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ABSTRACT 

Exploratory data analysis is increasingly more necessary as larger spatial data is managed in electro-magnetic media. 
Spatial clustering is one of the very important spatial data mining techniques which is the discovery of interesting rela-
tionships and characteristics that may exist implicitly in spatial databases. So far, a lot of spatial clustering algorithms 
have been proposed in many applications such as pattern recognition, data analysis, and image processing and so forth. 
However most of the well-known clustering algorithms have some drawbacks which will be presented later when ap-
plied in large spatial databases. To overcome these limitations, in this paper we propose a robust spatial clustering 
algorithm named NSCABDT (Novel Spatial Clustering Algorithm Based on Delaunay Triangulation). Delaunay dia-
gram is used for determining neighborhoods based on the neighborhood notion, spatial association rules and colloca-
tions being defined. NSCABDT demonstrates several important advantages over the previous works. Firstly, it even 
discovers arbitrary shape of cluster distribution. Secondly, in order to execute NSCABDT, we do not need to know any 
priori nature of distribution. Third, like DBSCAN, Experiments show that NSCABDT does not require so much CPU 
processing time. Finally it handles efficiently outliers. 
 
Keywords: Spatial Data Mining, Delaunay Triangulation, Spatial Clustering 

1. Introduction 

Data mining is a process to extract implicit, nontrivial, 
previously unknown and potentially useful information 
(such as knowledge rules, constraints, regularities) from 
data in databases [1,2]. The explosive growth in data and 
databases used in business managements, government 
administration, and scientific data analysis has created a 
need for tools that can automatically transform the proc-
essed data into useful information and knowledge [3]. 
Spatial data mining as a subfield of data mining refers to 
the extraction from spatial databases of implicit knowl-
edge, spatial relations or significant features or patterns 
that are not explicitly stored in spatial databases [4]. It is 
concerned with the discovery of spatial relationships and 
intrinsic relationships between spatial and non-spatial 
data. With the large amount of spatial data obtained from 
satellite images and geographic information systems 
(GIS), it is an inevitable task for humans to explore spa-
tial data in detail. Spatial datasets and patterns are abun-
dant in many application domains related to the Envi-
ronmental Protection Agency, the National Institute of 

standards and Technology, and the Department of 
Transportation. Challenges in spatial data mining arise 
from the following issues [3,5]. Firstly, classical data 
mining is designed to process numbers and categories. In 
contrast, spatial data is more complex and includes ex-
tended objects such as points, lines and polygons.  Sec-
ondly, classical data mining works with explicit inputs, 
whereas, spatial predicates and attributes are often im-
plicit. Finally, classical data mining treats each input 
independently of other inputs, while spatial patterns often 
exhibit continuity and high autocorrelation among nearby 
features.  

Clustering is the process of grouping a set of objects 
into classes or clusters so that objects within a cluster 
have similarity in comparison to one another, but are 
dissimilar to objects in other clusters. So far, many clus-
tering algorithms have been proposed. They differ in 
their capabilities, applicability and computational re-
quirements. Based on a general definition, they can be 
categorized into five broad categories, i.e., hierarchical, 
partitional, density-based, grid-based and model-based 
[4]. 1) Partitional clustering methods [6], for example, 
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CLARANS. It classifies data into some groups, which 
together satisfy the following requirements: firstly, each 
group must contain at least one object; secondly, each 
object must belong to exactly on group. It is noticed that 
the second requirement can be relaxed in some fuzzy 
partitioning techniques. 2) Hierarchical clustering me- 
thods [7,8], such as DIANA [9] and BIRCH [8]. A hier-
archical method creates a hierarchical decomposition of a 
given set of data objects. Hierarchical methods can be 
classified as agglomerative (bottom-up) or divisive (top- 
down), based on how the hierarchical decomposition is 
formed. 3) Density-based clustering methods. Their gen-
eral idea is to continue growing a given cluster as long as 
the density (the number of objects or data points) in the 
“neighborhood” exceeds a threshold. Such a method is 
able to filter out noises (outliers) and discover clusters of 
arbitrary shape. Examples of density-based clustering 
methods include DBSCAN [10], OPTICS [11], GDB- 
SCAN [12] and DBRS [13]. 4) Grid-based clustering 
methods, such as STING [14] and WaveCluster [15]. 
Grid-based methods quantize the object space into a fi-
nite number of cells that form a grid structure. All of the 
clustering operations are performed on the grid structure 
(i.e., on the quantized space). The main advantage of this 
approach is its fast processing time, which is typically 
independent of the number of data objects and dependent 
only on the number of cells in each dimension in the 
quantized space. 5) Model-based clustering methods. For 
example, COBWEB. It is clearly that no particular clus-
tering method has been shown to be superior to all its 
competitors in all aspects. Typically, the problem is that 
clusters identified with one method cannot be detected by 
other methods [16]. This is because that many clustering 
methods need user-specified arguments or prior knowl-
edge to produce their best results. Such information 
needs are supplied as density threshold values, merge/ 
split conditions, number of parts, prior probabilities, as-
sumptions about the distribution of continuous attributes 
within classes, and/or kernel size for intensity testing, for 
example, grid size for raster-like clustering [17] and ra-
dius for vector-like clustering [18]. This parame-
ter-tuning is expensive and inefficient for huge data sets 
because it demands several trial and error steps. 

Clustering based on Delaunay triangulation is not a 
new and has been described in some papers [16, 19, 20, 
21]. Kang et al [14] proposed a clustering algorithm that 
utilizes a Delaunay triangulation; however, there is a 
need in the algorithm to provide a global argument as a 
threshold to discriminate perimeter values or edges 
lengths. As a result, the algorithm is not able to detect 
local variations. The first non-parametric clustering algo-
rithm based on the Delaunay diagram, called AMOEBA, 
has been proposed in Estivill-Castro and Lee [16]. It 
overcomes some of the problems of the static approaches 
that required a distance threshold to be specified, but still 

fails to find relatively sparse clusters in certain situations. 
An upgraded version of AMOEBA, called AUTO-
CLUST, has been proposed by the same authors in Estiv-
ill-Castro and Lee [21]. 

But these methods also have some drawbacks. For 
example, if two clusters are mixed or connected by 
bridges, this methods described above cannot detect all 
the two clusters as shown in Figure 1. In this paper we 
propose a robust spatial clustering algorithm named 
NSCABDT (Novel Spatial Clustering Algorithm Based 
on Delaunay Triangulation). NSCABDT uses the Delau-
nay triangulation as analysis source, because Delaunay 
triangulation is a structure that is linear in the size of the 
data set and implicitly contains vast amounts of prox-
imity information. That is to say, we can use the graph 
information of Delaunay triangulation and metric infor-
mation to obtain remarkable robust clustering. In this 
study, we first construct a graph, and record the informa-
tion of the graph as presented in Section 3. In the graph, 
vertices represent data points and edges connect pairs of 
points to model spatial proximity or interactions and all 
clustering operations are performed on the graph infor-
mation. 

The remainder of the paper is organized as follows: In 
Section 2, we will give an introduction to data preproc-
essing for NSCABDT. And Section 3 presents the 
NSCABDT algorithm. Section 4 reports the experimental 
evaluation. Finally, Section 5 concludes the paper. 

2. Definitions and Notions 

2.1 Spatial Clustering methods 

Geographic data often show properties of spatial de-
pendency and spatial heterogeneity [22]. Spatial de-
pendency is a tendency of observations located close to 
one another in the geographical space to show a higher 
degree of similarity or dissimilarity (depending on the 
phenomenon under study). Closeness can be defined very 
generally—through distance, direction and/or topology. 
Spatial heterogeneity or inconsistency of the process with 
respect to its location is often visible, while many geographic  
 

 
Figure 1. Three very dense clusters (C1, C2, C3), but most 
of clustering methods cannot detect the cluster C2. Because 
of the bridges between cluster C4 and cluster C5, the two 
clusters often are incorrectly thought to be one cluster 
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processes have a local character. Spatial dependency and 
heterogeneity can reflect the nature of the geographic 
process. Central to spatial data mining is clustering, 
which seeks to identify subsets of the data having similar 
characteristics. Two-Dimensional clustering is the non- 
trivial process of grouping geographically closer points 
into the cluster. Therefore, a model of spatial proximity 
for a discrete point-data set  must pro-

vide robust answers to which are the neighbors of a point 
 and how far the neighbors relative to the context of 

the entire data set 

},,{ 1 nppP 

ip
P . A cluster is a group of objects, 

which are homogeneous among themselves. Clustering 
has been identified as one of the fundamental problems 
in the area of knowledge discovery and data mining, and 
it is of particular importance for spatial data sets. A dis-
tinct characteristic of spatial clustering for data mining 
applications is the huge size of the data files involved 
[23]. As Tobler’s famous proposition [24] states: “Eve-
rything is related to everything else, but near things are 
more related than distant things.” Thus proximity is 
pretty critical to spatial analysis and in spatial settings; 
clustering criteria almost invariably makes use of some 
notions of proximity, usually based on the Euclidean 
metric, as it captures the essence of spatial autocorrela-
tion and spatial association [14].  
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We assume that  is a set of 

 data items in the  dimensional real space . 
A cluster is a collection of  that is similar to one an-
other within the same cluster and is dissimilar to the ob-
jects in other clusters. A cluster of data objects can be 
treated collectively as one group. We assume that  is 

a cluster of and  is the collection 
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where J should be minimal. 

2.2 Delaunay Triangulations 

In mathematics, and computational geometry, a Delau-
nay triangulation for a set S of points in the plane is a 
triangulation D(S) such that no point in S is inside the 
circumcircle of any triangle in D(S). Delaunay triangula-
tions maximize the minimum angle of all the angles of 
the triangles in the triangulation; they tend to avoid 
skinny triangles. The triangulation was invented by Boris 
Delaunay [25]. Delaunay triangulations have been widely 
used in a variety of applications in geographical informa-
tion systems (GIS). Using Delaunay triangulations, it is 
simpler to tackle the problems associated with spatial 
topology automated contouring, two-and-half dimen-
sional (2.5-D) visualization, surface characterization and 
reconstructions, and site visibility analyses on terrain 
surfaces. 

Given the set of data points  in 

the plane, the Voronoi region of  is the locus of 

points (not necessarily data points) which have as a 

nearest neighbor; that is,{ . 

Taken together, the n Voronoi regions of S form the Vo-
ronoi diagram of S (also called the Dirichlet tessellation 
or the proximity map). The regions are (possibly un-
bounded) convex polygons, and their interiors are dis-
joint [23]. Based on Delaunay’s definition [25], the cir-
cumcircle of a triangle formed by three points from the 
original point set is empty if it does not contain vertices 
other than the three that define it (other points are per-
mitted only on the very perimeter, not inside). 

},,,{ 110  npppS 
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The Delaunay triangulation D(S) of S is a planar graph 
embedding defined as follows: the nodes of D(S) consist 
of the data points of S, and two nodes pi, pj are joined by 
an edge if the boundaries of the corresponding Voronoi 
regions share a line segment. 
Delaunay triangulations capture in a very compact form 
the proximity relationships among the points of . They 
have many useful properties, the most relevant to our 
application being the following: 

S

1) If pj is the nearest neighbor of pj from among the 
data points of S, then is an edge in D(S). That 

is to say, the 1-nearest-neighbor digraph is a subgraph of 
the Delaunay triangulation. 

 ji pp ,

2) The number of edges in D(S) is at most 3n -6. 

3) The average number of neighbors of a site  in 

D(S) is less than six. 
is

Copyright © 2010 SciRes                                                                                 JSEA 



A Novel Spatial Clustering Algorithm Based on Delaunay Triangulation 144 

 
 

 

Figure 2. A data set (n=15) and its Delaunay triangulation 

 

4) The Delaunay triangulation is the most well propor-
tioned over all triangulations of S, in that the size of the 
minimum angle over all its triangles is the maximum 
possible. 

5) If pi and pj form a triangle in D(S), then the interior 
of this triangle contains no other point of . S

6) The triangulation D(S) can be robustly computed in 
 time. )log( nnO

7) The minimum spanning tree is a subgraph of the 
Delaunay triangulation, and, in fact, a single-linkage 
clustering (or dendrogram) can be found in  

time from D(S). 

)log( nnO

Figure 2 shows a set of 15 data points and its corre-
sponding Delaunay triangulation. More information re-
garding Delaunay triangulations and Voronoi diagrams 
can be found in other literature. From Figure 2, we can 
conclude that, in a proximity graph like Delaunay trian-
gulation (Delaunay diagram); the points are connected by 
edges, if and only if they seem to be close by some 
proximity measure [26]. By applying to this rule, if two 
points are connected by a small enough Delaunay edge, 
the two points belong to the same cluster. 

3. Initialization Using the Delaunay     
Triangulations 

3.1 Data Preprocessing 

Given a set of data points in the 
plane (as shown in Figure 2), .The triangula- 
tions were computed by Bowyer-Watson algorithm in 

 time. In the creation process of Delaunay 
triangulation, we recorded node, edge and surface infor-
mation of Delaunay triangulation for clustering later. 
This nodes, edges and surfaces information was stored in 
Oracle database. Oracle database includes numerous data 
structures to improve the speed of SQL queries. Taking 
advantage of the low cost of disk storage, Oracle in-
cludes many new indexing algorithms that dramatically 
increase the speed with which Oracle queries are ser-
viced. And, Oracle database includes so many statistical 
functions which include descriptive statistics, hypothesis 
testing, and correlations analysis, for distribution fit and 
so forth. The statistical functions in the database can be 
used in a variety of ways, for example, we can call Ora-
cle’s DBMS_STAT_FUNCS functions to obtain basic 
cont, mean, max, min and standard deviation information 
of Delaunay triangulation edges. For Figure 2, we got 
three tables as follows: 

},,,{ 110  npppS 

15n

)log( nnO

In the Table 1, the first column is the index of the 
points in S, the second column is X coordinate and the 
third column is Y coordinate respectively. The degree 
denotes the number of Delaunay edges which incident to 
a point. The “ClassType” column represents the category 
number after clustering process, and after clustering 
process if it is -1, we think the point is an outlier or noise. 

In the Table 2, the second column is the index of the 
edge’s starting point, and the third column is the index of 
the edge’s end point. The length of edges is represented 
by the fourth column. In our algorithm, every edge is 
needed to be computed only once. 

The chart illustrates the table structure and relation-
ships of the three tables. The Delaunay triangulation 
node table contains all the spatial objects (points); the  
 

Table 1. Delaunay triangulation nodes table 

Index X Y Degree ClassType

1 3853964.924 -803305.9261 6 -1 
2 3853985.696 -803331.6837 4 -1 
3 3853998.714 -803330.2989 6 -1 
4 3853994.005 -803335.8381 5 -1 
5 3853992.066 -803329.7449 4 -1 
6 3854013.393 -803354.3946 6 -1 
7 3853989.297 -803371.0124 6 -1 
8 3853990.128 -803377.6595 4 -1 
9 3853996.221 -803375.7208 5 -1 
10 3854049.121 -803327.2523 5 -1 
11 3854045.52 -803337.4999 7 -1 
12 3854058.538 -803336.669 4 -1 
13 3854051.337 -803334.4533 3 -1 
14 3854039.981 -803371.8433 4 -1 
15 3854047.459 -803375.7208 4 -1 
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Table 2. Delaunay triangulation edge table 

Index Start End Length 

1 1 8 76.03228669 

2 8 7 6.69884313 

3 7 1 69.50014083 

4 1 7 69.50014083 

5 7 2 39.49321264 

6 2 1 33.08972562 

7 1 2 33.08972562 

8 2 5 6.65851675 

9 5 1 36.11126413 

10 1 5 36.11126413 

…… …… …… …… 

 
Table 3. Delaunay triangulation surface table 

In-
dex 

Node1 Node2 Node3 Edge1 Edge2 Edge3 

1 1 8 7 1 2 3 
2 1 7 2 4 5 6 
…… …… …… …… …… …… ……

 

 

Figure 3. Table structure and relations in the database 
 
Delaunay triangulation edge table includes all the Delaunay 
edges and the relationships with the Delaunay triangula-
tion node table. And the Delaunay triangulation surface 
table records all the Delaunay triangulation surfaces and 
the relationships with Delaunay triangulation nodes table 
as well as Delaunay edge table. 

3.2 Some Definitions and Notions in NSCABDT 

Given a set of data points in the plane 

(as shown in Figure 2), after data preprocessing, we got 
the nodes, edges and surfaces information of the Delau-
nay triangulation. Given a set of edges , 

for each edge

},,,{ 110  npppS 
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)10(  nkek in E is a record of Delaunay 

triangulation edge table. For each edge ,  jik ppe ,
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is its starting point, and 
 

is its end 

point. Both 
 
and 
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where  denotes the degree of  in graph theory; 
and  denotes the length of the Delaunay edge 
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where  is the number of edges in E . 
Definition 3 (Global_Sta_Dev): We denote by global 
standard deviation of the lengths of all edges. That is, 
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Definition 4 (Relative_Mean): We let
 

denote the ratio of and Global . 

That is, 
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Definition 5 (Positive Edge): If the length of a Delau-
nay edge is less than the given criterion function , 

the edge is a positive edge. Positive edges and points 
incident to them form a new proximity graph and the 
newly created graph is subgraph of the Delaunay graph 
(Delaunay Triangulation). 

)( ipF

Definition 6 (Positive path): A path in current prox-
imity graph where every edge in the path is a positive 
edge; and all the points connected by actives paths be-
long to a cluster. 

Finally, this edge analysis is captured in a criterion 
function . The cut-off value for edges incident in 

 is defined as follows: 
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Figure 4. NSCABDT procedure 
 

Definition 7 (Effective Region): For a point p in , we 

call 

S

},,|||{ 2RxSpxpxp        
(11) 

The effective region of point p with respect to radius 
 . As the union of the effective region of each point, we 
define the effective region of a random point set. 
For a point set S, we call

 

pS

Sp




              

(12) 

The effective region of point set  with respect to 

radius 

S

 . 
Definition 8 (γ – boundary): We define the boundary 

set as 

)}({\,  DmVVVVVV  
 

(13) 

where γ>1 is a constant and  is the set 

of all points in the circle with the radius 

}|||{  xxDm

 . We call 
 

the γ – boundary of the point set S.  
V

Definition 9 (γ – curve): The principal boundary of a 
random point set is the principal manifold of the point in 
the γ – boundary of a point set. 

We also call this principal manifold extracted from 
point set S the γ – curve of . S

If the edges which incident to are greater than or 

equal to , the edges are eliminated and the edges 

that are less than the criterion function survive. For each 
definition above, it is not necessary to iteratively calcu-
late the results by programming; because we can get the 
results by using oracle statistical functions. For example, 
for Definition 1, a SQL statement can be created as fol-
lows: SELECT avg(length) FROM edgetable WHERE 
start = , where “edgetable” is the table which restores 

the edges information of Delaunay triangulation. 

ip

)( ipF

ip

We now present the algorithm of NSCABDT: 
Initialize the points of a data points set as being as-

signed to no cluster; Initialize an empty data set ; 
S

C
1) Create Delaunay triangulation and record the in-

formation of Delaunay triangulation in Oracle da-

tabase. 
2) For each node ip in Delaunay triangulation, extract 

edges )( ipN  incident to node ip via SQL queries 

and calculate )( as well as )( ipF . _ ipMeanLocal

3) For each edge e in )( ipN , if )() , the edge 

will be deleted. 

( ipFeLen 

4) After 3, if 0)( ipd , the node ip will be deleted, 

otherwise, the node ip is added to C . 

5) Using the same method, iteratively calculate all the 
nodes which connect with ip .  

6) Extract the boundary of the cluster C and eliminate 
the bridges. 

7) If all the points have been not processed, end the 
process. Otherwise, initialize a new empty data 
set C , go to next un-processed node. 

Phase 1 of NSCABDT is the construction of Delaunay 
triangulation. Then, recursively, all points in a connected 
component are reported as a cluster. Thus every edge is 
tested for the criterion function only once. After elimi-
nating no-interesting edges and noises, only positive 
edges are remaining. According to the positive path, we 
can iteratively find all the points connected by positive 
paths and add the points to a cluster. 

Obviously, it can be seen from the Figure 4 that it con-
sists of two phases; the first phase is building Delaunay 
Triangulations from spatial objects. And on the second 
phase, we eliminate all edges in the way which we in-
troduced above. And then, we got that point 1, point 6, 
point 14 and point 15 are outliers.  

In order to eliminate the bridges between two different 
clusters, a detection of cluster boundary is executed; the 
algorithm is according to [5]. The boundary of a point set 
is extracted by the principal curve analysis. The principal 
curve analysis is a generalization of principal axis analy-
sis, which is a standard method for data analysis in pat-
tern recognition. For a cluster, if we can get two different 
boundaries, we think there are two smaller clusters in the 
point set, and bridges exist between the two smaller 
clusters. If an edge is not in the boundaries, the edge 
should be deleted. 
The algorithm for eliminating the bridges between two 
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different clusters is as follows: 
1) For the collection of all edges E, get the median 

length via SQL queries. And set it as  . 
2) Get the effective region of random point setV . 
3) Get boundary of random point setV . 
4) Get curve of random point setV . 
Although, the construction of Delaunay triangulation 

using all points in S is a time-consuming process for a 
large number of points even if we use an optimal algo-
rithm, we can use the information stored in the database 
instead of the construction of Delaunay triangulation 
again and we also can get the median length via SQL 
queries. Obviously, it is more efficient.  

4. Experimental Results 

We evaluate NSCABDT according the three major re-
quirements for clustering algorithms on large spatial da-
tabases as stated above. We compare NSCABDT with 
the clustering algorithm DBSCAN in terms of effectivity 
and efficiency. The evaluation is based on an implemen-
tation of NSCABDT in .NET 2005. All the experiments 
were run on Windows Server 2003. 

4.1 Discovery of Clusters with Arbitrary Shape 

Clusters in spatial databases may be of arbitrary shape, 
e.g. spherical, drawn-out, linear, elongated etc. Further-
more, the databases may contain noise [27]. We used 
visualization to evaluate the quality of the clusterings 
obtained by the NSCABDT. In order to create readable 
visualizations without using color, in these experiments 
we used small databases. Due to space limitation, we 
only present the results from one typical database which 
was generated as follows: 

1) Draw three polygons of different shape (one of 
them with a hole) for three clusters. 

2) Generate 500, 200 and 200 uniformly distributed 
points in each polygon respectively. 

3) Insert 100 noise points into the database, which is 
depicted in Figure 5. 

For NSCABDT, we set 10% noise for the sample da-
tabase. NSCABDT discovers all clusters and detects the 
noise points from the sample database. The clustering 
result of NSCABDT on this database is shown in Figure 
7. Different clusters are depicted using different symbols 
and noise is represented by crosses. This result shows 
that NSCABDT assigns nearly all points to the correct 
clusters. 

4.1 Efficiency 

It has been proved that DBSCAN has better performan-
cethan partitioning and hierarchical algorithms for spatial 
data mining, so we only compare our algorithm with 
DBSCAN [28]. In the following, we compare NSCA- 
BDT with DBSCAN with respect to efficiency on syn- 

 
Figure 5. A data set and its Delaunay triangulation (n=1000) 

 
Figure 6. Extract the boundary of the cluster and eliminate 
the bridges 

 
Figure 7. Clustering by NSCABDT. Finally we got 3 clus-
ters 

thetic databases. The run time and correct rate for NS- 
CABDT, DBSCAN on these test databases are listed in 
Table 4. 
We generated some large synthetic test databases with 
5000, 6000, 7000, 8000, 9000 and 10000 points to test 
the efficiency and scalability of DBSCAN and NSCA- 
BDT. We can conclude that NSCABDT is significantly 
slower than DBSCAN (see Figure 8), but the correct rate 
of NSCABDT is higher than DBSCAN (see Figure 9). 

Because our approach does not require any assump-
tions or declarations concerning the distribution of the 
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Table 4. Run time in seconds 

Number of 
Points 

5000 6000 7000 8000 9000 10000 

 Correct 
rate 

Run 
time

Correct 
rate 

Run 
time 

Correct 
rate 

Run 
time

Correct 
rate 

Run 
time 

Correct 
rate 

Run 
time 

Correct 
rate 

Run 
time 

DBSCAN 97.8% 36.7 97.2% 52.8 97.4% 72.6 97.9% 93.7 97.5% 121.5 97.8% 154.6

NSCABDT 99.7% 48.2 99.8% 71.4 99.8% 93.8 99.7% 117.9 99.7% 151.3 99.7% 189.4

 
data, the parameters of DBSCAN is difficult to be fixed. 
If the parameters are not inappropriate, the correct rate 
will be very low. DBSCAN must continually ask for as-
sistance from the user. The reliance of DBSCAN on user 
input can be eliminated using our approach. 

5. Conclusions 

The application of clustering algorithms to large spatial 
databases raises the following requirements [27]: 1) 
minimal number of input parameters, 2) discovery of 
clusters with arbitrary shape and 3) efficiency on large 
databases. The well-known clustering algorithms offer no 
solution to the combination of these requirements. 

In this paper, we introduce the new clustering algo-
rithm NSCABDT. Our notion of a cluster is based on the 
distance of the points of a cluster to their neighbors. The 
neighboring region formed in our algorithm reflects the 
neighbor’s distribution. Experimental results demon- 
strated that our clustering algorithm can provide signifi-
cant improvement of accuracy of the cluster detecting, 
especially for objects with arbitrary and linear distribu-
tion. 

 

Figure 8. Efficiency: SCABDT VS DBSCAN 
 

 

Figure 9. Correct rate: SCABDT VS DBSCAN 
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