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bases, the CGR would be a uniformly filled square, ABSTRACT
conversely, any patterns visible in the CGR represent 
some pattern (information) in the DNA sequence Chaos game representation (CGR) of DNA 
(Goldman 1993). Goldman (1993) interpreted the sequences and linked protein sequences 
CGRs in a biologically meaningful way. All points from genomes was proposed by Jeffrey (1990) 
plotted within a quadrant must corresponding to sub-an d Yu et al.  (2004), respectively. In this 
sequences of the DNA sequence that end with the paper, we consider the CGR of three kinds of 
base labelling the corner of that quadrant. He also pro-sequences from complete genomes: whole 
posed a discrete time Markov Chain model to simu-genome DNA sequences, linked coding DNA 
late the CGR of DNA sequences and use the sequences and linked protein sequences. 
sequence's dinucleotide and trinucleotide frequen-Some fractal patterns are found in these 
cies to calculate the probabilities in these models. CGRs. A recurrent iterated function systems 
Goldman's Markov model can be calculated directly (RIFS) model is proposed to simulate the 
and easily from the raw DNA sequences, without ref-CGRs of these sequences from genomes and 
erence to the CGR.their induced measures. Numerical results 

Deschavanne et al. (1999) used CGR of genomes on 50 genomes show that the RIFS model can 
to discuss the classification of species. Almeida et al. s i m u l a t e  v e r y w e l l  t h e C G R s  a n d t h e i r  
(2001) showed the distribution of positions in the induced measures. The parameters est i-
CGR plane is a generalization of Markov Chain prob-mated in the RIFS model reflect information 
ability tables that accommodates non-integer orders. on species classification.
Joseph and Sasikumar (2006) proposed a fast algo-
rithm for identifying all local alignments between 
two genome  sequences using the sequence informa-
tion contained in their CGR.

Twenty different kinds of amino acids are found in 
1. INTRODUCTION proteins. The idea of CGR of DNA sequences pro-
The hereditary information of organisms (except for posed by Jeffrey (1990) was generalized and applied 
RNA-viruses) is encoded in their DNA sequences for visualizing and analyzing protein databases by 
which are one-dimensional unbranched polymers Fiser et al. (1994). Generalization of CGR of DNA 
made up from four different kinds of monomers (nu- may take place in several ways. In the simplest case, 
cleotides): adenine (a), cytosine (c), guanine (g), and the square in CGR of DNA is replaced by an n-sided 
thymine (t). Based on a technique from chaotic regular polygon (n-gon), where n is the number of dif-
dynamics, Jeffrey (1990) proposed a chaos game rep- ferent elements in the sequence to be represented. As 
resentation (CGR) of DNA sequences by using the proteins consist of 20 kinds of amino acids, a 20-
four vertices of a square in the plane to represent sided regular polygon (regular 20-gon) is the most 
a,c,g and t. The method produces a plot of a DNA adequate for protein sequence representation. A few 
sequence which displays both local and global pat- thousand points result in an 'attractor' which gives a 
terns. Self-similarity or fractal structures were found visualization of the rare or frequent residues and 
in these plots. Some open questions from the biologi- sequence motifs. Fiser et al. (1994) pointed out that 
cal point of view based on the CGR were proposed the chaos game representation can also be used to 
(Jeffrey 1990). study 3D structures of proteins.

If the DNA sequences were a random collection of 
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Basu et al. (1998) proposed a new method for the sequences and linked sequences of all protein 
chaos game representation of different families of sequences from complete genomes.
proteins. Using concatenated amino acid sequences For DNA sequences, the CGR is obtained by using 
of proteins belonging to a particular family and a 12- the four vertices of a square in the plane to represent 
sided regular polygon, each vertex of which repre- a,c,g and t (Jeffrey 1990). The first point of the plot is 
sents a group of amino acid residues leading to con- placed half way between the center of the square and 
servative substitutions, the method generates the the vertex corresponding to the first letter, the ith 
CGR of the family and allows pictorial representa- point of the plot is placed half way between the (i-
tion of the pattern characterizing the family. Basu et 1)th point and the vertex corresponding to the ith let-
al. (1998) found that the CGRs of different protein ter in the DNA sequence.
families exhibit distinct visually identifiable patterns. For linked protein sequences, we outline here the 
This implies that different functional classes of pro- way to get the CGR from Yu et al. (2004b). The pro-
teins produce specific statistical biases in the distri- tein sequence is formed by twenty different kinds of 
bution of different mono-, di-, tri-, or higher order ami no a cid s, n ame ly Ala nin e (A),  Arginine ( R),  
peptides along their primary sequences. Aspara gine (N), Aspartic acid (D), Cysteine (C), 

A well-known model of protein sequence analysis Glut amic acid (E), Glutamine (Q), Glycine (G), 
is the HP model proposed by Dill et al. (1985).  In this Histidine (H), Isoleucine (I), Leucine (L), Lysine (K), 
model 20 kinds of amino acids are divided into two Meth ioni ne (M), Phenylalanine (F), Proline (P), 
types, hydrophobic (H) (or non-polar) and polar (P) Serine (S), Threonine (T), Tryptophan (W), Tyrosine 
(or hydrophilic). But the HP model may be too simple (Y) and Valine (V) (Brown 1998, page 109). In the 
and lacks sufficient information on the heterogeneity detailed HP model, they can be divided into four 
and the complexity of the natural set of residues classes: non-polar, negative polar, uncharged polar 
(Wang and Wang 2000). According to Brown (1998), and positive polar. The eight residues A, I, L , M, F, P, 
one can divide the polar class in the HP model into W, V designate the non-polar class; the two residues 
three classes: positive polar, uncharged polar and neg- D, E designate the negative polar class; the seven resi-
ative polar. So 20 different kinds of amino acids can dues N, C, Q , G, S, T, Y designate the uncharged polar 
be divided into four classes: non-polar, negative class; and the remaining three residues R, H, K  desig-
polar, uncharged polar and positive polar. In this nate the positive polar class.
model, one considers more details than in the HP For a given protein sequence s=s s  with length l, 1 l
model. We call this model a detailed HP model (Yu et where s  is one of the twenty kinds of amino acids for i
al.2004a). Based on the detailed HP model, we pro- i=1, ,l ,we define 
posed a CGR for the linked protein sequences from 
the genomes (Yu et al. 2004b).

The recurrent iterated function system in fractal 
theory (Barnsley and Demko, 1985; Falconer, 1997) 
has been applied successfully to fractal image con-
struction (Barnsley and Demko, 1985; Vrscay, 1991), 
one dimensional measure representation of genomes 
(Anh et al. 2002; Yu et al. 2001, 2003) and magnetic 

We then obtain a sequence X(s)=a a , where a  is field data (Wanliss et al. 2005; Anh et al. 2005) for 1 l i

example. Yu et al. (2007) proposed a CGR for the a letter of the alphabet {0,1,2,3}. We next define the 
magnetic field data and used the RIFS model to simu- CRG for a sequence X(s) in a square [0,1] [ 0,1], 
late the CGR. where the four vertices correspond to the four letters 

Although we proposed the CGR for linked protein 0,1,2,3. The first point of the plot is placed half way 
sequences from genomes (Yu et al. 2004b), we did between the center of the square and the vertex corre-
not consider how to simulate the CGRs. In this paper, sponding to the first letter of the sequence X(s); the 
we extend the CGR to the study of whole-genome ith point of the plot is then placed half way between 
DNA sequences and linked coding DNA sequences the (i-1)th point and the vertex corresponding to the 
from genomes. Then we use the RIFS model to simu- ith letter. We then call the obtained plot the CGR of 
late the CGR of these 3 kinds of data from genomes the protein sequence s based on the detailed HP 
and their induced measures. The probability matrix in model.
our RIFS model is similar to the one in Markov model Usually whole-genome DNA sequences and linked 
used by Goldman (1993), but the way to estimate this coding DNA sequences are relatively long, hence the 
matrix is different. resulting CGRs are too dense to visualize any pattern 

directly. The linked protein sequences are 3 times 
shorter than the linked coding DNA sequences, and 2. CHAOS GAME REPRESENTATION OF 
their CGRs produce clearer self-similar patterns. For GENOMES
example, we show the CGR of the linked protein Three kinds of sequences from complete genomes are 
sequence of the bacterium Mycobacterium tuberculo-considered, namely, whole-genome DNA sequences 
sis CDC1551 (MtubC) in .(including protein-coding and non-coding regions), 

Considering the points in a CGR of an organism, l inked sequences of  al l protein-coding DNA 

Figure 1

(1)
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we define a measure by (B)=#(B)/N  , where #(B) is The coefficients in the contractive maps and the l

the number of points lying in a subset B of the CGR and probabilities in the RIFS are the parameters to be esti-
N  is the length of the sequence. We divide the square mated for the me asure that we wa nt to simulate . We l

now describe the method of moments to perform this [0,1] [0,1] into meshes of sizes 64 64, 128 128, 
task. In the two-dimensional case of our CGRs, we 512 512 or 1024 1024. This results in a measure for 
consider a system of N contractive mapseach mesh. We then obtain a 64 64, 128 128, 

512 512 or 1024 1024 matrixA=( )  , where kl J J

J=64,128,512 or 1024, each element is the measure  kl

value on the corresponding mesh. We call A the mea-
sure matrix of the organism. The measure  based on If is the invariant measure and A the attractor of 

2a 128 128 mesh on the CGRs are considered in this the RIFS in R , the moments of are
paper . For  example, the measure based on a  
128 128 mesh of the CGR in is shown in 

.

Using the propert ies of the Markov operator  
3. RECURRENT ITERATED FUNCTION defined by (S, P) (Vrscay, 1991), we get                                                            
SYSTEM FOR A MEASURE
Consider a system of contractive maps S={S ,S ,1 2

S } and the associated matrix of probabilities P=(p ) N ij

such that p =1,i=1,2, ,N. We consider a random j ij

sequence generated by a dynamical system

where x  is any starting point and is chosen  0 n

among the set {1,2, ,N}with a probability that 
depends on the previous index  : P( =i)=p .  n-1 n i-1,i 

Then (S, P) is called a recurrent iterated function sys- When n=0, m=0, from                       we have
tem. Then there exist compact setsA,A ,i=1,2, N i

such that      

                                                 for i=1,2, ,N.
where set A is called the attractor of the RIFS (S, P). j

Then we can get the values for g , j 1 2, ,N by ,00A major result for RIFS is that there exists a unique 
solving the above linear equations.  invariant measure of the random walk (Eq. 2) 

When m=0, n 1whose support is A (Barnsley et al., 1989).

Figure 1 
Figure 2

Figure 1. Chaos game representation of the linked protein 
sequence from genome of Mycobacterium tuberculosis 
CDC1551(MtubC) (with 1325681 amino acids).

Figure 2. The measure based on a 128 128 mesh of the 
CGR in Figure 1.

(2)

(3)

(4)
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If we denote by G  the moments obtained directly mn

from a given measure, and g  the formal expression mn

of moments obtained from the above formulae, then 
solving the optimization problem

hence the moments are given by the solution of the 

linear equations

will provide the estimates of the parameters of the 
RIFS.

Once the RIFS (S (x),p ,i,j=1,2, ,N ) has been esti-i ij

mated, its invariant measure can be simulated in the 
following way: Generate the attractor of the RIFS via 
the random walk (Eq. 2). Let be the indicator func-B

When n=0,m 1 
tion of a subset B of the attractor A. From the ergodic 
theorem for RIFS (Barnsley et al., 1989), the invari-
ant measure is then given by

hence the moments are given by the solution of the 
linear equations

By  de f in i t i on ,  an RIFS  desc r ibes  t he s ca l e  
invariance of a measure. Hence a comparison of the 
given measure with the invariant measure simulated 
from the RIFS will confirm whether the given mea-
sure has this scaling behaviour. This comparison can 
be undertaken by computing the cumulative walk of a 
measure visualized as intensity values on a J J  
mesh; here J=128 in this paper. When  m,n 1

I f  w e  c o n v e r t t h e  t w o - d i m e n s i o n a l  m a t r i x       
A=( ) to an one dimensional vector by concate- kl J J

nate every row in A at the end of previous row. We 
denote the one-dimensional vector as f=(f ,f , ,f ). 1 2 J J

The cumulative walk is defined as

Where f is the average value of all element in vec-
tor f.

Returning to the CGR, an RIFS with 4 contractive hence the moments are given by the solution of the 
maps {S ,S ,S ,S } is fitted to the measure obtained linear equations 1 2 3 4

from the CGR using the method of moments. Here we 
can fix

Hence the parameters needed to be estimated are the 
probabilities in the matrix P. Once we have estimated 
the probability matrix in the RIFS, we can start from 
the point (0.5, 0.5) and use the chaos game algorithm 
Eq. (2) to generate a random point sequence{x } with i

the same length N  of the whole- genome DNA l                                                 for i=1,2, ,N.
sequence, linked coding DNA sequence or the linked 

(6)

(7)
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protein sequence. Then the plot of the random point 
sequences is the RIFS simulation of the original CGR 
of the data. For example the RIFS simulated CGR of 
the CGR in  is shown in . Compar-
ing the RIFS simulation in  with the original and
CGR in , it is apparent that they are quite sim-
ilar. We then obtain the 128 128 mesh measure
based on the simulated CGR. The measure   can be 
regarded as a simulation of the measure   induced 

M Mfrom the original CGR. For example, we show the 
Here M=128 128, (F ) and (F ) are the walks j j=1 j j=1128 128 mesh measure     based on the simulated 
of the original measure and the RIFS simulated mea-CGR of  in . The cumulative walks 

M
sure respectively, F is the mean value of(F ) . of these two measures can then be obtained to show ave j j=1

the performance of the simulation. The goodness e 1.0 indicates the simulation is 
We determine the goodness of fit of the measure very well (Anh et al. 2002). For example, the cumula-

simulated from the RIFS model relative to the origi- tive walks for the measure induced by the CGR in 
nal measure based on the following relative standard and its RIFS simulation in  are given in 
error (RSE) (Anh  et al. 2002): . It is seen that the two walks are almost iden-

tical. This indicates that RIFS fits very well the mea-
sure induced by the original CGR. The RSE e=0.0300 
is very small, which also indicates excellent fitting.

Where
4. DATA, DISCUSSION AND CONCLUSION

We downloaded whole-genome DNA sequences, 
coding DNA sequences and protein sequences from 
50 complete genomes of Archaea and Eubacteria 
from the public database Genbank at the web site 
http://www.ncbi.nlm.nih.gov/Genbank/. We list the 
name of the 50 bacteria in Appendix.

We then produce the CGRs of the data from the 50 
genomes as described in . For more exam-
ples, we plot the chaos game representation of the 
linked coding sequence from genome of Mycoplasma 
pulmonis  UAB CTIP (Mpul) in . Fractal 
(self-similarity) patterns can be seen in these CGRs. 
We on ly  use  the moments  o f  128 128  mesh  
measure based on the CGRs to estimate the param-
eters (probability matrix) in the RIFS model. Then 
the RIFS simulation of the original CGRs is per-
formed using the chaos game algorithm. We then get 

Figure 1 Figure 3
 Figure 3

Figure 1

Figure 3 Figure 4

Fig-
ure 1 Figure 4
Figure 5

Section 2

Figure 6

Figure 3. The RIFS simulated CGR for the CGR in  Figure 1.
Figure 4. The measure   based on a 128 128 mesh of the 
RIFS simulated CGR in Figure 3.

Figure 5. The walk representation of measures induced by 
the CGR in Figure 1 and its RIFS simulation in Figure 4.
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the 128 128 mesh measure based on the simulated 
CGR. To show the performance of the simulation, we 
compare the cumulative walks of the original mea-
sure and its simulation .  For example, the RIFS sim-
ulated CGR of the linked coding sequence from 
genome of Mycoplasma pulmonis UAB CTIP (Mpul) 
based on the 128 128 mesh measure from 

is shown in , while the walk representation 
of measures induced by the CGR in and its 
RIFS simulation in  are shown in .

Goldman (1993) interpreted the patterns in CGRs 
o f  D N A s e q u e n c e s  b y t h e  d i n u c l e o t i d e a n d  
trinucleotide frequencies in the original sequence. 
The probability matrix in our RIFS model character-
izes the dinucleotide or di-amino acid frequencies (in-
formation) which is similar to the one in Markov 
model used by Goldman (1993), but the way to esti-
mate this matrix is different. 

The values of the RSE of the simulation for 50 

Figure 
6 Figure 7

Figure 6 
Figure 7 Figure 8

Figure 6. Chaos game representation of the linked coding 
sequence from genome of Mycoplasma pulmonis  UAB CTIP 
(Mpul) (with 873,651 bps).

Figure 7. The RIFS simulated CGR for the CGR in  Figure 6.

Figure 8. The walk representation of measures induced by 
the CGR in Figure 6 and its RIFS simulation in Figure 7.

Table 1. The goodness of fit for the walk representations of 
three kinds of data from 50 genomes.

Species
(abbrev.)

Aful  
Paby  
Pyro 
Mjan 
haloNRC 
Taci  
Tvol  
Mthe 
Aero 
Ssol
MtubH 
MtubC 

pMle  &  
Mpneu 
Mgen 
Mpul 
Uure 
Bsub 
Bhal 
Llac 
Spyo 
Spne 
SaurN 
SaurM 
CaceA 
Aqua 
Tmar 
Ctra 
Cpneu 
CpneuA      

pC neuJ 
Syne 
Nost 
Bbur 

pT al 
Atum 
smel 
Ccre 

pR ro 
Nmen 
NmenA 
EcoliKM 
EcoliOH 
Hinf 
Xfas 
Paer 
Pmul 
Buch 
Hpyl 
Cjej 

e  f  or  
whole DN A

0.5797
0.3502
0.4324
0.2136
0.3728
0.2707
0.3126
0.5188
0.6213
0.3798
1.3037
1.3010
0.4271
0.0484
0.0731
0.0639
0.0783
0.4051
0.1198
0.1032
0.1049
0.1125
0.1264
0.1229
0.1887
0.4825
0.4470
0.8986
0.7786
0.7593
0.7899
0.0521
0.1411
0.1466
0.3068
0.2614
0.1739
0.1171
0.3887
0.1973
0.2039
0.3225
0.3222
0.0677
0.1246
0.2149
0.1032
0.1954
0.2567
0.1540

e   f o r  
coding DN A

0.2669
0.3214
0.3411
0.2675
0.3569
0.2735
0.2716
0.5676
0.2222
0.3612
0.5862
0.5711
0.3332
0.0589
0.2305
0.1261
0.2064
0.8012
0.2652
0.1879
0.1759
0.1358
0.2728
0.2680
0.1693
0.3457
0.6674
0.4769
0.7170
0.7093
0.7352
0.0396
0.1439
0.1255
0.1212
0.2655
0.1957
0.1558
0.7126
0.1933
0.1993
0.3472
0.3810
0.2388
0.1460
0.1823
0.2087
0.2598
0.2615
0.1797

e for     
linked   
proteins 
0.0366
0.0333
0.0361
0.0647
0.0297
0.1030
0.1308
0.0299
0.0452
0.1098
0.0333
0.0300
0.0404
0.1686
0.2617
0.2267
0.4058
0.0684
0.0489
0.0500
0.0678
0.0932
0.1020
0.1054
0.1859
0.0661
0.0597
0.1066
0.1312
0.1044
0.1290 
0.0667
0.0931
0.2008
0.0908
0.0403
0.0380
0.0259
0.2132
0.0430
0.0559
0.0714
0.0868
0.0883
0.0324
0.0470
0.0911
0.3911
0.1161
0.0802
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genomes and their induced measures. Third, the RIFS genomes are listed in .
simulation of measures for linked protein data is It is seen that all the values of the RES except two 
better than that of measures for whole-genome DNA are much less than 1.0, confirming that the RIFS 
data and linked coding DNA data. Finally, the esti-model can simulate very well the measures of three 
mated parameters in the RIFS models for the linked kinds of data. The values of e for whole-genome DNA 
protein data from genomes can be used to character-data are generally larger than those for linked coding 
ize the phylogenetic relationships of the genomes.DNA data, which in turn are larger than those for 

linked protein data. In other words, the RIFS model 
can simulate the measures for linked protein data 
better than the measures for linked coding DNA data, ACKNOWLEDGEMENTS  
and can simulate measures for linked coding DNA Financial support was provided by the Chinese National Natural 
data better than the measures for whole-genome DNA Science Foundation (grant no. 30570426), Fok Ying Tung Educa-
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NC002745), Staphylococcus aureus subsp. aureus Mu50 (SaurM, 
NC002758), and  Clostridium acetobutylicum ATCC 824 (CaceA, 
NC003030). The others are Gram-negative Eubacteria, which consist of two 
hyperthermophilic bacteria: Aquifex aeolicus  VF5 (Aqua, NC000918) and 
Thermotoga maritima MSB8 (Tmar, NC000853); four  Chlamydia: 
Chlamydia trachomatis D/UW-3/CX (Ctra, NC000117), Chlamydia 
pneumoniae CWL029 (Cpneu, NC000922), Chlamydia pneumoniae AR39 
(CpneuA, NC002179) and Chlamydia pneumoniae J138 (CpneuJ, APPENDIX  
NC002491); two Cyanobacterium: Synechocystis sp. PCC6803 (Syne, These 50 bacteria include eight Archae Euryarchaeota: Archaeoglobus 
NC000911) and Nostoc sp. PCC 7120 (Nost, NC003272); two Spirochaete: fulgidus DSM 4304 (Aful, NC000917), Pyrococcus abyssi GE5 (Paby, 
Borrelia burgdorferi B31 (Bbur, NC001318) and Treponema pallidum NC000868), Pyrococcus horikoshii OT3 (Pyro, NC000961), 
Nichols (Tpal, NC000919); and fifteen Proteobacteria. The fifteen Methanococcus jannaschii  DSM 2661 (Mjan, NC000909), Halobacterium 
Proteobacteria are divided into four subdivisions, namely alpha subdivision: sp. NRC-1 (haloNRC, NC002607), Thermoplasma acidophilum DSM 1728 
Agrobacterium tumefaciens strain C58 (Atum, NC003062), Sinorhizobium (Taci, NC002578), Thermoplasma volcanium GSS1 (Tvol,NC002689), and 
meliloti 1021 (smel, NC003047), Caulobacter crescentus CB15 (Ccre, Methanobacterium thermoautotrophicum deltaH (Mthe, NC000916); two 
NC002696) and Rickettsia prowazekii Madrid (Rpro, NC000963); beta sub-Archae Crenarchaeota: Aeropyrum pernix K1 (Aero, NC000854) and 
division: Neisseria meningitidis MC58 (Nmen, NC003112) and Neisseria Sulfolobus solfataricus P2 (Ssol, NC002754); three Gram-positive 
meningitidis Z2491 (NmenA, NC003116); gamma subdivision: Esche-Eubacteria (high G+C): Mycobacterium tuberculosis H37Rv (MtubH, 
richia coli K-12 MG1655 (EcoliKM, NC000913), Escherichia coli O157:H7 NC000962), Mycobacterium tuberculosis CDC1551 (MtubC, NC002755) 
EDL933 (EcoliOH, NC002695), Haemophilus influenzae Rd (Hinf, and Mycobacterium leprae TN (Mlep, NC002677); twelve Gram-positive 
NC000907), Xylella fastidiosa 9a5c (Xfas, NC002488), Pseudomonas Eubacteria (low G+C): Mycoplasma pneumoniae M129 (Mpneu, 
aeruginosa PA01 (Paer, NC002516), Pasteurella multocida subsp. NC000912), Mycoplasma genitalium G37 (Mgen, NC000908), Mycoplasma 
multocida str. Pm70 (Pmul, NC002663) and Buchnera str. APS (Buch, pulmonis  UAB CTIP (Mpul, NC002771), Ureaplasma urealyticum serovar 
NC002528); and epsilon subdivision: Helicobacter pylori 26695 (Hpyl, 3 str. ATCC 700970 (Uure, NC002162), Bacillus subtilis subsp. subtilis str. 
NC000915) and Campylobacter jejuni  subsp. jejuni NCTC 11168 (Cjej, 168 (Bsub, NC000964), Bacillus halodurans C-125 (Bhal, NC002570), 
NC002163). The abbreviations in the brackets stand for the names of these Lactococcus lactis subsp. lactis Il1403 (Llac, NC002662), Streptococcus 
species and their NCBI accession numbers.pyogenes M1 GAS (Spyo, NC002737), Streptococcus pneumoniae TIGR4 

(Spne, NC003028), Staphylococcus aureus subsp. aureus N315 (SaurN, 
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