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Abstract 
 
In wireless sensor networks, the missing of sensor data is inevitable due to the inherent characteristic of 
wireless sensor networks, and it causes many difficulties in various applications. To solve the problem, the 
missing data should be estimated as accurately as possible. In this paper, a k-nearest neighbor based missing 
data estimation algorithm is proposed based on the temporal and spatial correlation of sensor data. It adopts 
the linear regression model to describe the spatial correlation of sensor data among different sensor nodes, 
and utilizes the data information of multiple neighbor nodes to estimate the missing data jointly rather than 
independently, so that a stable and reliable estimation performance can be achieved. Experimental results on 
two real-world datasets show that the proposed algorithm can estimate the missing data accurately. 
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1. Introduction 

The rapid development of wireless communication tech-
niques, micro-electronics techniques and embedded com- 
putation techniques makes Wireless Sensor Networks 
(WSNs) being applied in many fields [1–4]. WSNs con-
sist of many sensor nodes deployed in a special region 
where users are interested in, and each sensor node has 
some computing ability, storage ability and communica-
tion ability. Users issue queries to obtain information 
about the monitored region. Faced with the features of 
WSNs, many query processing algorithms have been 
proposed for various applications. However, all these 
query processing techniques are frustrated by a common 
problem, that is, the missing of sensor data. 

Actually, the missing of sensor data is inevitable due 
to the inherent characteristic of WSNs. For example, the 
communication ability of sensor nodes is limited. Some 
sensor nodes may be isolated from the WSNs for a short 
or long time due to the influences of surrounding envi-
ronment such as mountains and obstacles, which results 
that the sensor data of these nodes may be lost. In addi-
tion, the natural environment such as rain, thunder and 
lightning will influence the sensor nodes’ communica-
tion quality either and make the communication links 
between sensor nodes connected and disconnected fre-
quently. This will also result in the sensor data lost dur-
ing the data transmission. Secondly, the power of sensor 
nodes is limited. When a sensor node’s power is low, it 

usually works under an unstable state. This not only 
causes the unstable communication which may make the 
sensor data lost, but also makes the sensor data sampled 
be often useless abnormal data (e.g. the temperature of a 
room is 300℃). The abnormal data is looked as the 
missing data since it can never be used. When the power 
of a sensor node is exhausted, the sensor node cannot 
collect the data any more and the data cached in the 
storage which have not been sent back may also be lost. 
In addition, the size of sensor node is small and it is easy 
to be damaged, which may also result in the lost of sen-
sor data. Due to the reasons given above, no matter how 
efficient and robust query processing algorithms are de-
veloped, the missing of the sensing data is inevitable. 

The missing of sensor data will cause many difficulties 
in various applications. For example, in the data collec-
tion applications, the missing data will not only decrease 
the availability of sensing datasets, but also decrease the 
efficiency of WSNs greatly. In the research of forest en-
vironment [5], a WSN is deployed in the forest to collect 
the environment variables such as temperature, humidity, 
atmosphere pressure and sunlight etc. Based on the sensor 
data collected, biologists can study the forest microcli-
mate, the dynamic tree respiration and growth models etc. 
However, the data collected by sensor nodes is raw data. 
Biologists need use some analysis tools on the amounts of 
raw data and then can get the analysis results and draw a 
conclusion. Unfortunately, the existing analysis tools 
which are adopted in these fields, such as support vector 
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machines, principal component analysis and singular 
value decomposition etc., cannot process the datasets 
with missing data, and it is infeasible to modify the ex-
isting analysis tools for the datasets with missing data. 
Besides, it is also difficult to process the raw data artifi-
cially due to the amount of raw data being huge. So, how 
to deal with the datasets with missing data frustrates the 
biologists greatly. 

If all the missing data is deleted, much original data 
information will be lost, which not only decreases the 
accuracy and the reliability of biologists’ research, but 
also may lead to the wrong research results. In addition, 
deleting the missing data will also cause the waste of 
energy. This is because the non-missing data in the same 
tuple is valuable and believable. Collecting these data 
also cost much energy. Further more, from the perspec-
tive of temporal dimension, the state of the monitored 
objects at a certain moment can only be observed once, 
hence the missing data cannot be collected any more, it 
can only be estimated as accurately as possible. 

Datasets [5,6] are two real-world datasets whose data 
is collected by the WSNs deployed in the Sonoma red-
wood trees and the Intel-Berkeley lab respectively. They 
show that there do exist vast missing data in the actual 
data collection. Since the missing of sensor data is inevi-
table and it causes many difficulties, developing the high 
quality missing data estimation algorithms is necessary 
and urgent. Unfortunately, there exist few works on in-
vestigating how to process the missing data efficiently in 
WSNs so far. 

In this paper, a k-nearest neighbor based missing data 
estimation algorithm is proposed. It adopts linear regres-
sion model to describe the spatial correlation of sensor 
data among different sensor nodes and uses the multiple 
neighbor nodes’ data jointly rather than independently to 
estimate the missing data. Hence, it can achieve a good 
estimation effect for the missing data, even for the sensor 
data of changing irregularly which appears often in 
WSNs. The performance of the algorithm proposed in 
this paper is evaluated through extensive experiments on 
two real-world datasets and compared with the other 
missing data estimation algorithm. The experiment re-
sults show that the proposed algorithm can estimate the 
missing data more accurately. 

The remainder of this paper is organized as follows. In 
Section 2, an overview of related works is presented. In 
Section 3, we first give a formal definition of the missing 
data estimation problem, and then present the algorithm. 
Section 4 shows the experimental results, and Section 5 
concludes the paper. 

2. Related Work 
 

Research on missing data estimation has been studied in 
some fields, such as artificial intelligence [7,8], bioin-
formatics [9,10–12], and data mining [13,14], but there 

are few works in WSNs. The works in those fields are 
not adapted for WSNs, since they do not take account of 
the features of sensor data being temporal and spatial 
correlated. The idea of k-nearest neighbor has been 
adopted in the bioinformatics to estimate the missing 
values of DNA microarrays [12]. However, the algorithm 
in [12] is trivial, since it only directly uses the weighted 
average of the other genes’ corresponding data as the 
estimated values of the missing data. While in WSNs, the 
sensor data of different nodes is more likely to have 
some functional relationship rather than being similar in 
values simply. Thus, the algorithm in [12] is not adapted 
for estimating the missing sensor data. 

Research on query processing in WSNs mainly fo-
cuses on processing continuous queries and approximate 
queries. Processing continuous queries mainly focuses on 
how to schedule the continuous queries optimally and 
how to collect the sensing data satisfying these queries 
energy-efficiently according to network topology and 
other system characteristics [3,15–18]. Processing ap-
proximate queries mainly focuses on how to utilize the 
temporal-spatial relationship of sensing data to construct 
appropriate mathematical models and how to use these 
models to answer the queries approximately, trying to 
lower communication cost [19–23]. To the best of our 
knowledge, there exist few works investigating how to 
process the missing data. 

Although [24] and [25] seem to be similar with this 
paper, they focus on different problems from ours. We 
focus on how to estimate the missing data as accurately as 
possible, but [24] focuses on how to save the energy 
mostly when processing continuous queries. The accuracy 
of the estimated values is not mainly concerned in [24], 
and on the contrary, [24] will sacrifice the accuracy of the 
estimated values for saving energy in many cases. So the 
methods in [24] are not suitable for our problem. In [25], 
authors map the sensor network on a graph, and based on 
the graph theory, they focus on how to estimate the 
measurement values at arbitrary positions with the least 
sensor nodes, which is also different from ours. Besides, 
[25] assumes that the measurement values in the sensor 
network satisfy some spatial physical laws, and these 
physical laws can be modeled by the lumped-parameter 
models. However, WSNs are usually deployed in some 
unknown regions to execute monitoring task. The models 
which describe the measurement values of these unknown 
regions are difficult to be got in fact. So, the techniques in 
[25] are difficult to be used actually. 

Based on the data mining techniques, literature [26,27] 
studied the estimation of the missing data in data streams. 
However, the algorithms in [26,27] have great limitations 
and cannot be used widely. For example, the algorithms in 
[26,27] can only deal with the discrete data, but not the 
continuous data. However, in many applications, the en-
vironment variables monitored by WSNs such as tem-
perature, humidity, and atmosphere pressure etc. change 
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continuously. In addition, the accuracy and the perform-
ance of the algorithms in [26,27] depend on the associa-
tion rules support and confidence thresholds which need to 
be pre-specified by users. Since users are not familiar with 
the monitored environments usually and the vast raw data 
are difficult to be understood, users may not give the 
proper thresholds, which results that the accuracy and the 
performance of the algorithms decrease greatly. Further 
more, the algorithms in [26,27] estimate the missing data 
according to the frequent patterns which are pre-computed 
based on the existing data. If the patten containing the 
missing data does not appear in the frequent patterns, the 
missing data cannot be estimated by [26,27]. Compared 
with the algorithms in [26,27], the algorithm proposed in 
this paper can solve above problems well. 

 
3. Algorithm Presentation 

 
This paper investigates how to estimate the missing sen-
sor data as accurately as possible. Before introducing the 
algorithm, we first give the problem definition. 

Definition1: The sensor data collected by the sensor 
node Ni can be looked as a time series 
Si=(<yi1,T1>, … ,<yin,Tn>), where yik is the sensor data of 
Ni at time Tk . For Tk , k {1, … , n}, if the sensor data 
yik is missed, then computing its estimated value  to 

minimize the expression 

ˆiky

ˆik iky y  is called the missing 

data estimation problem. 
In many applications, the environment variables 

monitored by the WSNs such as temperature and humid-
ity change continuously. When some data of a sensor 
node is missed, a naive method for estimating the miss-
ing data is, based on the temporal correlation of sensor 
data, using the non-missing data whose collection time is 
near to the missing data to estimate them. However, this 
method works well only when the sensor data changes 
smoothly and the missing data appears in a short time 
period. In the other cases, this method may cause large 
estimation errors. This is because the sensor data in 
WSNs changes sharply and irregularly often in fact, es-
pecially the data sensed in the natural environment since 
too many uncertain factors, such as environment noise, 
will affect the variety of the sensor data. So, only de-
pending on the temporal correlation of sensor data to 
estimate the missing data is not enough in many cases.  

 

 

Figure 1. Temperature collected by two sensor nodes. 

To estimate the missing data as accurately as possible, 
we should consider not only the temporal correlation of 
sensor data, but also the spatial correlation of sensor data. 
Motivated by this observation, we propose the Applying 
K-nearest neighbor Estimation (AKE) algorithm which 
estimates the missing data based on the spatial correla-
tion more than the temporal correlation of sensor data. 

As known, there are many sensor nodes deployed in a 
monitored region. The sensor data of these nodes has 
spatial correlations. That is, at a moment, the data sensed 
by the sensor nodes whose locations are nearby is similar 
or has some relationships. For example, Figure1 shows 
the temperature observed by two sensor nodes in two 
days [20]. From Figure 1, we can see that the data sensed 
by node 1 and node 25 has the similar variety curves. So, 
when some data of a sensor node is missed, we can esti-
mate them by its neighbor nodes. 

For convenience of the algorithm description, without 
loss of generality, we assume that only sensor node Ni 
has missing data, and Ni has m neighbor nodes totally, 
they are N1, … , Nm respectively. We call the sensor node 
set consists of Ni ‘s all neighbors as Ni ‘s neighbor node 
set which noted as Nb(i)= { N1, … , Nm }. For the node 
Ni , since it has multiple neighbor nodes and for Nj  
Nb(i), Nj has the spatial correlation with Ni, for decreas-
ing the random error caused by a single node when esti-
mating the missing data, AKE looks Ni and its all 
neighbor nodes as a whole, and utilizes Ni ‘s all neighbor 
nodes jointly rather than independently to estimate the 
missing data of Ni. 

For Nj  Nb(i), the functional relationship between 
the sensor data of Ni and Nj is unknown. Since the loca-
tions of the node Ni and Nj are close and an excitation 
will cause the similar responses on the sensor data of Ni 
and Nj, the relationship of Ni and Nj can be looked as 
linear approximately in a short time period. AKE adopts 
linear regression model to describe the spatial correlation 
of node Ni and Nj, i.e. for any time t, there has 

it jt jty y                 (1) 

where yit is the sensor data of Ni at time t, and yjt is the 
sensor data of Nj at the same time;  and  are the model 
coefficients, and jt is the random error at time t. Ac-
cording to the theory of linear regression model, to esti-
mate the missing data by utilizing Formula (1), we 
should first select h (h12) pairs of known sensor data< 
yin , yjn >, n  t, as the sample data, and then use the sam-
ple data to regress the coefficients in Formula (1). That is, 
compute ̂ and ̂ , which are the estimated values of  

and , based on the sample data according to least 
squares principle. When the sensor data of Ni at time t is 
missed, its estimated value computed by the node Nj can 
be expressed as: 

( ) ˆˆˆ j
it jty   y                 (2) 

where represents the estimated value of yit , which ( )ˆ j
ity
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computed by node Nj. The deviation between the esti-
mated value ( )ˆ j

ity
( )j

and the real value yit is called the re-

sidual of and yit, which is noted as = ˆity ( )j
te ( )ˆ j

ity   yit . 

From the least squares principle, it is easy to know that 
( )j
te has the minimal variance. 

Based on the Formula (2), totally m estimated values 
can be got for a missing data yit, since Ni has m neighbor 
nodes and according to each neighbor node Nj, Nj  
Nb(i), an estimated value ( )ˆ j

ity can be computed. To de-

crease the random estimation error caused by a single 
neighbor node and improve the estimation system’s reli-
ability and stability, AKE uses the weighted average of 
the m estimated values computed by the m neighbor 
nodes as the final estimated value, i.e. 

ˆity  ( )

1

ˆ
m

j
j it

j

w y


                 (3) 

where wj is the weight coefficient correspondingly, 0 < 
wj < 1 and . 

1

m

j
w



(1)
te

( )j
t

ˆity

1j 

Theorem1: For the estimated values computed by the 
m neighbor nodes of Ni, assume that their corresponding 
residuals are , , … , respectively, and these 

residuals are independent and identically-distributed, 

then the variance of residual = yit is less than 

that of any , j={1,2, … , m }. 

(2)
te ( )m

te

te ˆity 

e

Proof: According to the definition of the residuals, 
there have = yit + and te ( )ˆ j

ity = yit + ( )j
te

( )

. Substitute 

them into Formula (3), we can get the relationship of 

and , that is, = te ( )j
te te

1

m j
j t

2( )j 
m

j

j



w e

1

m

j
w



. Since , 

, …, are independent and identically-distributed, 

without loss of generality, we assume the variance of 
, j={1,2, … , m }, is DX. Then, from the properties of 

variance, we can deduce that the variance of is 

. Obviously, since 0 < 

wj < 1 and . Accordingly,  

< DX. 

(1)
te

te

1

2( )  jw D

(2)
te

( )j
te

m

j

(m
te

2( )w 

)

 DX

1

m

j
w


1 j

1j 1
X

Next, we discuss the weight assignment in Formula (3). 
Since many factors will affect the spatial correlations 
among the sensor nodes, the accuracy of the estimated 
value computed by different neighbor nodes may be dif-
ferent. Intuitively, a more accurate estimated value 
should be assigned a larger weight. Considering that, 
given a set of sample data, the sample determination co-
efficient R2(0 R2 1) can reflect the goodness of regres-
sion equation fitting the sample data. The more the value 
of R2 is, the better the regression equation fits the sample 
data, which indicates that the estimated values computed 
by the regression equation will be more accurate. Thus, 
we can assign the weight according to the sample deter-

mination coefficient R2. For the regression equation 
( ) ˆˆˆ j
it jty   y   , assume the sample data consists of h 

pairs of sensor data, then the sample determination coef-
ficient corresponding to this regression equation can be 
expressed as 

( ) 2
2
( ) 2

1

ˆ(

( )

jh
in i

j
n in i

y y
R

y y




 )
            (4) 

where iy  is the sample mean of node Ni. Accordingly, 

the weight coefficient corresponding to the estimated 
value ( )ˆ j

ity can be defined as 
2
( )

2
( )1

j
j m

kk

R
w

R





               (5) 

Based on the Formula (5), AKE can assign the appro-
priate weights to the corresponding estimated values 
which computed according to different neighbor nodes. 
Obviously, a more accurate ( )ˆ j

ity will contribute more to 

the final estimated value. 
The computational complexity of AKE consists of two 

components mainly. One is that of computing the coeffi-
cients of the regression equation for each neighbor node. 
Another is that of computing the sample determination 
coefficient R2 for each regression equation and then com-
puting the estimated values according to Formula (3). 
From the theory of linear regression model, it is easy to 
know that the cost of computing the coefficients for each 
regression equation is O(h), and h is usually an empirical 
constant. So, the cost of computing the coefficients for all 
m regression equation is O(m). From Formula (4), we can 
know that the cost of computing 2

( )jR  is also O(h). Thus, 

the cost of computing the sample determination coefficient 
for m regression equations and then estimating the missing 
data based on Formula (3) is also O(m). Due to computing 
the coefficients of regression equation and computing the 
sample determination coefficient of regression equation 
are two individual steps and executed by AKE sequen-
tially, the computational complexity of AKE is O(m), 
where m is the number of Ni ‘s neighbor nodes. 

Since AKE is based on the sensor data spatial correla-
tion to estimate the missing data and linear model is 
adopted by the algorithm, it will perform best when the 
sensor data of different nodes is linear correlated abso-
lutely. Although Figure 1 shows that the correlation of 
sensor data may not be linear sometimes, it does not 
matter too much. This is because the linear model can 
approximate the real data correlation well in a short time 
period, and hence when the sample size is not too much, 
AKE will perform well even when the sensor data is not 
linear correlated rigidly. 

4. Experiment Results 

The algorithm proposed in this paper is implemented by 
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Java, and evaluated over two real-world datasets whose 
data is collected by the WSNs indoors and outdoors re-
spectively. One dataset is Intel-lab dataset [6], which is a 
trace of readings from 54 sensor nodes deployed in the 
Intel Research Berkeley lab. These sensor nodes col-
lected light, humidity, temperature and voltage readings 
once every 30 seconds. Another dataset is Redwood 
dataset [5], which is a trace of readings from 72 
Mica2dot sensor nodes deployed throughout two 67 me-
ters high giant redwood trees in a grove. These sensor 
nodes collected humidity, temperature and voltage read-
ings once every 5 minutes. 

To evaluate the performance of the algorithm, we 
make the algorithm estimate the non-missing data in 
datasets, and compare the estimated values with their 
corresponding real data. Before the algorithm is executed, 
we repair the datasets first since there is many missing 
data. First of all, we select some fragments of datasets as 
candidate test dataset. These fragments contain as little 
missing data as possible. Then, we replace the missing 
data in the fragments with the average of the non-missing 
data nearby and to get the test datasets without missing 
data. Next, we label some data in test datasets as the 
missing data randomly, and make the algorithm estimate 
these dummy missing data. Due to the problem focused 
by this paper is how to estimate the missing data as ac-
curately as possible, we use the accuracy of the estimated 
values as the evaluation criteria of the algorithm. Spe-
cifically, we use Root Mean Square Error (RMSE): 

2ˆ[( ) ]it itRMSE mean y y   

where yit is the known value which is labeled as missing 
data, is the estimated value of yit, and mean repre-

sents computing the average for all the data labeled as 
missing value. 

ˆity

we compare the effectiveness of the algorithm pro-
posed in this paper against three algorithms: 

LIN method: This is a temporal correlation based 
missing data estimation method which is based on the 
linear interpolation model. For the missing data yit, the 
estimated value given by method LIN can be ex-

pressed as 

ˆity

ˆ ( )iv iu
it iu u

v u

y y
y y t T

T T


  


 

where yiu and yiv are non-missing data whose collecting 
moments are near to time t. 

KNN method: This is a naive spatial correlation 
based missing data estimation method. For the missing  
data yit , KNN estimates it with the weighted average of 
all neighbor nodes’ data. i.e. 

1
ˆ

m

it k ktk
y w y


   , where  

ykt is the data of Nk  Nb(i), wk is the normalized weight 
coefficient which represents the similarity of the node Ni 
and Nk . We use KNN as a baseline to show the effec-
tiveness of the algorithm proposed in this paper. 

DESM method [24]: This method computes the 
missing data based on the temporal-spatial correlation. 
For the missing data yit, the estimated value given by 

method DESM can be expressed as 

ˆity

ˆity  ( 1)ˆ(1 ) i ty   

ˆ( )z , where is the estimated value of yit computed 

based on node Nj, Nj  Nb(i), and  is the Pearson corre-
lation coefficient between Ni and Nj. 

ẑ

Since the data sampling interval, the number of 
neighbor nodes, and the number of missing data are the 
main factors which affect the effectiveness of the miss-
ing data estimation algorithm, we use them as the ex-
periment parameters. In the experiments, the data sam-
pling interval varies from 1 to 30 minutes, and its default 
value is 15 minutes. The number of neighbor nodes var-
ies from 4 to 12, and its default value is 8. The number of 
the missing data varies from 1 to 30, and its default value 
is 10. In all experiments, while changing a parameter, all 
other parameters are set as their default values. Specifi-
cally, due to the data used in the experiments is collected 
by the real WSN and the locations of sensor nodes in the 
real WSN are changeless, the number of neighbor nodes 
is in logical. In fact, varying the number of neighbor 
nodes is equivalent to assuming the sensor node has dif-
ferent sensing radius, so that the number of a node’s 
neighbor nodes is alterable. 
 
4.1. Intel-Lab Dataset 

 
Figure 2 and Figure 3 show the experimental results of 
the algorithms on temperature and humidity data of the 
Intel-lab dataset respectively. Figure 2(a) shows that the 
estimation errors of the algorithms increase when pro-
longing the sensor node’s sampling time interval. This is 
because all these algorithms estimate the missing data 
based on the temporal correlation more or less. The in-
creasing of data sampling interval will decrease the tem-
poral correlation of sensor data, which results the algo-
rithms’ estimation errors increased, since the sensor data 
may change greatly with a long time interval. Due to 
algorithm LIN estimating the missing data according to 
the temporal correlation absolutely, its estimation error 
increases most when sampling time interval is enlarged. 
While, DESM, KNN and AKE estimate the missing data 
based on the spatial correlation more than temporal cor-
relation, so their estimation errors increase less. Specifi-
cally, due to AKE adopts the regression model and uses 
the multiple neighbor nodes to estimate the missing data 
jointly, its estimation error increases least. 

Figure 2(b) shows that the estimation errors of the al-
gorithm KNN and AKE increase slightly with the num-
ber of neighbor nodes increasing. This is because KNN 
and AKE estimating the missing data are based on the 
multiple neighbor nodes. Due to the data used in the ex-
eriments is collected by the real WSN and the locations p    
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(a)                                  (b)                                       (c) 

Figure 2. RMSE of the algorithms on temperature data of Intel-lab dataset. (a) RMSE vs. sampling interval; (b) RMSE vs. ＃
of neighbor nodes; (c) RMSE vs. ＃of missing data. 
 

 
(a)                                       (b)                                     (c) 

Figure 3. RMSE of the algorithms on humidity data of Intel-lab dataset. (a) RMSE vs. sampling interval; (b) RMSE vs. ＃of 
neighbor nodes; (c) RMSE vs. ＃of missing data. 

  
gorithms increase with the number of missing data in-
creasing. The reason is that much missing data will de-
crease the temporal correlation between the missing data 
and the non-missing data, which results the algorithms’ 
estimation errors increased. Due to LIN estimates the 
missing data according to the temporal correlation ab-
solutely, its estimation error increases most. While, 
AKE is based on the spatial correlation more than the 
temporal correlation, so its estimation error increases 
less than that of LIN.  

of sensor nodes in the real WSN are changeless, some 
nodes farer in distance will be involved into missing data 
estimation when increasing the number of neighbor 
nodes in the experiments. Since the farer the distance 
between the sensor nodes is, the lower the spatial corre-
lation of sensor nodes is, using the nodes farer in dis-
tance into the estimation equation will decrease the ac-
curacy of the estimated values. From Figure 2(b), we can 
see that the estimation errors of AKE are always smaller 
than those of KNN under different number of neighbor 
nodes. This is because AKE describes the functional re-
lationship of different sensor nodes’ data by regression 
model and estimates the missing data based on the func-
tional relationship of sensor data rather than using the 
data of neighbor nodes simply which is adopted by KNN 
method. So, AKE can estimate the missing data more 
accurately than KNN. 

Figure 3 shows the experimental results of the algo-
rithms on the humidity data, and the similar results can 
be got. Being different from Figure 2, the estimation er-
rors of the algorithms on the humidity data are larger 
than that on the temperature data. This is because the 
correlation of humidity data is lower than that of tem-
perature data since it is more apt to be affected by some 
environment factors. From Figure 2(b), we can also see that the estimation 

error of LIN and DESM is independent of the number of 
neighbor nodes. This is because LIN estimates the miss-
ing data only using the data of itself and no neighbor 
nodes data is involved. Similarly, since only one of the 
neighbor nodes is used by DESM to estimate the missing 
data, varying the neighbor nodes number has no impact 
on the estimation error of DESM. 

From Figure 2 and Figure 3, we can see that no matter 
on the temperature data or the humidity data, the estima-
tion accuracy of AKE is always better than that of 
DESM and KNN for all parameters. This is because 
AKE estimates the missing data not only utilizing the 
neighbor nodes jointly, but also exploiting the functional 
relationship of sensor data. So, the estimation perform-
ance of AKE is the most stable. In addition, we can al-Figure 2(c) shows that the estimation errors of the al- 
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sosee that, with the increasing of the sampling time in-
terval and the number of missing data, the estimation 
effect of AKE is much better than that of the other algo-
rithms. This is also because the same reasons. 

 
4.2. Redwood Dataset 

 
Figure 4 and Figure 5 show the experimental results of the 
algorithms on temperature and humidity data of the Red-
wood dataset respectively. From these two figures, we can 
see the similar experimental results with those of the In-
tel-lab dataset. The difference is that, on the Redwood 
dataset, the performance of LIN decreases more greatly 
when the sampling time interval or the number of missing 
data increases. This is because the data of the Redwood 
dataset is collected by the WSN deployed outdoors. The 
data of outdoors changes more sharply and irregularly, 
which makes the temporal correlation of the sensor data be 
lower. Thus, the estimation performance of LIN is worse 
on the Redwood dataset. Comparatively, due to AKE is 
based on the spatial correlation more than the temporal 
correlation, its performance remains relative stable. 

From Figure 4 and Figure 5, we note that even KNN 
which is a naive spatial correlation based missing data 
estimation algorithm always outperforms LIN for all  

parameters, especially on humidity data. Thus, we can 
conclude that, for the data of changing non-smoothly, the 
spatial correlation based missing data estimation algo-
rithms will perform better. 

From Figure 4 and Figure 5, we can also see that the 
performance gap between AKE and KNN is not too much 
on the Redwood dataset, especially on humidity data. 
This is mainly because the sensor data of outdoors 
changes more sharply and irregularly, the sensor data is in 
a low correlation. This decreases the advantage of the 
regression equation, and hence shrinks the performance 
gap between AKE and KNN. However, no matter in what 
cases, we can see that AKE always performs the best. 

 
5. Conclusions 

 
Missing data causes many difficulties in various applica-
tions of WSNs. Whereas, it is inevitable due to the in-
herent characteristic of WSNs. To solve the problem, the 
best way is to estimate the missing data as accurately as 
possible. In this paper, a k-nearest neighbor based miss-
ing data estimation algorithm, called AKE, is proposed. 
The algorithm is based on the spatial correlation more 
than the temporal correlation of sensor data, and esti-
mates the missing data utilizing multiple neighbor nodes 

  

 
(a)                                   (b)                                     (c) 

Figure 4. RMSE of the algorithms on temperature data of redwood dataset. (a) RMSE vs. sampling interval; (b) RMSE vs. ＃
of neighbor nodes; (c) RMSE vs. ＃of missing data. 
 

 
(a)                                  (b)                                       (c) 

Figure 5. RMSE of the algorithms on humidity data of redwood dataset. (a) RMSE vs. sampling interval; (b) RMSE vs. ＃of 
neighbor nodes; (c) RMSE vs. ＃of missing data. 
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jointly rather than independently. So, the estimation per-
formance of the algorithm is stable and reliable. In addi-
tion, the algorithm estimates the missing data by ex-
ploiting the functional relationship of sensor data rather 
than using the sensor data directly, so, the estimated val-
ues computed by AKE are more accurate. Experimental 
results on two real-world datasets show that the algo-
rithm proposed in this paper performs well both for the 
data indoors and the data outdoors. 
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