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ABSTRACT 

Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of 
their functionality but it is also used to realize their most competitive advantages. However, the traditional development 
process is wholly inappropriate for the development of these systems that impose a tighter coupling of software with 
electronics and mechanics. In this paper, a synergistic integration of the constituent parts of mechatronic systems, i.e. 
mechanical, electronic and software is proposed though the 3+1 SysML view-model. SysML is used to specify the cen-
tral view-model of the mechatronic system while the other three views are for the different disciplines involved. The 
widely used in software engineering V-model is extended to address the requirements set by the 3+1 SysML view-model 
and the Model Integrated Mechatronics (MIM) paradigm. A SysML profile is described to facilitate the application of 
the proposed view-model in the development of mechatronic systems. 
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1. Introduction 

Software does not only implement a significant part of 
the functionality of today’s mechatronic systems, but it is 
also used to realize their most competitive advantages. It 
is the evolving driver for innovations in many mecha-
tronic systems and in general it is considered as the driv-
ing force in improving this kind of systems. However, 
the traditional development process is wholly inappro-
priate for the development of systems characterized by 
complexity, dynamics and uncertainty as is the case with 
today’s mechatronic systems [1]. According to the tradi-
tional development process the constituent parts of the 
mechatronic system, i.e. the mechanical, electronic and 
software, that constitute the system are developed inde-
pendently and then are integrated to compose the final 
system. The software development starts when the de-
velopment of electronic and mechanical is already at a 
stage where any change in these parts is expensive and 
time consuming. This is why the mechanical and elec-
tronic properties impose several constrains and narrow 
the solution space for software development. Moreover, 
as claimed in [2] “the actual cooperation during the con-
struction is less developed. There is no joint development 
process, no joint tool usage, no joint modeling formalism 
and no joint analysis. Every discipline has its own ap-

proaches”. As a result of this, the current process that is 
traditionally divided into software, electronics and me-
chanics, emphasizes on domain-spanning design meth-
ods and tools and is unable to address the demand for 
synergetic mechatronic dependability predictions; this 
is why many products suffer from severe dependability 
problems [3]. 

An integrated framework for the construction of 
mechatronic systems is missing [2]. Such a framework 
should address current challenges in the development of 
mechatronic systems that include among others, syner-
gistic modeling and integration, design synchronization, 
as well as model execution and analysis. It should pro-
vide the infrastructure required for applying a tight inte-
gration of mechanics with electronics and software in 
order to replace conventionally designed mechanical and 
electromechanical systems into smart ones where sig-
nificant part of functionality will be implemented by 
software. It is also expected to result in massive im-
provements in system’s Quality of Service (QoS) char-
acteristics and allow a smooth integration of dependabil-
ity predictions during the early development phases. 

Model Integrated Mechatronics (MIM) [4] is a para-
digm that was proposed to address the need for an inte-
grated development in mechatronic systems. MIM sup-
ports the model-driven development of complex mecha-
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tronic systems (MTSs) through the evolution of models 
that have as primary construct the mechatronic compo-
nent (MTC). The concept of component has already been 
adopted in the development process of manufacturing 
systems by other researchers too. However, they mostly 
focus on the software part of the component; they do not 
address the whole development process; and they do not 
provide an architecture for the concurrent engineering of 
all constituent components, i.e., mechanical, electronic 
and software. 

In this paper, the Systems Modeling Language (SysML) 
[5] is adopted for the system’s modeling process in the 
MIM paradigm. An architectural view-model, the one 
called 3+1 SysML is proposed to address the synergistic 
integration of the constituent parts of mechatronic sys-
tems. The main view is the SysML view that corresponds 
to the mechatronic layer of the MIM Architecture. This 
view captures the system model that is the one con-
structed by the MTS developer. Each of the three views 
is used to describe the system from the perspective of the 
corresponding discipline. Specific tools of every disci-
pline may be exploited for the model execution and 
analysis of the SysML models.  

SysML is used to represent the models of the mecha-
tronic system that are proposed by the MIM paradigm. A 
SysML profile was defined using Papyrus, an open 
source tool for graphical UML 2/SysML modeling. This 
profile supports not only the modeling of mechatronic 
systems using the concept of mechatronic component but 
also a hybrid development process that integrates the 
traditional approach with the MTC-based one, to allow 
the reuse of legacy systems. It provides a SysML based 
implementation of the MIM architecture that will allow 
the MIM paradigm to be exploited in the development 
process of real world mechatronic systems. An effective 
development process that exploits the 3+1 SysML 
view-model and the SysML profile is described extend-
ing the well-known in software engineering V-model [6]. 

The remainder of this paper is organized as follows. In 
the next section, a brief introduction to the MIM archi-
tecture and the SysML is given and the related work is 
briefly discussed. Section 3 presents the proposed 3+1 
SysML view-model that emphasizes the importance of 
the common system-level model. In Section 4, a SysML 
profile that represents the artifacts used in the MIM ar-
chitecture is described. Section 5 presents the proposed 
modifications to the widely used in software systems 
V-model to address the needs of the MTS development 
process. Future developments and research challenges 
are discussed in Section 6 and the paper is concluded in 
the last section. 

2. Background and Related Work 

2.1 A Brief Introduction to MIM 

The upper layer of the MIM architecture that is shown in 

Figure 1, i.e. the mechatronic layer, was defined to sys-
tematically address complexities in the model-driven 
development process of component-based mechatronic 
systems. This layer is projected into three dimensions 
representing the application, the resource, and the me-
chanical process respectively. The controlling application 
software is modeled in the application layer, while the 
hardware, i.e., computing and communication, as well as 
the software resources that constitute the infrastructure 
required for the execution of the controlling application 
software, are modeled in the resource layer. Mechanical, 
hydraulic and pneumatic parts are modeled in the me-
chanical layer. 

Mechatronic system integrators work horizontally in 
the model evolution dimension of the MIM architecture. 
They interactively compose the MTS using already de-
fined MTCs without worrying on lower layers’ imple-
mentation details. They go through a model-driven de-
velopment process to build the MTS using descriptions 
of already existing MTCs. They only have to capture the 
application logic in application layer components, as well 
as to identify their required QoS characteristics from the 
resource layer infrastructure. 

MTC builders work in the model integration dimen-
sion and apply an information integration process that 
crosses the boundaries between mechanical, electronic, 
and computer science fields. They work horizontally and 
vertically, either top-down or bottom-up, in the lower 
three layers of the architecture in a concurrent way. Con-
structed MTCs are stored in MTC repositories to be dis-
covered and used by mechatronic system integrators [7]. 

MIM is a new paradigm that promotes model integra-
tion not only of implementation space artifacts but also 
of early analysis and design phase ones. It promotes 

 

 
Figure 1. The Model Integrated Mechatronics (MIM) ar-
chitecture [4] 
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Figure 2. SysML diagrams and its comparison with UML 2 [5] 

 
The other new diagram, i.e. the parametric diagram, is 

used to describe the constraints among the properties 
associated with blocks. It allows the specification of con-
tinuous components by parametric constraints on class 
attribute values expressing corresponding differential 
equations. However, the syntax and the semantics of be-
havioral descriptions captured in parametric diagrams 
have not been defined to allow the integration with other 
simulation and analysis modeling techniques for the 
proper execution of the models. So, the parametric dia-
gram is used to integrate the system descriptive behavior 
and structure models expressed in SysML with other 
simulation and engineering analysis models such as per-
formance, reliability, and mass property models. 

reuse at the mechatronic level and significantly decreases 
development and validation time of the system. MIM 
addresses the need for synergistic integration at the 
model and process levels; it facilitates the integration 
between the design processes of the different disciplines 
which is the approach considered as the most effective to 
improve the development process of mechatronic sys-
tems. The other two approaches being: implementation 
time integration and design time integration at data and 
model level [8]. 

2.2 Systems Modeling Language (SysML) 

SysML was developed to support the specification, 
analysis, design, verification and validation of a broad 
range of complex systems [5]. These systems may in-
clude hardware, software, information, processes, per-
sonnel, and facilities. The objective of SysML is to unify 
the diverse modeling languages currently used by system 
engineers. SysML reuses a subset of UML 2 [9] and pro-
vides additional extensions needed to address system 
engineering aspects not covered by UML 2. It includes 
diagrams that can be used to specify system requirements, 
behavior, structure and parametric relationships. Re-
quirements diagram and parametric diagrams are the new 
diagram types proposed by SysML, as shown in Figure 2 
which presents the diagrams that are used by SysML.  

The fact that SysML is based on UML 2, will allow 
system engineers modeling with SysML and software 
engineers modeling with UML 2 to collaborate on mod-
els of the mechatronic system. This will improve com-
munication among the various stakeholders who partici-
pate in the mechatronic systems development process 
and will promote interoperability among modeling tools 
in different disciplines. All the above mentioned charac-
teristics make SysML ideal for the representation of 
models used in the MIM paradigm.  

2.3 Related Work 

SysML provides modeling constructs to represent 
text-based requirements and relate them to other model-
ing elements. The requirement diagram can be used to 
represent many of the relationships that exist between 
requirements and visualize them. It provides a bridge 
between traditional requirements management tools and 
the other SysML models. It can be used to depict the 
requirements in graphical, tabular, or tree structure for-
mat and highlight their relationships, as well as to cap-
ture the relationships between requirements and other 
model elements that satisfy or verify them.  

Several researchers are already working in the direction 
of improving the effectiveness of the development proc-
ess of mechatronic systems. Schafer and Wehrheim [2] 
survey on current developments in mechatronics and 
present the architecture of their mechatronic rail system 
that seems to provide an excellent platform for studding 
and analyzing future developments and research chal-
lenges in mechatronic systems. They identify the need 
of an integrated framework for the construction of 
mechatronic systems and they discuss future trends in 
mechatronics especially from the software engineering 
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point of view. Habib [10] argues on the urgent need for 
theories, models, and tools that should facilitate model-
ing, analysis, synthesis, simulation, and prototyping of 
mechatronic systems. He emphasizes the argument that 
the approach based on optimization within each domain 
separately will not result in the optimum system design, 
and he proposes a data and model integration approach 
to address the integration problem. Burmester et al. [11] 
claim that in today’s mechatronic systems most of the 
control and reconfiguration functionality is realized in 
software. They present mechatronic UML to exploit the 
Model Driven Architecture approach for the design of 
hybrid mechatronic real-time systems that have to fulfill 
safety-critical requirements. “Mechatronic UML” is 
defined as an extension of UML to built platform inde-
pendent models for mechatronic systems. Various UML 
models have been extended to cover the requirements of 
modeling the structural view as well as the behavioral 
view of the system. However, the proposed extension is 
used to model only the software part of the mechatronic 
system. Authors in [12] briefly refer to a process model 
of Robert Bosch GmbH for the development of mecha-
tronic systems in Motor Vehicles to support aspects 
such as reuse, exchangeability, scalability and distrib-
uted development. They use the concept of mechatronic 
component, even though not well defined, as the basic 
construct of their process. They argue: a) on the need of 
a clear specification of component interfaces; and b) the 
great contribution of re-use to increase the quality prop-
erties of mechatronic systems and decrease develop-
ment time. Nordmann [13] is using the concept of 
mechatronic component and presents an example of 
using Active Magnetic Bearings to increase perform-
ance, reliability, reusability and longer lifetime. Authors 
in [14] propose for the development of multidiscipli-
nary systems, such as mechatronics, the integration of 
the various domain-specific tools. They mainly focus on 
the integration of used data and models and not on a 
process level integration. Moreover, none of these ap-
proaches provide a high level architecture for an inte-
grated, synergistic development process for mecha-
tronic systems and they do not describe a systems level 
development process based on the mechatronic compo-
nent and the emerging standard in the domain that is 
SysML.  

3. The 3+1 Architectural View Model  

Each of the three lower layers of the MIM architecture 
provides a specific view of the central models that are 
captured in the upper layer, i.e. the mechatronic layer. 
Each view is used to describe the system from the per-
spective of the corresponding discipline. The software 
view (s-view), for example, provides the models of the 
software part of the MTS and allows for software spe-
cific tools to be used to elaborate and further refine these 

models. The IEC61499 function block model is an ex-
ample of such a domain specific model that can be used 
to further refine the s-view [15]. Figure 3 depicts the 3+1 
SysML view-model that is proposed for the development 
of mechatronic systems. The MTS model is the heart of 
this architecture and is depicted in the center of the pic-
ture. It is surrounded by 4 views which correspond to the 
roles that engineers play during the development process 
of mechatronic systems. 

The main view is the MTS-view that corresponds to 
the mechatronic layer of the MIM Architecture. This is 
the view that is used by the MTS developer. The other 3 
views correspond to the 3 lower layers of the MIM ar-
chitecture. The m-View, for example, corresponds to 
the Mechanical layer of the MIM architecture and cap-
tures all the mechanics, hydraulics and pneumatics of 
the MTS model. These models are generated by pro-
jecting the MTS models to the mechatronic layer and 
are fully synchronized with the MTS models. Any 
modifications imposed by the mechanical engineer to 
the models of this view directly affect the correspond-
ing central MTS models. Moreover, modifications done 
by the MTS developer on the central models directly 
affect the corresponding m-view models. The m-view is 
mainly used during the primitive MTC development 
process where a concurrent, synergistic engineering on 
the three views is adopted at the primitive MTC level as 
a more effective process. It is also used to have a whole 
view of the mechanical system model and perform op-
timization and analysis activities on this. 

Figure 4 presents the structure of the primitive MTC 
and its interfaces to the environment. A primitive MTC 
may expose to the environment mechanical, electronic 
and software interfaces through the corresponding ports. 
Interfaces between its constituent parts are also shown. 
Sensors and actuators are used to realize the interactions 

 

 
Figure 3. The 3+1 SysML view-model for mechatronic sys-
tems development 
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Figure 4. The structure of the primitive mechatronic com-
ponent 

between the mechanical part and the electronic one. 
This means that sensors and actuators are fully encap-
sulated by the MTC construct. The mechanical part in-
teracts with the environment only through mechanical 
ports that are mainly in the form of mounting ports or 
ports for flow of material or energy. A detailed descrip-
tion of mechanical connections that can be discrimi-
nated into fixed and moveable arrangements is given in 
[16]. The sOperatorPanel, i.e. the software part of the 
OperatorPanel primitive MTC, exposes its functionality 
along with the corresponding QoS through a provided 
interface of the sPort. A hosting functionality for appli-
cation specific components will be optionally provided 
by the ePort. 

Currently there is no tool to execute the MTS models, 
not even to analyze their behavior. Discipline specific 
tools may be exploited for the execution and analysis of 
MTS models. This is obtained by the proper integration 
and coordination of specific model execution and analy-
sis tools of the three views. The tool of each view is used 
to execute the primitive MTC model of its perspective so 
it has to provide specific interfaces to the tools of the 
other views, in order to implement the interactions of its 
own part to the other parts of the primitive MTC. The 
arrows that cross the boundaries between the three views 
in Figure 3 represent the interactions of the correspond-
ing models and have to be implemented by specific in-
terfaces of the model refinement, analysis and execution 
tools of the three disciplines. The AP233 or more for-
mally the ISO 10303-233 standard for systems engineer-
ing [17], that provides a data exchange format for the 
reliable interchange of data between software tools may 
be exploited to effectively implement these interactions. 
The execution and analysis of the primitive MTC is ob-
tained through a collaboration of the corresponding tools 
of the three views. It is clear that the contribution of the 
three views’ specific tools is restricted at the primitive 
MTC internal level while the execution and analysis of 
MTC models is done at the MTS level with the coordina-

tion and synchronization between MTCs carried by this 
level. This makes the tool integration a major challenge 
in the domain of mechatronic systems.  

The 3+1 SysML view-model when used with the MTS 
V-Model that is described in one of the following sec-
tions, promote the synergistic integration of the three 
constituent parts of the mechatronic system and empha-
sizes the importance of a common model for the system. 
However, this model can also be used with the traditional 
development process that is based on the independent 
development of constituent parts of the mechatronic sys-
tem and their subsequent integration. Even in this case 
the existence of a common model for the system greatly 
improves the effectiveness of the development process. 

It should be noted that in each view the corresponding 
discipline’s specific architectures and tools may be ex-
ploited, as for example the 4+1 architectural view [18] 
that may be exploited in the context of the e-view by the 
software engineer or the MTC developer/integrator. 

4. Using SysML to Model the MIM Artifacts 

The Systems Modeling Language can be used to repre-
sent the artifacts of the mechatronic systems develop-
ment process that correspond to the system level activi-
ties. These include requirements specifications for the 
MTS and MTC levels, as well as architectural specifica-
tions for the MTS and MTC levels. UML 2.0 will be 
used for the modeling of the software part of the primi-
tive MTC and corresponding tools from the electronics 
and mechanics domain will be used for the modeling of 
the other two constituent parts of the MTC. In this sec-
tion the modeling of the MTS and MTC levels using 
SysML is considered. It is evident that specific interfaces 
have to be defined for the integration of the different 
views and these interfaces have to be realized by the 
tools used in the various disciplines to create a com-
pletely integrated tool chain to support the MTS devel-
opment process. The SysML to AP233 mapping [19] is 
towards this direction.  

4.1 Modeling of the Mechatronic Component 

The MTS stereotype that is shown in Figure 5, which 
presents part of the SysML4MIM profile, is considered 
as a composition of MTSComponents and MTSConnec-
tors (not shown in the figure). The abstract stereotype 
MTSComponet was defined to provide more flexibility 
in system modeling. It allows the definition of the dif-
ferent disciplines’ components in any level of the sys-
tem’s decomposition hierarchy; it also allows the appli-
cation of the traditional approach where the system is 
considered as consisting of mechanical, electronic and 
software components. An MTSComponent that is ab-
stract is specialized to the MTC abstract stereotype and 
the mCompoment, eComponent and sComponent stereo-
ypes. The mComponent stereotype is used to represent  t  
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Figure 5. SysML4MIM profile (part); the MTS stereotype 

 
in the model any mechanical component of the mecha-
tronic system. This way of modeling allows the profile to 
be used also in the traditional development process of 
mechatronic systems since the MTS may be considered 
as a composition of m, e and sComponents. The MTC 
stereotype which is also abstract is specialized to the 
CompositeMTC and the PrimitiveMTC. This allows a 
hierarchical decomposition scheme for the MTS up to the 
level of primitive MTC that is considered as composition 
of m, e and sComponents. An m, e and sComponent may 
be further decomposed in corresponding Components 
allowing a component based synthesis in each one of the 
three disciplines. The SysML4UML profile that was cre-
ated using Papyrus, an open source tool for graphical 
UML 2 modeling (http://www.papyrusum-l.org/), im-
ports the UML4SysML profile that is already supported 
by Papyrus. This allows the MTS stereotype to extend 
the Block stereotype of the UML4SysML profile. All the 
other components also extend the Block stereotype even 
not shown in figure. The proposed SysML4MIM profile 
allows the synergistic integration in the development of 
mechatronic systems to any level of granularity down to 
the primitive MTC component which is the one that is 
not decided or it is not possible to be decomposed into 
lower layer MTC components. 

4.2 Modeling of the Mechatronic Port 

Allowable inputs and outputs of an MTC are defined 
using the concept of the port. This allows the design of 
modular reusable MTCs, with clearly defined interaction 

points and interfaces with the environment. The construct 
of Mechatronic port (MTPort) was defined as an exten-
sion of the UML port to fulfill this requirement. SysML 
provides standard ports which support client-server 
communication and FlowPorts that define flows in and/or 
out of a block. An MTC may own MTPorts, as shown in 
Figure 6, which allows the MTC to declare the items it 
may exchange with its environment and the interaction 
points through which this exchange is made. Furthermore, 
MTPorts allow the MTC to declare the provided to the 
environment services but also the services that the MTC 
expects from it. An MTPort is defined as an aggregation 
of mPort, ePort and sPort. Each port is used to represent 
the interaction point of the corresponding part of the 
primitive MTC with the environment (see Figure 4). All 
these ports extend the SysML port; mPort and ePort ex-
tend it through the SysML flow port while sPort extends 
it directly. So, a sPort is characterized by provided and 
required interfaces. The specification of what can flow in 
or out of an mPort or ePort is achieved by typing them 
with a specification of the things that flow in and/or out. 
It should be noted that an mPort may accept or transmit 
energy or material but may also accept or transmit in-
formation that has been decided to be transferred by me-
chanical means. Of course the same information may be 
transferred by electronic signals using an ePort or by 
software messages using a sPort. The support of several 
alternatives through configuration, results in increased 
reuse potential for the MTC. The specification of the 
ervices of the sPort is achieved by typing it with the  s  
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Figure 6. The MTPort stereotype in the SysML4MIM profile 

 
provided and/or required interfaces. Flows of mPorts and 
ePorts may be atomic or non atomic; an atomic flow is 
specified with a single type representing the items that 
flow in or out. A non atomic flow is specified with a flow 
specification which lists the items that constitute the flow. 
A sPort accepts software signals, i.e. packages of infor-
mation, which usually need a more complicated specifi-
cation supported by UML 2. 

5. The MTS Development Process 

The MIM development process adopts the V-model as 
basis and updates it to address the needs of the mecha-
tronic systems domain. Figure 7 presents the proposed 
MTS V-Model. A system modeling process is applied 
down to the primitive MTC level, as shown in the 
left-hand part of the V-model. For primitive MTCs that 
have to be constructed, a concurrent engineering process 
of all three constituent parts, i.e., mechanics, electronics 
and software is adopted, as depicted in the bottom of the 
V-Model. The system integration and verification process 
is depicted by the right-hand side of the V-model. 

MTS-level requirements are captured using the SysML 
requirements diagram. Essential use cases, which are 

used to capture the functional requirements at this level, 
are defined in abstract, simplified, and independent of 
technology or implementation way. They are written as 
“an abstract dialog representing user intentions and sys-
tem responsibilities, and they are typically small and fo-
cused on a highly specific user goal, yielding a fine- 
grained model of user activity” [20]. After the definition 
of the essential use cases there are two alternatives to 
proceed in the system’s architecture definition phase: 

1) Use cases are decomposed in sub-use cases. 
2) Responsibilities of the system are identified. 
In the first case the decomposition of use cases to 

sub-use cases allows: a) the reuse of existing components 
on the basis of their requirement specifications that 
should have been defined in terms of use cases, and b) 
modularity and reuse in requirements specification arti-
facts. In the second case, activity diagrams are defined 
for each use case in order to identify the activi-
ties/responsibilities of the actors and the ones that are 
required by the system in the context of the specific use 
case. After this step the list of abstract activities (func-
tions) that have to be performed by the system is avail-
able. In other words the responsibilities of the system in  
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Figure 7. The mechatronic system V-Model (MTS V-Model) 
 

the context of the specific use case are defined. The term 
responsibility is used to emphasize the fact that only the 
abstract definition of the activity/function is provided at 
this time and not its implementation.  

As a next step, for both alternatives, a system compo-
sition should be proposed to satisfy either the system 
use-cases or the system responsibilities. Some use cases 
or system responsibilities may be directly supported by 
existing mechatronic components. However, it is com-
mon that for a required system level use case or respon-
sibility, a collaboration of MTCs has to be defined in 
order to achieve it. The system level use cases and 
sub-use cases or the system responsibilities/functions 
correspondingly are mapped to system’s components. An 
analogous mapping applies also for the non-functional 
requirements. 

The definition of system’s structure in terms of MTCs 
is a design process and results in the selection of system 
components and the definition of their collaboration. 
Furthermore each MTC has assigned responsibilities that 
are handled in the subsequent phases as its required re-
sponsibilities. The result in both cases is a system archi-
tecture that is comprised of: 

a) Class or component diagrams to specify the struc-
ture of the system; 

b) Sequence or activity diagrams (or even state charts) 
to specify the components’ collaborations to provide the 
higher layer functionality. 

Domain analysis is used to capture the domain key 
concepts and provide the information required to create 
the first architectural model of the system. SysML dia-
grams are used to specify the proposed architecture. 
Block definition diagrams (bdd) are used to capture the 
structure of the system and internal block diagrams (ibd) 
are used to capture the components’ interactions, all ex-
pressed using the SysML4MIM profile.  

During the architecture definition the developer has to 
assign the system required responsibilities to the sys-
tem’s components. This assignment results to an archi-
tectural diagram that represents the system components, 
their responsibilities and the components interactions. 

The allocation relationship of SysML provides an effec-
tive means to capture this assignment and allow the 
navigation between the system models by establishing 
cross-cutting relationships among them. There are two 
alternatives to proceed in the definition of the architec-
ture: 

1) The bottom-up approach (synthesis). 
2) The top-down (decomposition). 
According to the bottom-up approach, for every sys-

tem-level responsibility a set of commercial off-the-shelf 
(COTS) MTCs is selected. We assume that each COTS 
MTC has its own provided functions that are well de-
fined by the developer of the MTC [7]. These provided 
functions are part of the MTC package that specifies the 
real world MTC. QoS characteristics are also included in 
the MTC package and can be used to examine if the QoS 
aspects of the proposed collaboration scheme satisfy the 
required system-level QoS aspects for the specific re-
sponsibility. If the QoS characteristics of this specific 
collaboration meet the QoS requirements of the sys-
tem-level required responsibility, the design is accepted. 
Either wise corrective actions should be proposed and 
analyzed. Corrective actions may include: a) re-engineering 
of the collaboration scenario, b) the use of components 
with better QoS characteristics than the ones used in the 
previous design, or c) a combination of the above. It is 
assumed that the MTC developer has already performed 
a QoS analysis for the MTC. All this information com-
prises the offered QoS characteristics of the MTC [4]. It 
should also be stated that the MTC developer does not 
know during the MTC’s development time all the sys-
tems that this MTC will be used in the future. 

According to the top-down approach, for every sys-
tem-level responsibility that has not been assigned to a 
single MTC, a set of abstract MTCs is defined and the 
required MTC responsibilities are specified along with 
the required collaboration scheme. Required system-level 
QoS characteristics are decomposed to derive the com-
ponent-level required QoS characteristics. This process 
results to the definition of the required QoS characteris-
tics at the level of constituent MTCs. The process of de-
riving MTC-level QoS characteristics from system-level 
ones is a complex process and has to be defined. At this 
time the engineer has well defined required specifications 
(functional and non functional, including QoS character-
istics) for every abstract MTC. Using these required QoS 
characteristics the engineer is able to select from the 
market or his components repository the ones that their 
offered QoS characteristics meet the required ones [8]. If 
such MTC’s do not exist they have to be further analyzed 
in order to be developed.  

Advantages and disadvantages for the above ap-
proaches that result in the definition of the architecture of 
the MTS of its composite MTCs may be identified but it 
is expected that in the real MTS development process a 
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combination of both approaches will be used resulting to 
a hybrid more efficient approach. 

The above process, bottom-up or top-down, is again 
applied to every composite MTC that has to be devel-
oped. It is applied iteratively down to the primitive-MTC 
level; the identification of primitive MTCs signals the 
end of this iteration. For each composite MTC the system 
modeling process as defined by the left-hand side part of 
the V-Model is followed. Analysis is applied and its ar-
chitecture is defined in terms of constituent components 
(composite and/or primitive). Sequence diagrams are 
defined to realize use cases of the MTC and identify the 
activities that are involved in the specific use case. This 
is not the case for primitive MTCs that have to bypass 
the system process and follow a synergistic integration of 
the three constituent parts, i.e. mechanic, electronic and 
software (MTC synthesis) as shown in the bottom of the 
V-model in Figure 7. 

For each primitive MTC, verification follows its inte-
gration as shown in the right-hand side of the MTS 
V-Model. Each composite MTC is integrated according 
to its MTC architecture and then it is verified against its 
requirements. After the integration and verification of the 
MTCs of the system, the MTS integration test is per-
formed and the MTS is verified against its requirements. 

It should be noted that the system analysis phase is 
followed by a system architecture design phase as shown 
in the proposed MTS V-model. This is also the case for 
the V-Model in software engineering. After this point the 
proposed V-model is completely differentiated from the 
traditional software engineering V-model. After the sys-
tem architectural design, repetitions of analysis followed 
by architecture design for every composite MTC are ap-
plied following the system modeling process up to the 
primitive MTC level. This is the point where the system 
development process is terminated and the synergistic 
integration of constituent parts of the primitive MTC is 
performed working independently but in a synergistic 
way in the three disciplines. For every primitive MTCs 
that has complex software constituent part, a software 
V-model can be applied for its development, as shown in 
the bottom of the MTS V-Model. 

Figure 8 presents two real world MTCs and the Paral-
lel Kinematic Machine evolium MTS, that were devel-
oped based on the basic principles of the MIM architec-
ture by a high-tech Italian company. Each axis of the 
Parallel Kinematic Machine has its own intelligence, so 
there is no need of an external entity to control the mo-
tion trajectory. 

6. Future Developments and Research  
Challenges 

Mechatronic systems development is a very complicated 
process imposing many challenges. In this section we 
refer to the ones that are of higher priority considering 
the 3+1 SysML view-model. The identification of the 

 
Figure 8. Real-world MTS and MTCs 

 
mechanical discipline information that has to be captured 
in the system level models is one of the challenges. There 
are two possible approaches: a) exploit SysML constructs 
to represent as much of the mechanical discipline infor-
mation, including component interfaces and behavior; 
and b) extend SysML constructs with new ones with the 
objective of creating a complete SysML model of the 
mechanical component. In the first case specific tools 
will be used for further refinement of the mechanical 
models and their subsequent execution and analysis. In 
the latter, the SysML models have to be automatically 
transformed to models of the specific tools for execution 
and model analysis. The integration of SysML with the 
Modelica language (www.modelica.org/) is towards this 
direction. This challenge is greatly related to the one that 
concerns the model execution, analysis and assessment 
of models on the MTS-view level.  

Fully automated generation of the three views from the 
MTS view, as well as automatic update of the MTS-view 
with changes in the discipline views are important chal-
lenges that have to be addressed to improve the effec-
tiveness of the process. This also imposes the challenge 
of integration of existing mechanical and electronic do-
main design tools.  

The identification and definition of reusable MTCs is 
another major challenge in mechatronic systems. The 
Workpartner [21], a mobile service robot, is planned to 
be used in the context of a TEKES (Finnish Funding 
Agency for Technology and Innovation) funded project 
as a case study for the application of MIM, but also as a 
case study for the identification of reusable MTCs.  

Since many of the MTSs are from the safety critical 
domain, the integration of the MTS V-model development 
process and the 3+1 SysML view-model with safety engi-
neering is another major challenge for the MIM paradigm 
to be effectively exploited in safety- critical mechatronic 
systems. 

7. Concluding Remarks 

The traditional approach in the development of mecha-
tronic systems is unable to address the needs of today’s 
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complex mechatronic systems. An integrated framework 
for the construction of mechatronic systems is missing.  
The work presented in this paper attempts to contribute 
to this direction by: a) using SysML to define the arti-
facts of the MIM paradigm; b) proposing the 3+1 SysML 
view-model imposed by the MIM architecture; and c) 
extending the well accepted and widely used in the soft-
ware domain V-model to address the demands of the 
mechatronic system development process. However, the 
challenges for a fully automated MTS development 
process crosses the boundaries of the three disciplines of 
mechatronic systems and  impose a joint effort and col-
laboration between computer science, electronics and 
mechanics. The current status of discipline isolation im-
posed in many cases by the existing structure of engi-
neering degree programs makes the task even more com-
plicated. 
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