These major ac-
tivities are closely related with each other and should be 
coordinated effectively to enhance its profit in today’s 
competitive market. Uncoordinated and isolated deci-
sion-making among functional related activities in supply 
chain system may weaken its system-wide competitive-
ness. Hence, more efforts are now being made to inte-
grate coordinate production and distribution, production 
and transportation, production and inventory, as well as 
transportation and inventory in the form of supply chain 
management. 

King [1] described the implementation of a coordi-
nated production-distribution system, a major tire 
manufacturer with four factories and nine major dis-
tribution centers. Williams [2] considered the problem 
of joint scheduling of production and distribution in a 
complex network, the objective of the problem was to 
minimize average production and distribution cost per 
period. Hill [3] discussed production-delivery policies 
in a single manufacturer and a single retailer. David [4] 
attempted to identify lot sizing and delivery schedul-

ing in a single manufacturer and a single retailer sys-
tem. Kim [5] discussed the production and ordering 
policies in a supply chain consisting of a single manu-
facturer and a single retailer. He proposes an efficient 
heuristic algorithm to determine the near optimal pro-
duction allocation ratios. Kim [6] extended their paper 
and develops joint economic production allocation, 
lot-sizing, and shipment policies in a supply chain 
where a manufacturer produces multiple items in mul-
tiple production lines and ships the items to the re-
spective retailers. Their formulations are often based 
on economic order quantity (EOQ) and mathe- matical 
programming. Accordingly, the corresponding solu- 
tion methods are EOQ [7,8], heuristics [5,6,9] and 
decomposition [10,11]. 

In recent studies, model for coordinating production- 
distribution network systems have tended to focus on 
joint decisions on all activities. More complicated inte-
grated decisions on production, transportation, and in-
ventory have received relatively little attention, as in [12] 
and [13]. Tang [12] discussed an integrated decision on 
production assignment, lot-sizing, transportation, and 
order quantity for a multiple-supplier/multiple-destin- 
ations logistics network in a global manufacturing system 
and proposed a heuristics to solve medium and large- 
scale integrated decision problems. Yung [13] attempted 
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to tackle joint decisions in assigning production, lot-size, 
transportation, and order quantity for sing and multiple 
products in a production-distribution network system 
with multiple suppliers and multiple destinations. He 
provided an optimized solution to solve the joint decision 
model through a two-layer decomposition method that 
combines several heuristics. 

This paper addresses the issue of how to effectively 
allocate production requirement to multiple plants in sup-
ply chain system. Kim [5,6] discussed the production and 
ordering policies in a supply chain consisting of a single 
manufacturer with multiple plants and a single retailer or 
multiple retailers. The retailers place orders based on the 
EOQ-like policy, and the multiple plants produce de-
mand requirement from the retailers. Each of multiple 
plants has its production and transfer rates. In real life, all 
the plants in the manufacturer have production capacity 
constraints. All the plants should produce within its ca-
pacity to meet the demands of the retailers. The problem 
discussed in this paper extends the model proposed by 
[5,6], and production capacity constraints of multi-plants 
and unit production capacity for producing a product are 
considered in the model. The heuristics methods have 
been developed to solve the problem with single product 
and multiple products, respectively. 

In this paper, the model for a single product will be dis-
cussed in Section 2, followed by detailed discussion to 
solve multiple products in Section 3. One illustrated ex-
ample with several testing problems and their respective 
simulation results and analyses are presented in Section 4. 

2. Formulations and Heuristics with Single 
Product 

2.1 Problem Formulations 

In a global manufacturing enterprise, there are plants 
each producing multiple parts and multiple assemblies 
that serve multiple assembly plants in a year, or alterna-
tively, each assembly plant demands multiple parts from 
many different suppliers. Hence, such a global manufac-
turing enterprise can be formulated as a combined pro-
duction-distribution network consisting of multiple sup-
pliers and multiple destinations. In this paper, we con-
sider a production-distribution network composed of a 
single manufacturer with multiple plants and multiple 
retailers. The retailers are given annual demand of the 
product. To meet the annual demands of the product, the 
manufacturer procures the materials and multi-plants 
produce within their capacity in the manufacturer. The 
multi-plants of the manufacturer have their production 
rate. The finished products are transferred to the common 
warehouse at the plants’ transfer rate. Finally, the ware-
house delivers the ordered lots of a fixed size to the re-
tailer periodically. The network is shown in Figure 1. 
The cost components considered include two parts, the 
first part is the ordering cost from raw materials, the pro- 
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Figure 1. Production-distribution network 
 
duction setup cost, the ordering cost at the warehouse, and 
the ordering cost of the retailer; the second part is the 
holding costs for raw materials, work-in-process invento-
ries, finished items at the warehouse and the retailer. 

Assume that there are m plants in a manufacturer, 
where each of the plants is indicated by the subscripts j . 

The following notations and decision variables are applied. 

jP = annual production rate at plant j  (unit/year) 

jQ = annual production capacity at plant j  (year) 

jd = annual transfer rate from plant j to the warehouse 

(unit) 

ju = production capacity needed to produce unit prod-

uct at plant j  (year) 

jh = holding cost for work-in-processes at plant j  ($) 

pS = production setup cost at the manufacturer ($) 

mA =ordering cost for raw materials at the manufac-

turer ($) 

wA = order handling cost for finished products at the 

warehouse ($) 

rA = ordering cost at the retailer ($) 

mH = holding cost for raw materials at the manufac-

turer ($) 

wH = holding cost for finished products at the ware-

house ($) 

rH = holding cost for finished products at the retailer ($) 

D =demand rate in units at the retailer (unit/year) 
T = decision variable, production cycle length at the 

manufacturer (year) 
m = decision variable, delivery frequency in a produc-

tion cycle from the warehouse to the retailer 

1( ,..., )j   decision variable, production allocation 

for multiple plants 
These notations will be extended in Section 3 to in-

clude multiple products. Accordingly, from the above 
parameters and decision variables, jj

d D  and 

j jP d  should be satisfied for the relevance of the pro-
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posed model. 

2.2 Joint Decision Model for a Single Product 

The average cost components considered in this problem 
include two parts, the first part is the ordering cost; the 
second part is the holding costs these two parts of the 
costs are denoted by F1 (T, m) and F2 (m, ) respectively. 
In a production cycle has m delivery from the warehouse 
to the retailer, so the ordering cost F1 (T, m) are given as 

1( , ) [( ) ( )] /m p w rF T m A S m A A T          (1) 

For the second part of the costs, the average inventory 
levels for raw materials, work-in-process in plant ( j ), 

and finished products at the warehouse and the retailer 
over the production cycle are denoted by Im, Ij, Iw and Ir, 
respectively. Im and Iw can be derived by the appendix of 
Reference [5]. From the decision variables, we can de-
rived the production lot size is DT, and the apportioned 
production lot size for plant i  is j DT . During a pro-

duction cycle, the production time is /i iDT P , the deliv-

ery time is /j jDT d , as illustrated in Figure 2. It can be 

shown that, the average inventory for work-in-process Ij is 

2 2

1 1 1
[ ( / ) ( / ) ]
2 2

( / 2)[( / )(1 / )]

j j j j j j j

j j j j

I DT d DT DT P DT
T

D T d d P

   



 

 
 

Hence, Im, Ij, Iw and Ir [5] are given as 

2 2

1

( / 2) /
n

m j j
i

I D T P


                 (2) 

2 2( / 2)[( / )(1 / )]j j j j jI D T d d P        (3) 

2 2

1

( / 2)(1 1/ ) ( / 2) /
n

w j j
i

I DT m D T d


    (4) 

/ 2rI DT m                         (5) 

Hence, the holding cost F2(m, ) are given as  

2
1

( , )
n

m m j j w w r r
j

F m H I h I H I H I


      (6) 

Substituting (2)–(5) into (6), we can obtain 
 

 
Figure 2. Inventroy trajectory for work-in-process in plant j 
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P d

 


   

 
 


(7) 

The integrated decisions of the economic production 
allocation and delivery policies are expressed as the fol-
lowing model: 

Min W= F1(T, m) +F2(m, ) 

2

1

[( ) ( )] /

( / 2)[ ( ) / ]

m p w r

n

w w r j j
j

A S m A A T

DT H H H m D H 


   

    
 

s.t.  1jj
                 (9) 

0 / 1, 2,...,j jd D j n          (10) 

0 / 1,2,...,j j jQ Du j n        (11) 

In this model, (8) is the objective of minimizing the 
average ordering and holding cost for raw materials, 
work-in-process, finished products at the warehouse and 
the retailer. The constraint (9) is the allocation vector for 
multiple plants. The constraints (10) and (11) should be 
satisfied by definition, respectively. 

2.3 Heuristics Solution Procedures 

The model is a fractional nonlinear programming model 
that is neither convex nor concave and is difficult to be 
solved. So we transform this model with the decision 
variables (T, m, ) into a more simplified and equivalent 
problem with a decision variable , the last transformed 
problem is computed using a heuristic procedure. 

First, the problem is strictly convex with respect to T, 
thus the optimal cycle length T*(m, ) for a fixed pair of 
m and   can be uniquely derived by solving dW/dT=0: 

1/ 2

2

1

2[( ) ( )]
T*

[ ( ) / ( )]

m p w r

n

w w r j j
j

A S m A A

H H H m DH D


 
      
   
  


 (12) 

Substituting T* into (8), we can derive E(m, ): 

2 1/ 2

1

( , ) ( *, , )

{2[( ) ( )]

[ ( ) / ( )] }

m p w r

n

w w r j j
j

E m W T m

A S m A A

H H H m DH D

 





   

  

 (13) 

For (13), we can derive: 

2

1

( / ) [( ) ( )]

[ ( ) / ( )]

m P w r

n

w w r j j
j

S m A S m A A

H H H m DH D






   

  
(14) 

(8)
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We can obtain (15) for fixed : 
n

2

i 1

2

2

2 3

( / )
( )[ ]

( )( )

2( )( )( / )

w r w j j

m p w r

m p w r

dS m
A A H DH

dm

A S H H

m
A S H Hd S m

dm m

 





  

 


 




   (15) 

Since )/(2 mSd / 2dm >0, we can obtain m from 

dS/dm=0 and is given by 

n
2 1/ 2

1

( ) {( )( ) / ( )

[ ( )]}

m p w r w r

w j j
j

m A S H H A A

H DH






   


   (16) 

Since other terms in (17) are constant regardless of   

except 2

1

n

j jj
DH 

 , we reformulate the next problem 

equivalently as follows: 

2

1
( )

s.t. (9),(10),(11)

n

j jj
MaxG H 


   

This problem belongs to the class of quadratic maxi-
mization problems subject to linear constraints with a 
positive definite quadratic term. Reference [14] has 
proved it is an NP-hard problem. Since this problem aims 
to assign production allocation j , a heuristic procedure 

is proposed as follows to solve it. 
The heuristic algorithm steps 
Step1. Resequence Hi in the descending order, such 

that 1 2 3 mH H H H    ; 

Step2. Let t be the current index number of the plant to 

be assigned, and 
1

t

t ii
R 


  be the total amount of the 

production allocation t=0, Rt =0; 
Step3. t=t+1 assignment to production to the tth plant 

point: 
If Rt-1<1 set  

1min{1 , / , / }t t t t tR d D Q Du    

1t t tR R    

Else 10,t t t tR R     

End if  
Step4. If t<m, go to Step 3; else, go to Step5; 
Step5. Calculate the MaxG( ), then stop. 
After deriving *, we can obtain m* and T* from (16) 

and (12). 

3. Joint Decisions for Multiple Products 

3.1 Formulation with Multiple Products 

In many real cases, the manufacture often produces multi-
ple products to meet the need of the retailers. In this pro-

duction-distribution network of multiple products, the 
main issue is how joint decisions can be made annually on 
production cycle length, delivery frequency and produc-
tion allocation at a minimal average cost to the network. 
To derive the solution, the notations are defined as follows: 

Pij = annual production rate for product i at plant j 
(unit/year) 

Qij = annual production capacity for product i at plant j 
(year) 

dij = annual transfer rate for product i from plant j to 
the warehouse (unit) 

uij = production capacity needed to produce unit prod-
uct i at plant j (year) 

hij = holding cost for product i at plant j($) 
Si = production setup cost for product i at the manu-

facturer ($) 
R
iA = ordering cost of raw materials for product i($) 
W
iA = order handling cost for finished product i at the 

warehouse ($) 
C
iA  = ordering cost for product i at the retailer ($) 

R
iH  = holding cost of raw materials for product i($) 
W
iH  = holding cost for finished product i at the ware-

house ($) 
C
iH = holding cost for finished product i at the retailer ($) 

Di = demand rate for product i (unit/year) 
T = decision variable, production cycle length at the 

manufacturer (year) 
mi = decision variable, delivery frequency for product i 

in a production cycle from the warehouse to the retailer 

ij = decision variable, production allocation for prod-

uct i in plant j 
Similar to the average cost structure of a single prod-

uct, the ordering costs and the holding costs are repre-
sented as follows, respectively: 

1( , ) [( ) ( )]R W C
i i i i i ii

F T m A S m A A T      (18) 

The second part is the holding costs for raw materials, 
work-in-process inventories, finished items at the ware-
house and the retailer. They are denoted by , ,R

i ijI I  

,
i

W C
iI I  respectively 

2 2

1

( / 2) /
n

R
i i ij ij

j

I D T P


                  (19) 

2 2( / 2) [( / )(1 / )]ij i ij ij ij ijj
I D T d d P      (20) 

2 2

1

( / 2)(1 1/ ) ( / 2) /
i

n
W

i i i ij ij
j

I D T m D T d


    (21) 

/ 2C
i i iI D T m                         (22) 

Hence, the holding cost 
2 ( , )i ijF m  are given as 
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2 ( , )
i

R R W W C C
i ij i i ij ij i i ii ij i i

F m H I h I H I H I         

(23) 

Substituting (19)–(22) into (23), we can obtain 

2
2 ( , ) ( / 2) [ ( ) / ]W W C

i ij i i i i i i ij iji j
F m T D H H H m D H       

(24) 

( ) / ( ) /R W
ij ij i ij i ij ijH h H P H h d         (25) 

The integrated decisions of the economic production 
allocation and delivery policies are expressed as the fol-
lowing model: 

1 2

2

min ( , ) ( , )

[( ) ( )]

( / 2) [ ( ) / ]

i i ij

R W C
i i i i ii

W W C
i i i i i i ij iji j

F F T m F m

A S m A A T

T D H H H m D H





 

   

   


 

(26) 

. 1ijj
s t i            (27) 

0 / ,ij ij id D i j               (28) 

0 /ij i j i ijQ D u j              (29) 

3.2 Heuristics Method for Multiple Products 

The model is a fractional nonlinear programming model 
that is the same as the model with the single product. It 
can be solved by traditional nonlinear programming 
techniques, such as GINO, gradient search methods, 
where only the local optimal solution may be found. A 
heuristics is proposed to solve this problem. 

First, the problem is strictly convex with respect to T, 
thus the optimal cycle length T*(mi,  ij) for a fixed pair 
of mi and  ij can be uniquely derived by solving 
dF/dT=0: 

1/2

2

2 [( ) ( )]
*( , )

[ ( ) / ]

R W C
i i i i ii

i ij W W C
i i i i i i ij iji j

A S m A A
T m

D H H H m D H




      
    


 

(30) 

Substituting T* into (26), we can derive: 

2 1/2

min ' {2[ (( ) ( ))]

[ ( ( ) / )]}

R W C
i i i i ii

W W C
i i i i i i ij iji j

F A S m A A

D H H H m D H 

   

  


 

(31) 

For (31), we can derive: 

2

( / ) { [( ) ( )]}

{ [ ( ) / ]}

R W C
E i ij i i i i ii

W W C
i i i i i i ij iji j

S m A S m A A

D H H H m D H





   

  


 

(32) 

We can obtain (33) for fixed ij : 

2

2

( / )
( ) ( )

( ) ( )

E i ij W C W
i i i i i ij iji j

i

W C R
i i i i ii

ii

dS m
A A D H D H

dm

H H D A S

m


  

 


 




(33) 

2

2 3

2( ) ( )( / ) W C R
i i i i iE i ij i

i ii

H H D A Sd S m

d m m

  
 


  (34) 

Since 2 ( / )E i ijd S m  / 2
idm >0, we can obtain m from 

dSE/dmi=0 and is given by 
1/2

0
2

( ) ( )
( )

( ) ( )

W C R
i i i i ii

i ij W C W
i i i i i ij iji j

H H D A S
m

A A D H D H




   
   


 

(35) 

Substituting (35) into (31), we get F( ij ): 

2 1/ 2

1/ 2

( ) {2 ( )[ ( )]}

[2( )( ) ]

R W
ij i i i i i ij iji i j

W C W C
i i i i ii

F A S D H D H

A A H H D

   

  

  


(36) 

Since other terms in (36) are constant regardless of 

ij  except 
2

i ij ijj
D H  , we reformulate the next prob-

lem equivalently as follows: 
2

( )i i ij ijj
Maximize G H    

s.t  (27), (28), (29) 

This problem belongs to the class of quadratic maxi-
mization problems subject to linear constraints with a 
positive definite quadratic term. Since this problem aims 
to assign production allocation i , a heuristic procedure 
is proposed as follows to solve the model. The heuristics is 

Step1. Resequence Hij in the descending order for 
product i, such that 1 2 3i i i inH H H H    ; 

Step2. i=i+1, Let t be the current index number of the 
plant to be assigned, and 

1
, 0, 0

t

it ij itj
R t R


    

Step3. t=t+1 assignment to production to the tth plant 
point: 

If Rit<1 set  

min{1 , / , / }it it it i i t i itR d D Q D u    

, 1it i t itR R   go Step 4 

Else , 10,it it i t itR R     

End if  

Stetp4. if t<n, go to Step 3; else, go to Step5; 
Step5. Calculate ( )i iG  ; 

Step6. if i<m, go Step 5 
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Step7. Calculate
22

i ij iji j
D H    

Step8. Calculate mi*，if mi* isn’t interger, then 

1

0 0

* arg min{ '/ ( ,..., ),

{ ( *) , ( *) }}

m I

i i i

m F m m m

m m m

 

        
 

Else go Step 2 
Step9. Calculate T* 
Step10. Calculate F, stop 

4. Simulations and Performance Analysis 

To test the performance of the heuristics, some computa-
tion experimentations are conducted and their simulation 
results, as well as analysis, are presented in this section. 
The comparison of the heuristics and traditional quasi- 
Newton method are reported and analyzed. To shorten the 
length of the paper and without loss of generality, this 
section presents an example with multiple products to 
illustrate the application of the model and the heuristics. 
For simplicity, multiple plants at the manufacturer are 
denoted by 1, 2, 3, they can all produce three products A, 
B, C. The production rate, annual production capacity, 
Transfer rate and the holding cost are presented in Table 
1. The production setup cost, the ordering cost and the 
holding cost at the manufacturer, the warehouse and the 
retailer and the demand rate are presented in Table 2. 
 

Table 1. The parameters used in simulation tests 

Production rate(unit) Annual Capacity(hours) 
Plants 

A B C A B C 

1 6000 7400 5000 0.2 0.35 0.45 

2 5700 11000 5800 0.2 0.35 0.45 

3 8000 10000 5700 0.2 0.35 0.45 

Transfer rate(unit/year) Holding cost($/unit) 
Plants 

A B C A B C 

1 3400 2800 3100 6 5 2 

2 3000 3200 3000 5 8 2 

3 4100 5200 3100 7 8 6 

 
Table 2. Basic data of the test 

costs A B C 

Setup cost ($) 600 500 200 

OR of raw material ($) 100 150 90 

Shipping cost($) 25 20 20 

OR at the retailer ($) 50 60 40 

HC of raw material ($) 2 3 2 

HC at warehouse ($) 8 8 8 

HC at the retailer ($) 8 8 10 

Demand rate(unit) 6000 7200 4300 

From Table 3, the production cycle length, delivery 
frequency in a cycle from the warehouse to the retailer, 
the production allocation of the two solutions with heu-
ristics and QNM are compared. A near-optimal solution 
with relative deviation of 0.928% is obtained from the 
best solutions by QNM with feasible initial solution. 
Hence, one can conclude that the heuristics method is 
more effective than QNM in the case of the above exam-
ple. In particular, the results have pointed out the signifi-
cance of assigning production among the plants. It re-
veals that business operations, including production and 
distribution among the plants, should be considered in an 
integrative manner so as to reduce costs and enhance the 
enterprise’s competitiveness. 

To illustrate the effectiveness of the heuristics, four 
randomly generated examples with 3*5, 5*5, 5*10, 
10*10 (plants*products) are cited to make the compari-
son between the heuristics and the QNM. From Table 4, 
one can see that the heuristic algorithm is better than the 
QNM in these examples in terms of quality of the solu-
tion. 

5. Conclusions 

One of the core problems of supply chain management is 
the coordination of production and distribution. This pa-
per considers joint decisions in production cycle length, 
delivery frequency and production allocation for a single  

 
Table 3. Comparison of the heuristics and QNM 

Delivery frequency Production allocation 

 heuristics QNM  heuristics QNM

A 6 6 1-A 0.500 0.500

B 5 5 1-B 0.500 0.500

C 5 5 1-C 0.000 0.000

heuristics 0.209 2-A 0.389 0.301Production 
cycle QNM 0.207 2-B 0.000 0.000

The total costs 2-C 0.611 0.699

heuristics 26705 3-A 0.721 0.721

QNM 26953 3-B 0.279 0.140

difference/% 0.928 3-C 0.000 0.139

 
Table 4. Comparison of the heuristics and QNM for differ-
ent size of examples 

Costs 
Problem size

heuristic QNM Diff (e/%) 

3*5 26539 26916 1.42 

5*5 45339 46413 2.37 

5*10 45209 46520 2.89 

10*10 82336 83223 1.07 
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product and for multiple products in a production- dis-
tribution network system with multiple plants and multi-
ple retailers. All plants are all capacitated. Based on the 
production capacity and the unit production capacity for 
producing a product, the mathematical programming 
model is presented to distribute the demand of the retailer 
to multi-plants to achieve an objective of minimizing the 
average costs. Two effective heuristic methods are de-
veloped to solve the joint decision problem with single 
product and multiple products. The simulation results 
have shown that the heuristics is easily implemented and 
effective for the decision problems. 

Future work includes: the economic allocation of the 
complex product in multiple plants. 
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