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Abstract: We have analyzed the important problem of contemporary high-energy physics concerning the es-
timation of some parameters of the observed complex phenomenon. The standard statistical method of the 
data analysis and minimization was confronted with the Neural Network approaches. For the Natural Neural 
Networks we have used brains of high school students involved in our Roland Maze Project. The excitement 
of active participation in real scientific work produced their astonishing performance what is described in the 
present work. Some preliminary results are given and discussed. 
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1. Introduction 

The analysis of the surrounding physical reality, for last at 
least three thousand years, as we know it, follow the line 
of building simplified models and solving problems using 
specific tools developed with applied approximations 
making them easy or relatively easy to maintain. The 
unquestioned successes of such, scientific, way of think-
ing allow us to create so-called civilization. 

However, this method can have limitations. Some 
problems can not be treated this way, at least at present. 
There is a belief that, e.g., mathematical tools needed to 
solve some problems in quantum field theory or hydro or 
thermodynamic will be developed in the future. How-
ever there are much common problems where the usual 
methods of standard analysis sometimes fail. The gen-
eral problem of ‘pattern’ recognition is the perfect ex-
ample. 

We would like to discuss here a particular problem of 
the describing of the data registered by some cosmic ray 
physics experimental device. This is a problem of the 
general class of minimization or curve fitting. It is a good 
example to illustrate our general statement. 

The statement is that the complex problems can be 
solved not only qualitatively but also quantitatively on the 
level of the standard statistical method precision not only 
by Artificial Neural Network (ANN) trained on the 
problem but with the over-sized, redundant Natural Neu-
ral Network (NNN) using their ‘natural’ abilities gathered 
in the past not obviously (obviously not) related to the 
particular problem. 

The method of the analyzing the NNN performance is 
described and some first results are given in this paper. 

2. The Problem 

The ultra high-energy cosmic ray particles, its origin and 
nature are one of the most intriguing questions on general 
interest among the physicists. The phenomenon of arriv-
ing form the cosmos of the elementary particle with en-
ergy of about 50 J is very rare and thus hard to investigate 
experimentally. Fortunately during the passage through 
the earth atmosphere the cascade of smaller energy sec-
ondary particles is created and eventually the surface is 
momentarily bombarded by billions of particles spread 
over the area of squared kilometers. The experimental 
setups for registrations of such events consists of several 
to several thousands detectors separated by hundreds of 
meters to few kilometers equipped with the triggering and 
recording devices. 

Such arrays sample the mentioned showers of particles 
in not very big number of points and this is the only in-
formation we have about the event. (We do not discuss 
here the experiments recording the fluorescent light which 
is the distinct and complementary technique of study such 
phenomena). Each detector of the surface array registers 
actual number of particles passing the detector giving the 
information about particle density at the detector position. 
It is additionally smoothed by the physics of the detection 
process and electronic noises of different kinds. The 
transition from recorded digits to the physics in question 
is to estimate the shape of the distribution of cascade 
particles on the ground. The limited information allows us 
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only to get the precise enough estimates of normalization 
constant total number of particles, first or at last second 
moment of the distribution (or any other, more suitable, 
parameters of this distribution). For doing this one has to 
use some prior assumptions, e.g. about the radial sym-
metry or the expected analytically approximated func-
tional form of the distribution. After that one has to go 
through the procedure of making the estimate. 

The standard is to make a χ2 or likelihood measure of 
the goodness of the fit and than to use known textbook 
methods to minimize the respective distance between the 
‘theoretical line’ and ‘measured points’.  

In general this is all we need, but practically there are 
classes of multiparameter problems and very noisy data 
when the minimization is not very straightforward. This is 
of course also the problem of the function to be minimized 
and its many local minima, distant and not very much 
different in depth. The problem of Extensive Air Shower 
(EAS) parameter estimation is a good example. The 
number of parameters is not very large. From physical 
point of view they are mainly: position of the shower axis 
and total number of particles and a parameter of the slope 
of theirs radial distribution. For simplicity and using the 
prior knowledge on the shower physics we use only one 
shape parameter [1]. The large spacing between detectors 
makes this simplification justified. We neglect also, for 
the purposes of this paper, the two parameters describing 
shower inclination. So we have only four parameter space 
with well defined physical meaning. It also provides a 
kind of independence of them all which is very helpful for 
minimization. 

The problem arises because of the sharpness of the dis-
tribution of particles when one tests the distances close to 
the shower axis. When the detector gets close to the axis 
number of registered particles goes into thousands while a 
little far it goes to tens being on the edge of 1 and below in 
most other detection points. From the point of view of 
minimization procedure when the axis position is tested 
close to the one detection point it is the only one which 
controls the χ2 or likelihood or whatsoever. This situation 
is caused by the physics of the process and one can’t avoid 
it. The exclusion of close detectors is a remedy, but it is 
rather costly. The detector close to the shower core reg-
istered highest number of particles and thus the statistical 
importance of this point is the highest and in case of small 
number of detection points in general we can’t afford to 
lose the most important one. We have to play with it. 

Many methods and tricks were invented to get the 
minimization going with a number of problems as less as 
possible, but, as it will be shown, it is a hard task. The 
parameter which we will study comparing different 
methods of estimation is the number of lost events. We 
can define here the lost events as that having the χ2 (or 
other studied measure) above some critical value. But to 
be comparable with others we defined them as the events 

for which the minimization moves the values of the pa-
rameter of the axis position: x and y and shower size ex-
ceeding some limits (which can be treated as defining the 
divergence of the minimization procedure). 

3. Artificial Neural Network Approach 

The process of estimation EAS parameters with the help 
of Artificial Neural Network, as it is shown in [5] in the 
case of the hard shower component registered by the 
experiment KASCADE [4], can be quite successful. In 
the present work we used very similar network architec-
ture which schematic view is shown in Figure 1. The 
input nodes are seeded with the registered particle densi-
ties, and the signal processing eventually gives the total 
number (its logarithm, to be precise) of shower particles. 
The particular network was build to work with the array 
of the Roland Maze Project being realized in Lodz [2]. 
The array is based on detectors placed on the roofs of 
city high school. In the final phase about 30 schools will 
be equipped with 4 one squared meter scintillator detec-
tor each. The sum of numbers of particles registered in 
each school carry the same information as the four num-
bers from all four detectors due to the Poissonian char-
acter of the cascade. The distance of about 10 meters 
within each school are negligible with the kilometers 
between the schools and the scale of the changes of the 
average particle density. Thus we need the ANN with 30 
input nodes. The geometry of the network we used here 
was not optimized for the number of neurons and its final 
structure analyzed here is highly redundant. We used 
eventually two hidden layers with 20 and 10 neurons, 
respectively. 

During tests we check that the input values could be 
logarithms of the value of the input signal surface 
enlarged by 1.0 to avoid the zeros from detectors with no 
muon registered. We do not add the electronic noise here 
as not very big. Each input is connected with each of the 
first hidden level neurons. The last hidden level neurons 
are connected to the single output unit. Tests with differ-
ent number of hidden neurons shows that there is no ef-
fect on the network performance when we keep this 
numbers with reasonable limits. The number of the net-
work parameters to be trained was from about 5000 to 
25000. As the neuron response function the common 
sigmoid has been used. The network was trained with the 
standard back-propagation algorithm using the simple 
‘EAS generator’.  

The generator works assuming particular shape of the 
particle distribution adopted from the measurements 
made by the one of the biggest arrays (in particular 
AGASA). The shower profile shape parameter known as 
“age parameter” defining the slope of the radial distribu-
tion was then smeared within physically reasonable lim-
its. The number of particles is roughly proportional to the 
total energy of the primary cosmic ray particle. The nor-
malization, total number of particles, was generated ac-
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cording to the flat distribution in logarithm of particle 
energy scale. The cosmic ray shower spectrum is known 
to be of the power-law form and it is very steep with the 
index of about -3.0. This affects the estimated values. 
The generation used allows for the systematic bias, but 
on the other hand, too steep distribution in the training 
sample leads to the over-training of network with small 
size events while the events of energies, e.g., 100 times 
bigger, which are million times less abundant are practi-
cally not used for the training purposes. The uniform in 
log(E) is the compromise prior. 

The steep spectrum makes the registered events consist 
mostly of events on the lower primary particle energy 
threshold which is defined by the trigger requirements. 
The ‘artificial trigger’ was applied to the training sample. 
We assumed that at least three ‘schools’ has to register 
some particles at least in two detectors each. Such trigger 
can be realized in the original Roland Maze Project array.  

With the information limited so much, it is expected 
that standard minimization should fail quite often. The 
comparison of effectiveness of the standard and the ANN 
approach is one of the questions we want to answer here. 

The network was trained first to estimate the most 
important shower parameter: the shower size (the total 
number of particles in the shower at the observation level).  
But we tested also the possibility of using network to 
estimate other parameters, and it was found that there is 
possible to train the network to estimate as well the x- and 
y-coordinate of the shower axis. The attempt to get the age 
parameter was not very successful. 

In the Figure 2 the convergence of the training proce-
dure is shown for the network trained with shower size a) 
and the axis position b). The dependence of the width of 
the distribution of the deviation of the estimated value 
from the true one is shown. The learning is quite a long 
lasting process. The first rational answers appear how-
ever already after the number of training events compa-
rable with the number of internal weights. Then we ob-
serve the continuous improvement. An interesting feature 
appeared below 1 million events on Figure 2b. There are 
abrupt decreases of efficiency and then further and 
deeper improvements. The effect is seen for all networks 
we tested for both x- and y- axis position adjustment. It is 
seen always at the roughly some point and we suggests 
that it means the internal change of the network strategy 
of estimation. Something similar is seen also for EAS 
size estimation networks but at different length of train-
ing sample (around 104 at Figure 2a). The closer look at 
this phenomenon could put some light to the process of 
network learning but it is beyond of the scope of this 
paper. 

We ended the learning process at the 108 event sample. 
The further improvement is interesting, but of no practical 
importance. The final state of the trained network allows 
us to use it as a tool for shower size and axis position 
determination. Such trained network was then applied 

 

Figure 1. Schematic layout of the Artificial Neural Network 
used for the evaluation of the total number of the EAS par-
ticles 
 
to the serial of 10000 events produced by the particles of 
energy generated by our event generator which build the 
library of the showers to by analyzed also with different 
methods. The ANN, when any event from the library is 
taken as an input, always give some answer. The accuracy 
of the ANN answer was studied in few ‘modes’. 

In the Figure 3 the illustration of an accuracy is pre-
sented as histograms showing the spread of the ANN 
guess errors. To get it easier to compare with other method 
some numbers should be given. Some measures of the 
‘goodness of the fit’ are given below. 
σN - the accuracy of size determination measured as a 

dispersion of the difference between decimal logarithms 
of the true and ANN reconstructed shower size (total 
number of particles). 
ΔN - the bias of the shower size measured as a differ-

ence of the average true and ANN reconstructed shower 
size. 
ξN - the fraction of perfect reconstructions, which we 

defined as these within 10% around the true value of the 
shower size (logarithm). 
σR - the error in the localization measured as a average 

distance between true and ANN reconstructed shower 
axis position. 
ξR - the fraction of perfect localizations, by which we 

mean the ANN reconstructed axis closer than 100 m from 
the true one. 

The values of all these five parameters obtained for 
our trained network are given in the Table 1 in the sec-
ond column, labeled ANN. 

4. Standard Minimization Approach 

The data generated in the 10000 event shower library  
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Figure 2. The accuracy of the ANN answer as a function of 
the number of events using for the training process shown as 
a widths of the distribution of the difference between the 
decimal logarithm of the estimated shower size and the 
‘true’ value a), and the difference of the respective spatial 
distance (in one x direction) difference b). Different lines 
represents different shower size samples. The solid one is for 
showers of the “true” size between 3 and 5 109 particles (the 
medium sizes), the dashed is for smaller showers, and the 
dotted one for really big showers 
 
were also analyzed with the help of standard numerical 
minimization algorithms. We have used the CERN MIN- 
UIT package described in [3]. The straightforward ap-
plication for such, not perfectly well determined, problem 
as shower parameter minimization works rather bad, so 
some slightly improved, thus much time consuming pro-
grams reaching the minimum of the likelihood in few 
steps, have to be developed. After careful adjustments of 
the proper divergence between ‘the data’ and predictions 
the program runs better. We have to mention here that 
some oversimplification was made here, because the 
radial distribution of shower particles used for minimiza-
tion was exactly the one which was used inside the gen-
erator to calculate the averages. In the real case the parti-
cle distribution is rather unknown. This fact favours the 
minimization technique and the results given in this work 
should be treated with care, as the optimistic limit. 
  After applying to the library showers, the same as ana-

lyzed with the help of ANN, the results are as they are 
shown in the Table 1 in the columns labeled ‘MINUIT’. 
There are two values in each case. The first on gives the 
average over all studied showers (we limited parameter 
ranges to reasonable values). Some showers due to the 
fluctuations can not give the minimum within the as-
sumed ranges of parameters of the minimum found gives 
the value of χ2 too high to be accepted. If we excluded 
them from the averaging procedures, the results get better  
 

 
 

 

Figure 3. The spread of the trained ANN answer for the 
shower size a) and the spatial distance b) between guess and 
the true size and position of the shower axis. The result is 
obtained for the library showers 
 
Table 1. Comparison of the performance of ANN, standard 
minimization and the three best NNNs found in our ex-
periment 

 ANN MINUIT NNN 

σN 0.217 0.478 0.280 0.270 0.279 0.294 0.349

ΔN 0.29 -0.14 0.14 0.31 0.97 1.29 0.01

ξN 6% 17% 20% 16% 17% 12% 13%

σR 442 567 312 375 613 528 662 

ξR 5% 29% 34% 33% 36% 23% 18%
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Figure 4. The layout of the graphical interface to estimate the EAS parameters using NNN (e.g., ‘by eye’) 
 
as they are given in the second MINUIT column. It is 
important to note that such ‘bad’ showers of of about 1/3 
of all in the 5 x 1018 eV library. 

5. Natural Neural Network Approach 

The comparison of ANN and MINUIT methods of shower 
reconstruction given in the Table 1 shows that the Neural 
Networks can perform the competitive solutions of the 
complex minimization problem under study. However, 
the training procedure of the redundant network takes 
long and some systematic biases are seen. These are not 
very strong objections when taking into account the pros. 

It would be interesting to test the performance of the 
extremely complex neural network one can imagine, 
which is, to some extend, the human brain. The training of 
the brain on a compound problem can be done in principle 
in two ways. The first one is similar to the ANN training 
process when the supervising teacher shows the examples 
of input data and told what the right answer should be. 
The more effective way is to use the ability of the brain 
collected in the whole ‘common’ life of the neural net-
work as it is.  

One can bet that in most cases the ‘usual people’ can 
react properly seeing the elephant running in their direc-
tion (whatever this reaction should be) even if they never 
met an elephant before. The brain (specially human) is so 
redundant that it can easy adapt the past solution to the 
new problem. The only requirement needed is that that the 
new situation must be similar to something seen before. If 
the similarity is closer than the probability of reaction is 
expected to be the right one is higher. 

We want to use Natural Neural Networks (NNN) to 

perform the estimations of the EAS parameters. The 
problem has to be transformed first to the form which can 
be understood by the ‘common people’. The knowledge 
on the elementary particle passing through the atmosphere 
is helpful in principle, but is useless, in fact, in our case. 
We would like the NNNs to use their natural abilities.  

We have built the graphical interface shown in Figure 4 
which contains all what we know and all we should get. 

On the left big panel the map of the city is shown in the 
scale, but without any unimportant information. The map 
shows position of the detectors (schools) in the Roland 
Maze Project shower array (the crosses). Next to some 
schools are the vertical lines (lighter and darker blue and 
red). The red shows the particle density registered by the 
detectors (its logarithm, but it is not relevant to the NNNs, 
and it hasn’t been even told to them). The blue lines show 
‘the just proposed’ solution. 

The right panel shows, what can be told, the radial dis-
tribution of the particle density; horizontally: the distant 
to the shower axis is given, vertically: the particle den-
sity. Points (in red) show the same values as they are on 
the left plot but ‘the just proposed’ solution is given now 
by the line (blue).  

The interface allows one to manipulate the shower pa-
rameter. The axis can be dragged usually using a com-
puter mouse, or moves slightly with the batons with re-
spective arrows next to the map side. The shower size 
(normalization of densities) can be changed on the left 
plot dragging the blue line vertically with the mouse. The 
horizontal movement of the clicked mouse increases the 
age parameter making the radial density curve wider or 
narrower. With this interface all the parameters can be 
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adjusted comparing by eye the sizes of the bars of the right 
plot or/and, what is equivalent, controlling the positions 
of the points with respect to the curve on the left plot. The 
‘user manual’ describing the interface is rather short and 
simple. The package was supplied with the set of exam-
ples showing how the true (known from the simulation) 
line should looks like. This explains additionally the task. 

As the NNN donors we used pupils from the schools 
collaborating with the Roland Maze Project. They were a 
little familiar with the problem of EAS, but it was not a 
requirement, some of them were not. We assumed that 
each one of our volunteers perform the minimization of 
100 showers. The practice shows that after the initial 
phase one shower takes about 2-5 minutes to be fitted. 
This gives few hours of the hard work. All NNNs were 
working on their free time, so we could not motivate them 
very strongly and there were a number of people which 
started and never finished the whole task. To avoid boring 
students we transferred the data to them in packages of 10 
and the next 10 can be sent only after receiving the ad-
justed previous set. So the whole examining takes usually 
weeks of work. 

The initial position of the shower axis, normalization 
and age parameters were taken randomly for each new 
event on display to avoid any unphysical guesses. Results 
were sent back by e-mail, but the program coded them. It 
was not possible to see what the numerical value was 
obtained and to correct them ‘by hand’. The results once 
sent were put to the database and they couldn’t be changed 
later on. The error once made remain what sometimes 
gives strong contribution to overall performance of the 
particular NNN. 

6. Discussion 

Anyway, we get some pupils completed their work. We 
(TW) did it also to be comparing with high school stu-
dents’ performance results. In the Table 1 results of TW 
followed by three (the best) student’s NNNs are given in 
last four columns. 

As it is seen the NNN accuracy is comparable with 
ANN concerning the shower size estimation (width and 
the bias), there are also no big differences concerning the 
axis position. Taking into account that NNN as well as 
ANN get an answer for each shower it should be com-
pared with the ‘all MINUIT’ (third column in the Table 1). 

It is interesting to compare results obtained by high 
school students and TW who can be called a specialist in 
the field, if not in the shower parameter estimation in 
general, then at least some specialist, because of building 
and testing the system of graphic interface etc. In fact 
there is no big difference (the sample of only 100 events 
was used to get the numbers). One can conclude that there 
is not experience needed. 

Insights that the statistics education community badly 
needs to have, even though it may not know it yet. 

Table 2. The improvement (or dis improvement) of the NNN 
performances concerning the parameter of σN in the course 

of the EAS analysis 

number of analyzed events 

 10 20 30 40 50 60 70 80 90 100

TW 0.142 0.203 0.199 0.210 0.220 0.239 0.250 0.264 0.261 0.270

NNN 
1 0.257 0.237 0.244 0.233 0.235 0.312 0.302 0.291 0.286 0.279

NNN 
2 0.379 0.374 0.324 0.307 0.287 0.322 0.305 0.308 0.295 0.294

NNN 
3 0.551 0.427 0.390 0.389 0.368 0.363 0.358 0.349 0.335 0.349

 
It is not obvious, however, when we look how the in-

dividual NNN was improving its performance during the 
process. After analyzing the set of 10 events the results of 
the accuracy of their estimations were published in the 
web, and each participant can check how it has gone and 
what kind of error he made (specially the biases were easy 
to identify). The ability of the work with the interface 
could also getting better during the process of using it. 
Table 2 shows details in the case of the parameter de-
scribing the spread of the estimated shower size with 
respect to the true one. In some cases the improvement 
(NNN 3) is seen clearly, while for others (TW) the accu-
racy is diminishing with number of analyzed showers. 
This last is understood, because, in spite of the students, 
TW has not been limited to analyze only 10 events per day 
and the last 50 was taken just one by one continuously. 
The result is surprisingly big. If the constant care could be 
achieved during all the analysis process it is possible that 
the result of σN around 0.2. This value is exactly what has 

been achieved by the trained artificial neural network and 
significantly better than the standard statistical analysis. 

7. Summary 

With the help of number of enthusiastic young people we 
have shown that the redundant Neural Network, Artificial 
or Natural may work well and in fact in some cases even 
better than classical statistical tools of minimization. 
There is the evidence that NNN analyzed in the present 
work gone even better than the trained ANN. This sug-
gests that the further studies of the over-sized networks 
and their performance are important and the minimization 
of the network size should not be taken on too early steps 
of the network arrangement, at least in some cases. 

On the other hand the participation of young people, 
high school students on each level of the present work 
gives them a possibility to learn and understand the sub-
ject of statistics and data analysis on the level which is far 
beyond the standards even for the university students. 
This encourages us to propose further to the next groups 
of pupils the ambitious, extensive program for further 
studies of their brain performance and abilities. Interest-
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ing results are expected in the future. 
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