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Abstract 

Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for 
global optimization over continuous spaces, and has been widely used in both benchmark test functions and 
real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, 
a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating dif-
ferent weighted values at each generation, which can make the best of the selected multiple parents to im-
prove the probability of generating a better offspring. In addition, in order to enhance the capacity of adapta-
tion, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is 
beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on 
several constrained engineering design optimization problems reported in the specialized literature. Com-
pared with respect to algorithms representative of the state-of-the-art in the area, the experimental results 
show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering 
design. 

Keywords: Differential Evolution, Constrained Optimization, Engineering Design, Evolutionary Algorithm, 
Constraint Handling 

1. Introduction 
 
Many real-world optimization problems involve multiple 
constraints which the optimal solution must satisfy. Usu-
ally, these problems are also called constrained optimiza-
tion problems or nonlinear programming problems. En-
gineering design optimization problems are constrained 
optimization problems in engineering design. Like a con-
strained optimization problem, an engineering design 
optimization problem can be generally defined as follows 
[1–4]: 
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},...,m2q   is one subset of the decision space  (ob-

viously, ) which satisfies the equality and ine-
quality constraints. 
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Population-based evolutionary algorithm, mainly due 
to its ease to implement and use, and its less suscepti-
bleness to the characteristics of the function to be opti-
mized, has been very popular and successfully applied to 
constrained optimization problems [5]. And many suc-
cessful applications of evolutionary algorithms to solve 
engineering design optimization problems in the special-
ized literature have been reported. Ray and Liew [6] used 
a swarm-like based approach to solve engineering opti-
mization problems. He et al. [7] proposed an improved 
particle swarm optimization to solve mechanical design 
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optimization problems. Zhang et al. [8] proposed a dif-
ferential evolution with dynamic stochastic selection to 
constrained optimization problems and constrained en-
gineering design optimization problems. Akhtar et al. [9] 
proposed a socio-behavioural simulation model for en-
gineering design optimization. He and Wang [10] pro-
posed an effective co-evolutionary particle swarm opti-
mization for constrained engineering design problems. 
Wang and Yin [11] proposed a ranking selection-based 
particle swarm optimizer for engineering design optimi-
zation problems. Differential evolution (DE) [12,13], a 
relatively new evolutionary technique, has been demon-
strated to be simple and powerful and has been widely 
applied to both benchmark test functions and real-world 
applications [14]. This paper introduces an adaptive dif-
ferential evolution (ADE) algorithm to solve engineering 
design optimization problems efficiently. 

The remainder of this paper is organized as follows. 
Section 2 briefly introduces the basic idea of DE. Section 
3 describes in detail the proposed algorithm ADE. Sec-
tion 4 presents the experimental setup adopted and pro-
vides an analysis of the results obtained from our em-
pirical study. Finally, our conclusions and some possible 
paths for future research are provided in Section 5. 

2. The Basic DE Algorithm 
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where  denotes the dimension of solution space,  

is the population size. In DE, the child population 
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where  is a uniform random number distributed be- 
tween 0 and 1,  is a randomly selected index 

from the set { , the crossover rate 
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where the function is the objective function and the 

condition 

f

f )()( 1 t
i

t
i xuf


  means the individual 1t

iu


 

is better than t
ix


.  

Therefore, the conventional DE algorithm based on 
scheme DE/rand/1/bin is described in Figure 1 [15]. 

3. The Proposed Algorithm ADE 

3.1. Generating Initial Population Using     
Orthogonal Design Method 
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ized in the range . In order to improve the 

search efficiency, this paper employs orthogonal design 
method to generate the initial population, which can 
make some points closer to the global optimal point and 
improve the diversity of solutions. The orthogonal design 
method is described as follows [16]:  
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10:  end for 

11:  Replace t
ix


with the child in the population , 1t
iu
 1tP

12:  if 1t
iu


is better, otherwise is retained t
ix


13:  end for 
14:  1 tt  
15:  until the termination condition is achieved 

Figure 1. Pseudocode of differential evolution based on 
scheme DE/rand/1/bin. 
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decision variable varies in the range . Here, 

each  is regarded as one factor of orthogonal design. 

Suppose that each factor holds  levels, namely, quan-

tize the domain  into Q  levels 
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And then, we create the orthogonal array M  

 with  factors and Q  levels, where  is 

the number of level combinations. The procedure of con-
structing one orthogonal array  is de- 

scribed in Figure 2. 
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3.2. Multi-Parent Mutation Scheme 

According to the different variants of mutation, there are 
several different DE schemes often used, which are for-
mulated as follows [12]: 
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Figure 2. Procedure of constructing one orthogonal array 
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tion. Usually, based on both the control parameter F and 
the selected multiple parents, using these DE schemes 
can only generate a vector after a single mutation. Tsutsui 
et al. [17] proposed a multi-parent recombination with 
simplex crossover in real coded genetic algorithms to 
utilize the selected multiple parents and improve the di-
versity of offspring. Inspired by multi-parent recombina-
tion with simplex crossover, this paper proposes a novel 
multi-parent mutation in differential evolution. The multi- 
parent mutation is described in the following. 
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tion number and T  is the max  generation number, 
b  is a shape parameter determ ing the degree of de-
pendency on the g eration number, a  and b  are po- 
s ive constants, usually a  is set to 2, b  is set to 2 or 3. 
At the early stage, DE uses a bigger crossover ate CR  
to preserve the diversity o  solutions and revent prema-
ture; at the later stage, DE employs a smaller crossover 
rate CR  to enhance the local search and prevent the 
better solutions found from being destroyed. 
 
3.4. Repair Method 
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3.6. Algorithm Framework 
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Figure 3. The general framework of the ADE algorithm. 
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000954.0)( 322  xxxg


, 

0000,296,1
3

4
)( 3

34
2
33  xxxxg 


, 

0240)( 44  xxg


 

where  ,0625.0 11 nx  ,0625.0 22 nx   ,991 1  n  

. ,99  10 3  x1 2 n

4) W design 

,200  20010 4  x

elded beam [9]: 
Minimize 

)0.14(04811.0 243 xxx 10471.1)( 2
2
1 xxxf 


 

Subject to  0)()( max1   xxg


,  

0)()( max2   xxg


,  

0)( 413  xxxg


 


)0.14(04811.010471.0)( 243
2
14 xxxxxg 

       00.5  ,            
0125.0)( 15  xxg


 

0)()( max6   xxg


, 

0)()(7  xPPxg c


 

The other parameters are defined as follows:  

,)"(
2

)'() 22  
R

x  
"'2  x

( 2


,
2 21xx

 ' P
,"

J

MR
  

),
2
2x

,)
2

(
4

231
2
2 xxx

R


  (LPM   

,
2122

2
2

31
2
221











 xx



















 


xxx
J  ,

6
)(

2
34 xx

PL
x 


  

,
4

)(
3
34

3

xEx

PL
x 


  

,
42

1
36/013.4

)( 3
2 

L

6 



 4
2
3






G

E

L

xxEGx
xPc


where .,lb 6000P   ,in 14L .,in 25.0max   

,psi600,13max ,psi 106  G30E ,psi 106  12    

,psi 000,30max   ,0.21 1.0 x  ,0.101.0 2  x  

,0.101.0 3  x  and .0.24 1.0  x  

5) Speed reducer design [8]: 
Minimize 

)0934.439334.3333. 3
2
3  xx 143(7854.0)( 2

21 xxxf


 

)(4777.7)(508.1 2
7

3
6

2
7

2
61 xxxx   x

)(7854.0 2
75

2
64 xxxx   

Subject to 01)(
3

2

27

21
1 

xxx
xg


,  

01
5.397

)(
2
3

2
21

2 
xxx

xg


, 

01
93.1

)(
4
632

3
4

3 
xxx

x
xg


, 

01
93.1

)(
4
732

3
5

4 
xxx

x
xg


, 

01
0.110

]109.16))/(745[(
)(

3
6

2/162
324

5 



x

xxx
xg


, 

01
0.85

]105.157))/(745[(
)(

3
7

2/162
325

6 



x

xxx
xg


, 

01
40

)( 32
7 

xx
xg


, 01
5

)(
1

2
8 

x

x
xg


, 

01
12

)(
2

1
9 

x

x
xg


, 

01
9.15.1

)(
4

6
10 

x
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x
, 

01
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)(
5

7
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where  ,6.36.2 1  x ,807.0 2 . x  

,3.83.7 5,28  3.7 4  x17 3  x ,3.8   x  

,9.3  0.5 7  x9.2 6  x .5  5.

r6) Himmelblau’s Nonlinea  Optimization Problem 

This problem was proposed by Himmelblau and simi-
lar to problem [22] of the hmark except for 

the second coefficient of the first constraint. There are 
five design variables. The problem can be stated as fol-
lows: 

Minimize   

Subject t

[21]: 

04g  benc

51
2
3 8356891.03578547.5)( xxxxf 



141.40792293239.37 1  x  

o 521 0056858.0334407.85)( xxxg 


 

 5341 0022053.000026.0 xxxx  ,           

092   

522 0056858.0334407.85)( xxxg 


 

00022053.000026.0 5341  xxxx , 

523 0071317.051249.80)( xxxg 


 
2 , 321 0021813.00029955.0 xxx 

0110   

524 0071317.051249.80)( xxxg  


 
2
321 0021813.00029955.0 xxx  , 

090   

535 0047026.0300961.9)( xxxg 


 

4331 0019085.00012547.0 xxxx , 
025   

536 0047026.0300961.9)( xxxg 


 

4331 0019085.00012547.0 xxx  , x

020   
where ,10278 1  x  ,4533 2  x  and 4527  ix  

(i ).5,4,3  

 

 

Figure 5. Convergence graph for spring design. 

 

 

Figure 6. Convergence graph for pressure vessel design. 

 

4.2. Convergence of ADE 
 
In this section, Figures 4-9 depict the convergence graphs 
for 6 engineering optimization problems described above 
respectively. From Figures 4-6, we know that ADE and 
DE all can be quickly convergent. In the figures, FFES is 
the number of fitness function evaluations. 
 
4.3. Comparing ADE with Respect to Some 

S

In this experimental study, the parameter values used in 
ADE are set as follows: the population size 

tate-of-the-Art Algorithms 
 

50N
e level num

, the 
maximal generation number , th ber 300T

 NQ  , the mutation pare er nt numb 1 DK , the Figure 4. Convergence graph for three-bar truss design. 
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Fi r 
optimization problem. 

 
initial crossover rate 

gure 9. Convergence graph for Himmelblau’s nonlineaFigure 7. Convergence graph for welded beam design. 

 

8.00 CR , the coefficient 2a , 
the shape parameter 3b , the exponent 2 . The 

s equalnumber of fitness fu uations (FF  
to

nction eval ES) i
KTN  . The ac u  hieved sol tion at the end of

KTN   

 

. Convergence graph for speed re gn. Figure 8 ducer desi

FFES is easure the pe  
ADE. ADE is independently run 30 times on each test 
problem above. The optimized objective function values 
(of 30 runs) arranged in ascending order and the 15th 
value in the list is called the median optimized function 
value. Experimental results are presented in Tables 1-12. 
And NA is the abbreviation for “Not Available”. 

For three-bar truss design problem, the experimental results 
are given in Tables 1-2. According to Table 1, ADE and
DSS-MDE [8] can obtain the approximate best and median 

 
Table 1. Comparison of statistical results f  over 30 ru

Algorithms Best Median 

used to m rformance of

 

values, which are slightly better than those obtained by Ray 

or three-bar truss design ns. 

Mean Worst Std FFES 

ADE 263.89584338 263.89584338 263.89584338 263.89584338 4.72e-014 45,000 

DSS-MDE [8] 263.8958434 263.8958434 

Ray and Liew [6] 263.8958466 263.8989 

263.8958436 263.8958498 9.72e-07 15,000 

263.9033 263.96975 1.26e-02 17.610 

 
Table 2. Comparison of best solutions

Function ADE DSS-MDE [8] Ray a

 found for three-bar truss design. 

nd Liew [6] ECT [23] Ray and Saini [24] 

1x  0.7886751376014 0.7886751359 0.7886210370 0.78976441 0.795 

2x  0.4082482819599 0.4082482868 0

263.8958466 263.896710000 264.300 

FFES 45,000 15,000 17,610 55,000 2712 

.4084013340 0.40517605 0.395 

)(xf  263.895843376 263.8958434 
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Table 3. Comparison of statistical results for spring design over 30 runs. 

Algorithms Best Median Mean Worst Std FFES 

ADE 60,000 0.0126652328 0.0126652458 0.0129336018 0.02064372078 1.46e-03 

SiC-PSO [20] 0.012665 NA 0.0131 NA 4.1e-04 24,000 

F 0.01266 0.0126 0.012  2.  

DSS-M ] 0.0 0 0. 0

Ray 0.01 0. 0.0 0.

0.0 0.0 0.01 0.0

SA [25] 5285 NA 65299 665338 2e-08 49,531 

DE [8 12665233 .012665304 012669366 .012738262 1.25e-05 24,000 

 and Liew [6] 266924934 012922669 12922669 016717272 5.92e-04 25,167 

Coello [26] 1270478 1275576 276920 1282208 NA 900,000 

 
Table 4. Comparison of best solutions found for spring design. 

S DiC-PSO [20] SS-MDE [8] FSA [25] He et al. [7] Function ADE 

1x  0.35674653865 0.354190 0.3 0.3 99 50 567177469 58004783455 0.3567

2x  0.05169025814 0.051583 0.0 0.0 26 90 

1 11.2 1 9 6 

0.01 8 0.0 0.012 0. 85 65 

FFES 60 15,000 

516890614 51742503409 0.0516

3x  1.28727756428 11.438675 889653382 1.2139073627873 11.28712

)(xf  2665232 12665 65233 0126652 0.0126

,000 24,000 24,00 49,531 

 
Table 5. Comparison of stat sults for e ve r 30 r

M rst 

istical re  pressur ssel design ove uns. 

Algorithms Best edian Mean Wo Std FFES 

ADE 58 5885.3 85  5  85.3327736 3277 5885.3349564 5885.376942 8.66e-03 75,000 

SiC-PSO [20] 6

R

H 2 

Montes et al. [3] 6059.702 6059.702 6059.702 6059.702 1.0e-12 24,000 

059.714335 NA 6092.0498 NA 12.1725 24,000 

ay and Liew [6] 6171.00 NA 6335.05 NA NA 20,000 

e et al. [7] 6059.714 NA 6289.929 NA 3.1e+ 30,000 

 
and L respectiv he mean  
obtained b  ADE mong t rithms, 
while the FFES (45  the h est. And 
we also find that th s can f ear-op-
timal solutions. Fr  can see that ADE can 
find the best value pared with respect to 
DSS-MDE [ ], Ray and ], ECT [22  and 
Saini [2 e best res ined by AD

iew [6] ely. T  and worst values
y are the best a

,000) of ADE is also
hree algo

igh
ese algorithm ind the n

om Table 2, we
 when com

 Liew [68 ] and Ray
3]. Th ult obta E is 

)(xf


=263.8958433764684, 

corresponding to 

x


[ 1 , 2x ]=[0.7x 88675137 2, 0.40824 90] 

and constr

6014 8281959

aints 

[ )(1 xg


, )(2 xg


, )(3 xg


 ] 

162  -0.535898 9484]. 

For gn prob  experime results 
are given in Tables 3-4. According to Table 3, ADE,  

 [20], FSA MDE [8 ut the 
e when espect to Ray and Liew 
oello [25] ue ob  ADE 
han ob method e mean 

t value  becau E can 
d 29 near- utions in nd the 

tio  (i.e., the alue is 
64372078). Tab esents the det ach best 

value obtained by ADE, SiC-PSO [20], DSS-MDE [8], 
ely. The best result 

=[0, -1.46410 480516, 3751

spring desi lem, the ntal 

Sic-PSO [24], DSS- ] can find o
best valu
[6] and C

 compared with r
. The median val tained by

is better t tained by other s, but th
and wors s are worse, this is se that AD
only fin
other is an excep

optimal sol
n solution

30 runs a
worst v

0.020 le 4 pr ail of e

FSA [24] or He et al. [7] respectiv
obtained by ADE is 

)(xf


= 0.01266523 832, 

ing 

278

correspond to 

x


[ 1x , 2x , 3x ] 

=[0.3567 021031, 0.051689065  
11.288 7073

and constraints 

1785 67225,
9592785 ]  
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 [ )(1 xg


, (2 xg )


, )(3 xg


, g )(4 x


] 

=[-2.220446049250313e-016, -4.4408 

) of ADE 
is also the highest. etail of each 

ed by 20], Ray and 
l. [7] or Montes et al. [3] respectively. 

The best

92098500626e-016, 4.05378584839796, 
-0.72772872274496]. 

For pressure vessel design problem, the experimental 
results are given in Tables 5-6. According to Table 5, the 
best, median, mean, worst and standard deviation of val-
ues obtained by ADE are the best when compared with 
respect to Sic-PSO [20], Ray and Liew [6], He et al. [7], 
and Montes et al. [3], while the FFES (75,000

 Table 6 presents the d
 ADE, SiC-PSO [best value obtain

Liew [6], He et a
 result obtained by ADE is 

)(xf


=5885.332773616458, 

corresponding to 

and constraints  

 [ 1x , 2x , 3x , 4x ]  x


= [0.778168641375, 0.384649162628, 
40.319618724099, 200]  

[ )(1 xg


, )(2 xg


, )(3 xg


, )(4 xg


] 

=[-1.110223024625157e-016,0,0,-40]. 

elded b gn pro the e ental 
results are provided with Tables 7-8. According to Table 
7, the best, median, mean, worst and standard derivation 

For w eam desi blem, xperim

of values obtained by ADE are slightly worse than those 
obtained by DSS-MDE [8] and are better than those ob-
tained by Ray and Liew [6], FSA [25] and Deb [1]. 
However, the FFES (75,000) of ADE is the highest. Ta-
ble 8 presents the detail of each best value obtained by 
DSS-MDE [8], He et al. [7], FSA [25], Ray and Liew [6], 
and Akhtar et al. [9] respectively. The best result ob-
tained by ADE is 

)(xf


= 2.3809565 8032252, 

corresponding to 

x


[ 1x , 2x , 3x , 4x ] 

= [0.24436897580173, 6.21751971517460, 
.2 14 13 48 684, 0.24436897580173]  

and constrai
8 9 7 90
n  ts

[ )(1 xg


, )x(2g


, )(3 xg


, )(4 xg


, (5g )x


, )(6 xg


, )(7 xg


]  

27514e-011, -3.310560714453459e-010, 
-1. 78 78144 -016, -3.02295 760400, 
-0.
-1.27

 
Table 6. Comparison of best solutions 

Function ADE Sic-PSO [20] R

=[-1.0913936421
387778 0 6e 458
11936897580173, -0.23424083488769, 

3292582482100e-011]. 

found for pressure vessel design. 

ay and Liew [6] He et al. [7] Montes et al. [3] 

1x  0.7781686414 0.812500 0.8125 0.8125 0.8125 

2x  0.3846491626 0.437500 

40.319618724 42.098445 

200 176.636595 

5885.3327736 6059.714335 6171.0 60 

FFES 75,000 24,000 30,000 24,000 

0.4375 0.4375 0.4375 

41.9768 42.098446 42.098446 

182.9768 176.636052 176.636047 

3x  

4x  

)(xf  6059.7143 6059.7016

20,000 

 
Table 7. Comparison of statistical results for welded 

Algorithms Best Median Worst Std FFES 

beam design over 30 runs. 

Mean 

ADE 2.380956580 2.380956580 2.380956585 2.3809 708 2.35e-08 75,000 56

DSS-MDE [8] 2.38095658 2.38095658 2.38095 ,000 

Ray and Liew [6] 2.3854347 3.2551371 

FSA [25] 2.381065 NA 

Deb [1] 2.38119 2.39289 

658 2.38095658 3.19e-10 24

3.0025883 6.3996785 0.959078 33,095 

2.404166 2.488967 NA 56.243 

NA 2.64583 NA 40,080 
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ions found for

 Ray and Liew [6] Akhtar et al. [9] 

 welded beam design. Table 8. Comparison of best solut

Function ADE DSS-MDE [8] He et al. [7] FSA [25] 

1x  0.24436897580 0.2443689758 0.244369 0.24435257 0.244438276 0.2407 

2x  6.21751971517 6.2175197152 6.217520 

8.2 05 8.291471 9 

7580 0.2443689758 0.244369 0.2497 

2.3809 8032 2.38095658 2.380957 2.381065 2.3854347 2.4426 

FFES 75,000 24,000 30,000 56,243 33,095 19,259 

6.2157922 6.237967234 6.4851 

8.2939046 8.288576143 8.239

0.24435258 0.244566182 

3x  9147139049 8.29147139

4 0.2443x  689

 565)(xf

Table 9. Comparison of statistical results cer desi runs. 

Algorithms Mean Worst Std ES 

 for speed redu gn over 30 

Best Median FF

ADE 662 2 2 2994.47 2994.4710662 1.85e-012 ,000 2994.4710 994.471066 10662 120

DSS-MDE [8] 066  2994.4 2994.471 3.58e-012 0 

Ray and Liew [6] .744241 3001.7 3009.96 423 6 

Monte  [27] 689 2996.36 NA 8.2e-03  

et al. [9] 8.08 3012 3028 NA 154 

2994.471 2994.471066 71066 066 30,00

2994 3001.758264 582264 4736 4.0091 54,45

s et al.  2996.356 NA 7220 24,000

Akhtar 300 NA .12 19,

 

Functi ADE DSS-MDE Ray and L Mon  [27] khtar et 

Table 10. Comparison of best solutions found for speed reducer design. 

on [8] iew [6] tes et al. A al.[9] 

1x  3.5 3.5 3.50000681 3.500010 3.506122 

2  x 0.7 0.7 0.70

17 17 1 17 

7.3 7.3 7.3276 7.5491

7.715319911478 7.7153199115 7.71532175 7.800027 7.859330 

3.350214666096 3.3502146661 3.35026702 3.350221 3.365576 

5.28665446 5.289773 

2994.4710662 2994.471066 2994.744241 2996.356689 3008.08 

1  

000001 0.7 0.700006 

3x  7 17 

4x  0205 7.300156 26 

5x  

6x  

7x  4980 5.2866544650 5.28665450 5.286685 

)(xf  

FFES 20,000 30,000 54,456 24,000 18,154 

 
T aris al res imme linear  problem.

Algor ms Best ean Wor Std S 

able 11. Comp on of statistic ults for h lblau’s non  optimization  

ith Median M st FFE

ADE 4 4 5.5602 31025.5 5.91e-010 000 -31025.5602 -31025.5602 -3102 4 - 6024 90,

COPSO [28] 56024 A 25.56024 NA 0 ,000 

HU-PSO [29] -31025.56142 NA -31025.56142 NA 0 200,000 

-31025. N -310 200
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Table 12. Comparison of best solutions found for himmelblau’s nonlinear optimization problem. 

Function ADE [28] PSO [29] Colleo [21] Homaifar et   COPSO HU-  al. [30]

1x  78.000  495 78.000000000000 78 78.0 78.0 000 

2x  33.0000  070 33.00

0709  0 29.99

0000   45.0000 45.00

.969242  9242 924255 44.9400 36.77

-31025.56024249794 -31025.56024 -31025.56142 -31020.859 -30665.609 

FFES 9 NA 

0000000000 33 33.0 33.0 00 

3x  27. 9710517604 27.070997 27.070997 27.081 50 

4x  45. 0000000000 45 45.0 00 

5x  44 55010549 44.96 44.96 60 

)(xf  

0,000 200,000 200,000 NA 

 
F  reduce gn problem mental

results ar given in Ta es 9-10. Accordi o Table 9, 
the best, median, mean, worst and standa erivation of 
values ob ained by A nd DSS-MDE [ re superior 
to those obtained by R  Liew [6], M s et al. [27] 
and Akh et al. [9 ely, wh e FFES 
(120,000 of ADE is highest. Table  shows the 
detail of h b ned b -MDE 
[8], Ray and Liew [6], Montes et al. [27] and Akhtar et 
al. [9] respective ult ob E is  

or speed r desi , the experi  
e bl ng t

rd d
t DE a 8] a

ay and
] respectiv

onte
ile thtar 

)  the  10
 eac est value obtai y ADE, DSS

ly. The best res tained by AD

)x

x


[ 1x , 2x , 3x , 4x , 5x ]  

= [78, 33 971051760
44.96924 010549] 

 constraints  

, 27.0709 4, 45, 
255

and

[ 1g )(x


, )(2 xg


, )(3 xg


, )(4 xg


, (5 xg


, )(6 xg


) ]  

=[0, -92, -9.59476568762383, -10.40523431237617, 
, 0]. 

m, compar espect to sev -of-the- 
rithms, AD erform bett bench-

mark test problems. It is clearly shown that ADE is fea-
d effect e constrain mization 

ems in enginee esign. The rea hat ADE 
uses multi-parent mutation to generate a better offspring, 
and applies self-adaptive control parameter and effective 

 
Conclusion d Future rk 

paper p dapti ntial ution 
) algorithm  constrained timizat ngi-
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