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Abstract

Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for
global optimization over continuous spaces, and has been widely used in both benchmark test functions and
real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F,
a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating dif-
ferent weighted values at each generation, which can make the best of the selected multiple parents to im-
prove the probability of generating a better offspring. In addition, in order to enhance the capacity of adapta-
tion, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is
beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on
several constrained engineering design optimization problems reported in the specialized literature. Com-
pared with respect to algorithms representative of the state-of-the-art in the area, the experimental results
show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering
design.

Keywords: Differential Evolution, Constrained Optimization, Engineering Design, Evolutionary Algorithm,
Constraint Handling

1. Introduction f(X) is the objective function, g;(¥) isthe jth ine-

L ) . quality constraint and 4;(x) is the jth equality con-
Many real-world optimization problems involve multiple

constraints which the optimal solution must satisfy. Usu-
ally, these problems are also called constrained optimiza-
tion problems or nonlinear programming problems. En-
gineering design optimization problems are constrained
optimization problems in engineering design. Like a con-
strained optimization problem, an engineering design
optimization problem can be generally defined as follows
[1-4]:

Minimize f(X), X =[x,%p,.0,%,] € R”

Subject to g;(X)<0,j=12,..,q (1
hi(x)=0,j=q+1,9+2,..m
where L, <x; <U,;,i=12,.,D
Here, n is the number of the decision or parameter

variables (that is, X is a vector of size D), the ith
variable x; varies in the range [L;,U;]. The function
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straint. The decision or search space S is written as
S = Hil[Li,U,.] , the feasible space expressed as
F={xeS|g;(x)<0,j=12,.,q:h;(x) =0,/ =q+1,

q+2,..,m} is one subset of the decision space S (ob-

viously, F < §) which satisfies the equality and ine-

quality constraints.

Population-based evolutionary algorithm, mainly due
to its ease to implement and use, and its less suscepti-
bleness to the characteristics of the function to be opti-
mized, has been very popular and successfully applied to
constrained optimization problems [5]. And many suc-
cessful applications of evolutionary algorithms to solve
engineering design optimization problems in the special-
ized literature have been reported. Ray and Liew [6] used
a swarm-like based approach to solve engineering opti-
mization problems. He et al. [7] proposed an improved
particle swarm optimization to solve mechanical design
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optimization problems. Zhang et al. [8] proposed a dif-
ferential evolution with dynamic stochastic selection to
constrained optimization problems and constrained en-
gineering design optimization problems. Akhtar et al. [9]
proposed a socio-behavioural simulation model for en-
gineering design optimization. He and Wang [10] pro-
posed an effective co-evolutionary particle swarm opti-
mization for constrained engineering design problems.
Wang and Yin [11] proposed a ranking selection-based
particle swarm optimizer for engineering design optimi-
zation problems. Differential evolution (DE) [12,13], a
relatively new evolutionary technique, has been demon-
strated to be simple and powerful and has been widely
applied to both benchmark test functions and real-world
applications [14]. This paper introduces an adaptive dif-
ferential evolution (ADE) algorithm to solve engineering
design optimization problems efficiently.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the basic idea of DE. Section
3 describes in detail the proposed algorithm ADE. Sec-
tion 4 presents the experimental setup adopted and pro-
vides an analysis of the results obtained from our em-
pirical study. Finally, our conclusions and some possible
paths for future research are provided in Section 5.

2. The Basic DE Algorithm

Let’s suppose that X/ =[x/,,x!,,..,x] ] are solutions

at generation ¢, P'={X/,X5,.,Xy} is the population,

where D denotes the dimension of solution space, N

is the population size. In DE, the child population P'*!
is generated through the following operators [12,15]:

1) Mutation Operator: For each X/ in parent popu-

lation, the mutant vector v/*'

is generated according to
the following equation:

V=X Fx(F, - ) )
where #,r,1 €{1,2,...,N}\i are randomly chosen and

mutually different, the scaling factor F controls ampli-

. . . .. -t =t
fication of the differential variation (x,»z X, ).

2) Crossover Operator: For each individual X/, a
trial vector ﬁl-”l is generated by the following equation:

e Vi, if (rand < CR|| j = rand[1,D]) 3

i .
7 |xi;, otherwise

where rand is a uniform random number distributed be-
tween 0 and 1, rand[l,D] is a randomly selected index
from the set {1,2,...,D}, the crossover rate CR [0,l]
controls the diversity of the population.

3) Selection Operator: The child individual ¥*' is
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selected from each pair of X/ and "' by using gree-
dy selection criterion:
- :{ﬁ{”, GCASENIED) @

X; , otherwise

where the function f is the objective function and the

condition f(ii!*") < f(3¥') means the individual "'

is better than X/ .

Therefore, the conventional DE algorithm based on
scheme DE/rand/1/bin is described in Figure 1 [15].

3. The Proposed Algorithm ADE

3.1. Generating Initial Population Using
Orthogonal Design Method

Usually, the initial population P = {fclo ,fcg yeees )?R,} of
evolutionary algorithms is randomly generated as follows:
. . L0
VisSNVj<D:x;;=L;+1;x(U;-L)) 5)

where N is the population size, D is the number of

variables, r; is a random number between 0 and 1, the

jth variable of fcio is written as xg ;» which is initial-

ized in the range [L;,U;]. In order to improve the

search efficiency, this paper employs orthogonal design
method to generate the initial population, which can
make some points closer to the global optimal point and
improve the diversity of solutions. The orthogonal design
method is described as follows [16]:

For any given individual x =[x,x,,....,xp], the ith

1:  Generate initial population PO= {fclo ,ig yeees ER/}
2: Let t=0
3: repeat
4: for each individual )?l’ in the population Pl do
5:  Generate three random integers 7 , 7, and
6: me{l2,. ,N}\i,withn=mn=n
7:  Generate a random integer j, 4,4 € {1,2,...,D}
8: for each parameter j do
x! .+F><(x[ X! ),
41 73] U
9: U = if (rand < CR|| j = rand([l, D])
xf, J , otherwise
10:  end for
. - aq ot : 141
11: Replace x; with the child ;" in the population P" ",
12: ifa! *+1is better, otherwise % is retained
13:  end for
14: t=t+1
15:  until the termination condition is achieved

Figure 1. Pseudocode of differential evolution based on
scheme DE/rand/1/bin.
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decision variable x; varies in the range [L;,U;]. Here,
each x; is regarded as one factor of orthogonal design.
Suppose that each factor holds O levels, namely, quan-
tize the domain [L,U;] into O levels Q50O -
The jth level of the ith factor is written as «;;,

which is defined as follows:

Li 9j:1
. U,-L; .

a; ;=L +(j—1I)X é_l'),ZSJSQ_l (6)
Ui 7j:Q

And then, we create the orthogonal array M =
(b.;)vxp with D factors and Q levels, where N is

the number of level combinations. The procedure of con-
structing one orthogonal array M =(b; ;)y.p is de-

scribed in Figure 2.

Therefore, the initial population p° :(xgj)NxD is

generated by using the orthogonal array M =(b; ;) y«p
0

where the jth variable of individual ¥ is x;, =

a;p,

iJ

3.2. Multi-Parent Mutation Scheme

According to the different variants of mutation, there are
several different DE schemes often used, which are for-
mulated as follows [12]:

"DE/rand/1/bin":  v/*' = 55; + F x (J?ﬁz —7653) (7
"DE/best/1/bin": ¥/ =%, + F x (¥ —%.) ®)

"DE/current to best/2/bin"":

P = 4 F X (R — %)+ Fx (3 —3L) ©)
"DE/best/2/bin":

P = By + Fx (3L =3 )+ Fx (3, -5)  (10)
"DE/rand/2/bin":

VI = B Fx (3L -3+ Fx (3 - 3L (11)

L:for (i=1i<N;i++)

2: {py =int((i-1)/Q)mod Q9 ;p; = (i-1)mod Q }
3ifor (j=3;7<D;j++)

4:for (i=1;i<Nyi++)

5:{b; j=(biy x(j-2)+bp)mod Q}

6: Increment ; ; by one for 1<i<Nl<j<D

Figure 2. Procedure of constructing one orthogonal array
M =®)y.p -
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where X, is the best individual of the current popula-

tion. Usually, based on both the control parameter F and
the selected multiple parents, using these DE schemes
can only generate a vector after a single mutation. Tsutsui
et al. [17] proposed a multi-parent recombination with
simplex crossover in real coded genetic algorithms to
utilize the selected multiple parents and improve the di-
versity of offspring. Inspired by multi-parent recombina-
tion with simplex crossover, this paper proposes a novel
multi-parent mutation in differential evolution. The multi-
parent mutation is described in the following.

For each individual X; from the population P’ with
population size N, i=12,.,N. A perturbed vector

=t+l

v, is generated according to the following formula:
K
By weE R )
k=1

where 7,7,....,rx €{1,2,..,N}\i, K randomly chosen
integers are mutually different, and %, =X, . The

weighted value w,, is defined as follows:
E = randn(LK) , w =& / sum(&) (13)
where randn(l,K) is a 1-by- K matrix with normally

distributed random numbers, sum(gZ ) is used for calcu-

lating the sum of all components of the vector 3 , and
W=[wy, Wy ey Wi ]
According to the varying w , repeat Formulas (13) and

(12) for K times, K new vectors v, {1}, v/ {2}, ..,

—1+1
Vi

And then K vectors /"' {1}, X/*'{2}, -

1

{K} are generated from these K selected parents.
, ¥HKY are

created by crossover, repair and constraint handling de-

scribed in Subsections 3.3-3.5 respectively. Finally, an
offspring individual fcl-”l of the (z+1)th generation

population P'*! is obtained by selecting the best indi-

vidual from these K offspring and their common parent
=t
X -

3.3. Adaptive Crossover Rate CR

In conventional DE, the crossover rate CR is a constant
value between 0 and 1. This paper proposes an adaptive
crossover rate  CR , which is defined as follows:

CR = CRy x exp(—a()" b) (14)

where the initial crossover rate CR, is a constant value
and usually is set to 0.8 or 0.85, ¢ is the current genera-
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tion number and 7 is the maximal generation number,
b is a shape parameter determining the degree of de-
pendency on the generation number, @« and b are po-

sitive constants, usually a issetto2, b issetto 2 or 3.

At the early stage, DE uses a bigger crossover rate CR
to preserve the diversity of solutions and prevent prema-
ture; at the later stage, DE employs a smaller crossover
rate CR to enhance the local search and prevent the
better solutions found from being destroyed.

3.4. Repair Method

After crossover, if one or more of the variables in the

1
new vector "

are beyond their boundaries, the vio-
lated variable value ﬁi’;l is either reflected back from

the violated boundary or set to the corresponding bound-
ary value using the repair rule as follows [18,19]:

L. +u'*!
% if(p<1/3) A} <L)
L, if(1/3<p<2/3)a@ <L))
t+1 : t+1
S 2L —u;y,  if(p>2/3)A(ui <L)) (15)

] t+1
U, +u; "

J i,j - t+1
T,lf(pél/:;)/\(ui’j >U,)
U,,

t+1
2Uj —U;;,

if(1/3< p<2/)Aa@fl >U))

J
: 1+l
if(p>2/H)n@;; >U;)

where p 1is a probability and uniformly distributed ran-
dom number in the range[0,1].

3.5. Constraint Handling Technique of
Feasibility-Based Rule

In evolutionary algorithms for solving constrained opti-
mization problems, the most common method to handle
constraints is to use penalty functions. In general, the
constraint violation function of one individual X is
transformed by m equality and inequality constraints as
follows [4]:

G(F) = iw max(0,g (%)) + iw max(0,| b, (%) | —¢)” (16)

J=1 J=q+
where the exponent £ is usually setto 1 or 2, ¢ isa

tolerance allowed (a very small value) for the equality
constraints and the coefficient w; is greater than zero.

If X is a feasible solution, G(X)=0 , otherwise
G(X)>0. The function value G(X) shows that the
degree of constraints violation of individual x. g is

setto2and w; issetto ] in this study.
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In this study, a simple and efficient constraint handling
technique of feasibility-based rule is introduced, which is
also a constraint handling technique without using pa-
rameters. When two solutions are compared at a time, the
following criteria are always applied [1]:

1) If one solution is feasible, and the other is infeasible,
the feasible solution is preferred,

2) If both solutions are feasible, the one with the better
objective function value is preferred,

3) If both solutions are infeasible, the one with smaller
constraint violation function value is preferred.

3.6. Algorithm Framework

The general framework of the proposed algorithm ADE
is described in Figure 3.

4. Experimental Study

4.1. Constrained Optimization Problems in
Engineering Design

In order to validate the proposed algorithm ADE, we use
six benchmark test problems, which are commonly used

—_

Generate initial population PO= £ ,fcg,...,fc?;} using
orthogonal design method, set CRyand let =0
repeat

for each individual ?cl’ in the population P' do
Generate K random integers 1| , 75 , ..., g

€{1,2,..., N}\i, they are also mutually different

for each k € {1,2,..K} do
Apply multi-parent mutation to generate new

R A R s

vector + {k}

_
e

for each parameter j do
v kY,
if (rand < CR|| j = rand([1,D])

t .
Xij o s otherwise

—_
—_

uf iy =

12: If uf}l is beyond its lower or upper boundaries,

13:  repair rule is enforced
14:  end for
15:  end for

16:  Find out the best one i} *1 of the children

17: Gty altoy, L al Ky /apply the

18  feasibility—based rule */

~t+1

19:  Replace fc,t with u; " in the population pil s

200 if af *1is better, otherwise %! is retained
21:  end for

22: t=t+1

23:  until the termination condition is achieved

Figure 3. The general framework of the ADE algorithm.
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in the specialized literature, and which are described in
the following.
1) Three-bar truss design [8]:

Minimize f(¥) = (2+/2x, + x,) x!

. - 2x; +
Subjecttogl(x):%P—aﬁo,
x/Exl +2x,x,
- X,
g, (xX)=——=———P-0<0,
? ﬁxlz +2x,x,
- 1
g;(x)=—=—P-0<0
’ X +\/5x2
where 0<x <1 and O0<x,<I /=100cm,

P =2KN/cm?, and o =2KN/cm?’.
2) Spring design [8]:
Minimize f(¥) = (x3 +2)x,x3

3
X1 X3

Subjectto g;(¥) =1-———<0,
: 71785x
- 4xt —x,x 1
©@)=——T ot S -1<0
12566(x;x; —x5) 5108x;
- 140.45x
g3(%) =1-——"2<0,
X1 X3
g, (=22 _1<0

where 025<x, <1.3, 0.05<x, <20, and 2<x; <15
3) Pressure vessel design [9,20]:
Minimize f(¥) = 0.6224xx;, +1.778 be,x3 +3.166 Ix'x,
+19.84x7x,
Subject to g, (X) = —x; +0.0193x; <0,
2,(X) =—x, +0.00954x, <0,

g3(¥) = —mix, —%nxi +1,296,000<0,
g4(5f.) = X4 —240 < 0

where x; =0.0625xn;, x, =0.0625x1,, 1<n; <99,
1<n, <99, 10<x; <200, 10<x, <200.

4) Welded beam design [9]:

Minimize

F(¥) =1.10471x] x, +0.0481 1x3x, (14.0 + x,)
Subject to g, (X) = 7(x) = 7y <0,

max <

82(X) =0(x) =0 = 0,

g3(X)=x —x4 <0

24(F)=0.10471x? +0.0481 Ly, (14.0 + x,)
~50<0,

gs(F)=0.125—x, <0

gé()—c) = 5(x)_é‘max < 0’

Copyright © 2010 SciRes.
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g7(X)=P-P.(x)<0
The other parameters are defined as follows:

r(fc>=\/(r'>2+2”x2+(r")2, ret 2 ME
2R \/Exlxz J
2
x x X +x
M=P(L+-2), R=,2+(—)°,
(L+=5) 2 T
2 2
J XX, x_2+(X1+X3J . o(3) = 6PL2 ’
J2 |12 2 X4X3
3
5(F) = 4 PL
Ex 4 x3
4.013\ EGx3x§ /36
P.(%) = 374 15 £ )
L’ 2L V4G
where P =6000 Ib., L =141n, Omax =0.251n.,

E=30x10°psi, G =12x10°psi, 7, =13,600psi,
Opax =30,000psi,  0.1<x,<2.0, 0.1<x,<10.0,
0.1<x; <10.0, and 0.1<x, <2.0.
5) Speed reducer design [8]:
Minimize
F(¥) =0.7854x,x7 (3.3333x7 +14.9334x, — 43.0934)
—1.508x, (xg +x3)+7.4777(x; +x7)

+0.7854(x,x¢ +X5X7)

Subject to g, (X) = -1<0,
X1 X2 X3
_ 397.5
g,(x)= > 1=0,
X1 X3 X3
. 1.93x3
g3 (%) = ‘:—lsO,
XpX3Xg
1.93x3
g4 =" ~1<0,
XyX3X7
4 2 1 169x10°7"2
gs(;):[(7 54 /(x5%3)) +369X 07] -1<0,
110.0x6
4 2 1575%1007"2
g6(£):[(7 Sx5/(x,X3)) +3575X 0] ~1<0,
85.0X7
~ - 5
g7(x)=x2x3 _130,g8(x)=ﬁ—1S0,
0 X1
- X1
X)= —1SO,
g9(X) 12x,
. 1.5x,+1.9
g0 =————-1<0,
X4
. Llx;+19
gn(x) = ! -1<0
Xs
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IA

0.8,

where 2.6 <x; £3.6, 0.7 < x,
7.3 8.3,

17 <x; <28, 73<x4 <83,
29<x,<39, 50<x;<55.

6) Himmelblau’s Nonlinear Optimization Problem
[21]:

This problem was proposed by Himmelblau and simi-
lar to problem g04 [22] of the benchmark except for

the second coefficient of the first constraint. There are
five design variables. The problem can be stated as fol-
lows:

Minimize f(¥) = 5.3578547x3 +0.8356891x, x5
+37.293239x, —40792.141
Subject to g, (¥) = 85.334407 + 0.0056858x, x5
+0.00026x,x, —0.0022053 x5 ,
—92<0
g, (%) = —85.334407 — 0.0056858x, x
~0.00026x,x, +0.0022053;x5 <0,
24(¥) = 80.51249 +0.0071317x, x5

+0.0029955x,x, +0.0021813x2 ,
~110<0

24(%) = —80.51249 - 0.0071317x, x;
~0.0029955x,x, —0.0021813x2 ,
+90<0

25(¥) = 9.300961 + 0.0047026.x x5
+0.0012547x,x; +0.0019085x;x, ,
~25<0

g6 (%) =—9.300961—0.0047026.x3 x5
~0.0012547x,x, —0.0019085x;, ,

IA

=
wn

IA

+20<0
where 78<x, <102 33<x, <45, and 27<x; <45
(i =3,4,5).
264
—a— ADE
263.98 —— DE |4
263.96 | 1
Z 26394} .
263.92 f 1
2639 1
263.88 . s . .
0 1 2 3 4 5
FFES % 10°

Figure 4. Convergence graph for three-bar truss design.
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0.0145
—a— ADE
—w— DE
0.014 } b
Z 0.0135 } 1
0.013 | E
0.0125 . . A .
0 1 2 3 4 5 6
FFES X 10*

Figure 5. Convergence graph for spring design.

8500

—a— ADE
8000 f —»— DE J

7500 p E

7000 p J

f(x)

6500 F B

6000 f y

5500 L L L
0 2 4 6 8

FFES x10*

Figure 6. Convergence graph for pressure vessel design.

4.2. Convergence of ADE

In this section, Figures 4-9 depict the convergence graphs
for 6 engineering optimization problems described above
respectively. From Figures 4-6, we know that ADE and
DE all can be quickly convergent. In the figures, FFES is
the number of fitness function evaluations.

4.3. Comparing ADE with Respect to Some
State-of-the-Art Algorithms

In this experimental study, the parameter values used in
ADE are set as follows: the population size N =50, the
maximal generation number 7 =300, the level number

0= \_«/ﬁ J, the mutation parent number K =D +1, the

ENGINEERING
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3 x10*
—a— ADE -3.094
, —»— DE —a— ADE
1 —9— DE
25l i -3.096 H -
- 1 -3.098 } d
> -
= )
2.6 } ) =
-3.1 d
24| i -3.102 | :
N s s 3.104 . . A :
0 2 4 6 8 0 2 4 6 8 10
FFES x10* FFES x10°*

Figure 7. Convergence graph for welded beam design.

Figure 9. Convergence graph for Himmelblau’s nonlinear
optimization problem.

3050 -
r —a— ADE initial crossover rate CR, = 0.8, the coefficient a =2,
3040 —v—DE |- the shape parameter bh=3, the exponent f=2. The
number of fitness function evaluations (FFES) is equal
3030 1 to NxT'xK . The achieved solution at the end of
NxTxK FFES is used to measure the performance of
g 3020 1 ADE. ADE is independently run 30 times on each test
problem above. The optimized objective function values
3010 1 (of 30 runs) arranged in ascending order and the 15th
value in the list is called the median optimized function
3000 [ 1 value. Experimental results are presented in Tables 1-12.

oot And NA is the abbreviation for “Not Available”.

2990 : - - - For three-bar truss design problem, the experimental results
Y e 4 8 = = are given in Tables 1-2. According to Table 1, ADE and
FFES X10°* DSS-MDE [8] can obtain the approximate best and median

values, which are slightly better than those obtained by Ray

Figure 8. Convergence graph for speed reducer design.

Table 1. Comparison of statistical results for three-bar truss design over 30 runs.
Algorithms Best Median Mean Worst Std FFES
ADE 263.89584338 263.89584338 263.89584338 263.89584338 4.72e-014 45,000
DSS-MDE [8] 263.8958434 263.8958434 263.8958436 263.8958498 9.72e-07 15,000
Ray and Liew [6] 263.8958466 263.8989 263.9033 263.96975 1.26e-02 17.610

Table 2. Comparison of best solutions found for three-bar truss design.

Function ADE DSS-MDE (8] Ray and Liew [6] ECT [23] Ray and Saini [24]
X 0.7886751376014 0.7886751359 0.7886210370 0.78976441 0.795
X, 0.4082482819599 0.4082482868 0.4084013340 0.40517605 0.395
f(x) 263.895843376 263.8958434 263.8958466 263.896710000 264.300
FFES 45,000 15,000 17,610 55,000 2712
Copyright © 2010 SciRes. ENGINEERING
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Table 3. Comparison of statistical results for spring design over 30 runs.

Algorithms Best Median Mean Worst Std FFES
ADE 0.0126652328 0.0126652458 0.0129336018 0.02064372078 1.46e-03 60,000
SiC-PSO [20] 0.012665 NA 0.0131 NA 4.1e-04 24,000
FSA [25] 0.012665285 NA 0.012665299 0.012665338 2.2¢-08 49,531
DSS-MDE (8] 0.012665233 0.012665304 0.012669366 0.012738262 1.25¢-05 24,000
Ray and Liew [6] 0.01266924934 0.012922669 0.012922669 0.016717272 5.92¢-04 25,167
Coello [26] 0.01270478 0.01275576 0.01276920 0.01282208 NA 900,000

Table 4. Comparison of best solutions found for spring design.

Function ADE SiC-PSO [20] DSS-MDE [8] FSA [25] He et al. [7]
X, 0.35674653865 0.354190 0.3567177469 0.35800478345599 0.356750
X, 0.05169025814 0.051583 0.0516890614 0.05174250340926 0.051690
X3 11.28727756428 11.438675 11.2889653382 11.21390736278739 11.287126
f(x) 0.0126652328 0.012665 0.01265233 0.012665285 0.012665
FFES 60,000 24,000 24,00 49,531 15,000
Table 5. Comparison of statistical results for pressure vessel design over 30 runs.
Algorithms Best Median Mean Worst Std FFES
ADE 5885.3327736 5885.3327785 5885.3349564 5885.3769425 8.66e-03 75,000
SiC-PSO [20] 6059.714335 NA 6092.0498 NA 12.1725 24,000
Ray and Liew [6] 6171.00 NA 6335.05 NA NA 20,000
He et al. [7] 6059.714 NA 6289.929 NA 3.1et2 30,000
Montes et al. [3] 6059.702 6059.702 6059.702 6059.702 1.0e-12 24,000

and Liew [6] respectively. The mean and worst values
obtained by ADE are the best among three algorithms,
while the FFES (45,000) of ADE is also the highest. And
we also find that these algorithms can find the near-op-
timal solutions. From Table 2, we can see that ADE can
find the best value when compared with respect to
DSS-MDE [8], Ray and Liew [6], ECT [22] and Ray and
Saini [23]. The best result obtained by ADE is

f(X)=263.8958433764684,
corresponding to
X =[x ,x,]=[0.78867513760142, 0.40824828195990]
and constraints
[g1(X), &2(%), g3(x) ]
=[0, -1.46410162480516, -0.53589837519484].

For spring design problem, the experimental results
are given in Tables 3-4. According to Table 3, ADE,
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Sic-PSO [20], FSA [24], DSS-MDE [8] can find out the
best value when compared with respect to Ray and Liew
[6] and Coello [25]. The median value obtained by ADE
is better than obtained by other methods, but the mean
and worst values are worse, this is because that ADE can
only find 29 near-optimal solutions in 30 runs and the
other is an exception solution (i.e., the worst value is
0.02064372078). Table 4 presents the detail of each best
value obtained by ADE, SiC-PSO [20], DSS-MDE [§],
FSA [24] or He et al. [7] respectively. The best result
obtained by ADE is

f(x)=0.01266523278832,

corresponding to

xX=[x,x;,x3]
=[0.35671785021031, 0.05168906567225,
11.28895927857073]

and constraints
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[g1(X),g2(X), g3(X), g4(¥)]
=[-2.220446049250313¢-016, -4.4408
92098500626¢-016, 4.05378584839796,
-0.72772872274496].

For pressure vessel design problem, the experimental
results are given in Tables 5-6. According to Table 5, the
best, median, mean, worst and standard deviation of val-
ues obtained by ADE are the best when compared with
respect to Sic-PSO [20], Ray and Liew [6], He ef al. [7],
and Montes et al. [3], while the FFES (75,000) of ADE
is also the highest. Table 6 presents the detail of each
best value obtained by ADE, SiC-PSO [20], Ray and
Liew [6], He et al. [7] or Montes et al. [3] respectively.
The best result obtained by ADE is

f(x)=5885.332773616458,
corresponding to
'E:[xl ,Xz ,X3,X4]

=[0.778168641375, 0.384649162628,
40.319618724099, 200]

and constraints

[g1(X),g,(X), g3(X), g4(X)]
=[-1.110223024625157¢-016,0,0,-40].
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For welded beam design problem, the experimental
results are provided with Tables 7-8. According to Table
7, the best, median, mean, worst and standard derivation
of values obtained by ADE are slightly worse than those
obtained by DSS-MDE [8] and are better than those ob-
tained by Ray and Liew [6], FSA [25] and Deb [1].
However, the FFES (75,000) of ADE is the highest. Ta-
ble 8 presents the detail of each best value obtained by
DSS-MDE (8], He et al. [7], FSA [25], Ray and Liew [6],
and Akhtar et al. [9] respectively. The best result ob-
tained by ADE is

f(x)=12.3809565 8032252,

corresponding to
xX=[x,%y,x3,%4]
=1[0.24436897580173, 6.21751971517460,

8.29147139048 684, 0.24436897580173]
and constraints

[g1(X), g2(X), g3(X), g4(%), g5(X), g6(xX), g7(x)]

=[-1.091393642127514e-011, -3.310560714453459¢-010,
-1.387778780781446e-016, -3.02295458760400,
-0.11936897580173, -0.23424083488769,
-1.273292582482100e-011].

Table 6. Comparison of best solutions found for pressure vessel design.

Function ADE Sic-PSO [20] Ray and Liew [6] He et al. [7] Montes et al. [3]
X 0.7781686414 0.812500 0.8125 0.8125 0.8125
X, 0.3846491626 0.437500 0.4375 0.4375 0.4375
X3 40.319618724 42.098445 41.9768 42.098446 42.098446
Xy 200 176.636595 182.9768 176.636052 176.636047
S(x) 5885.3327736 6059.714335 6171.0 6059.7143 6059.701660
FFES 75,000 24,000 20,000 30,000 24,000
Table 7. Comparison of statistical results for welded beam design over 30 runs.
Algorithms Best Median Mean Worst Std FFES
ADE 2.380956580 2.380956580 2.380956585 2.380956708 2.35e-08 75,000
DSS-MDE [8] 2.38095658 2.38095658 2.38095658 2.38095658 3.19e-10 24,000
Ray and Liew [6] 2.3854347 3.2551371 3.0025883 6.3996785 0.959078 33,095
FSA [25] 2.381065 NA 2.404166 2.488967 NA 56.243
Deb [1] 2.38119 2.39289 NA 2.64583 NA 40,080
Copyright © 2010 SciRes. ENGINEERING
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Table 8. Comparison of best solutions found for welded beam design.

Function ADE DSS-MDE [8] He et al. [7] FSA [25] Ray and Liew [6] Akhtar et al. [9]
X, 0.24436897580 0.2443689758 0.244369 0.24435257 0.244438276 0.2407
X, 6.21751971517 6.2175197152 6.217520 6.2157922 6.237967234 6.4851
X3 8.29147139049 8.2914713905 8.291471 8.2939046 8.288576143 8.2399
Xy 0.24436897580 0.2443689758 0.244369 0.24435258 0.244566182 0.2497
f(x) 2.38095658032 2.38095658 2.380957 2.381065 2.3854347 2.4426
FFES 75,000 24,000 30,000 56,243 33,095 19,259
Table 9. Comparison of statistical results for speed reducer design over 30 runs.
Algorithms Best Median Mean Worst Std FFES
ADE 2994.4710662 2994.4710662 2994.4710662 2994.4710662 1.85e-012 120,000
DSS-MDE [8] 2994.471066 2994.471066 2994.471066 2994.471066 3.58e-012 30,000
Ray and Liew [6] 2994.744241 3001.758264 3001.7582264 3009.964736 4.0091423 54,456
Montes et al. [27] 2996.356689 NA 2996.367220 NA 8.2e-03 24,000
Akhtar et al. [9] 3008.08 NA 3012.12 3028 NA 19,154
Table 10. Comparison of best solutions found for speed reducer design.
Function ADE DSS-MDE [8] Ray and Liew [6] Montes et al. [27] Akhtar et al.[9]
X, 3.5 3.5 3.50000681 3.500010 3.506122
X, 0.7 0.7 0.70000001 0.7 0.700006
X 17 17 17 17 17
Xy 7.3 7.3 7.32760205 7.300156 7.549126
Xs 7.715319911478 7.7153199115 7.71532175 7.800027 7.859330
Xg 3.350214666096 3.3502146661 3.35026702 3.350221 3.365576
X7 5.286654464980 5.2866544650 5.28665450 5.286685 5.289773
Sx) 2994.4710662 2994.471066 2994.744241 2996.356689 3008.08
FFES 120,000 30,000 54,456 24,000 18,154
Table 11. Comparison of statistical results for himmelblau’s nonlinear optimization problem.
Algorithms Best Median Mean Worst Std FFES
ADE -31025.56024 -31025.56024 -31025.56024 -31025.56024 5.91e-010 90,000
COPSO [28] -31025.56024 NA -31025.56024 NA 0 200,000
HU-PSO [29] -31025.56142 NA -31025.56142 NA 0 200,000
Copyright © 2010 SciRes. ENGINEERING
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Table 12. Comparison of best solutions found for himmelblau’s nonlinear optimization problem.

Function ADE COPSO [28] HU-PSO [29] Colleo [21] Homaifar et al. [30]
X, 78.00000000000000 78 78.0 78.0495 78.0000
X 33.00000000000000 33 33.0 33.0070 33.0000
X 27.07099710517604 27.070997 27.070997 27.0810 29.9950
X 45.00000000000000 45 45.0 45.0000 45,0000
X5 44.96924255010549 44.969242 44.96924255 44.9400 36.7760
f(x) -31025.56024249794 -31025.56024 -31025.56142 -31020.859 -30665.609
FFES 90,000 200,000 200,000 NA NA

For speed reducer design problem, the experimental
results are given in Tables 9-10. According to Table 9,
the best, median, mean, worst and standard derivation of
values obtained by ADE and DSS-MDE [8] are superior
to those obtained by Ray and Liew [6], Montes ef al. [27]
and Akhtar et al. [9] respectively, while the FFES
(120,000) of ADE is the highest. Table 10 shows the
detail of each best value obtained by ADE, DSS-MDE
[8], Ray and Liew [6], Montes et al. [27] and Akhtar et
al. [9] respectively. The best result obtained by ADE is

f(X) =2994.47106614682020,

corresponding to

X=[x,X,X35, X4,X5,X6,%7]
=1[3.5,0.7, 17, 7.3, 7.71531991147825,
3.35021466609645, 5.28665446498022]

and constraints

[gl('i:) ’ g2(5é) > gS(i:) ’ g4(5‘;) > gS(EE) ’ g6(5‘:) s g7(5‘:) s

85(%),g9(¥), g10(X), g1 (X)]

=[-0.07391528039787, -0.19799852714195,
-0.49917224810242, -0.90464390455607,
-6.661338147750939¢-016, 0, -0.70250000000000,
-2.220446049250313¢-016, -0.58333333333333,
-0.05132575354183, -8.881784197001252e-016].

For Himmelblau’s nonlinear optimization problem, the
best, median, mean, worst and standard derivation of
values is shown in Tables 11-12, it is clearly seen that
ADE, COPSO [28], and HU-PSO [29] all can find one
near-optimal solution after a single run. Additionally,
ADE only requires 90,000 FFES, which is superior to
other several algorithms, such as COPSO [28] 200,000
FFES and HU-PSO [29] 200,000 FFES. The best result
obtained by ADE is

f(¥) =-3.1025.56024249794,

corresponding to

Copyright © 2010 SciRes.

X=[x,%y,X5,X4,%X5 ]
=[78,33,27.07099710517604, 45,
44.96924255010549]

and constraints

[g1(X),g,(X) ’g3(£)3g4(;€) ags(;f), gé(i) ]
=[0, -92, -9.59476568762383, -10.40523431237617,
-5, 0].

In sum, compared with respect to several state-of-the-
art algorithms, ADE can perform better on six bench-
mark test problems. It is clearly shown that ADE is fea-
sible and effective to solve constrained optimization
problems in engineering design. The reason is that ADE
uses multi-parent mutation to generate a better offspring,
and applies self-adaptive control parameter and effective
repair rule etc.

5. Conclusions and Future Work

This paper proposes an adaptive differential evolution
(ADE) algorithm for constrained optimization in Engi-
neering Design. Firstly, ADE employs the orthogonal
design method to generate the initial population to im-
prove the diversity of solutions. Secondly, a multi-parent
mutation scheme is developed to improve the capacity of
exploration and the convergence speed of ADE. Thirdly,
in order to improve the adaptive capacity of crossover
operator, a new approach to adjusting the crossover rate
is presented. In addition, ADE introduces a new repair
rule and a constraint handling technique of the feasi-
ble-based rule is also applied when comparing two solu-
tions at a time. Finally, ADE is tested on six constrained
engineering design optimization problems taken from the
specialized literature. Compared with respect to several
state-of-the-art algorithms, the experimental results show
that ADE is highly competitive and can obtain good re-
sults in terms of a test set of constrained optimization

ENGINEERING
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problems in engineering design. However, there are still
some things to do in the future. Firstly, we will further
validate ADE in the case of higher dimensions. Secondly,
we also will take some measures to improve the conver-
gence speed during the evolutionary process. Addition-
ally, testing some initial parameters of ADE is another
future work.
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