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Abstract 
Toxoplasma gondii (T. gondii) an intracellular protozoan parasite, infects 
mammals including human population world-wide. Upon primary infection, 
the parasite contributes to mild flu like symptoms in immune competent host, 
but life threatening complication is seen in immune compromised patients 
and in pregnant women. Understanding the host-parasite interaction is criti-
cal for understanding the pathogenesis and biology parasite reactivation in 
the host. In this study, we used proteotrasncriptomics analyses by integrating 
the transcriptomics and proteomics data of T. gondii infected mouse liver to 
uncover the effector molecules responsible for disease pathogenesis that can 
be used as candidate markers for diagnosis and drug target. With this aim, we 
systematically integrated transcriptomicand proteomic data, representing the 
parasite infected mouse liver. Out of 2758 differentially expressed genes (DEGs) 
and 301 differentially expressed proteins (DEPs), 159 overlapping genes were 
identified. Among them, 86 genes were upregulated and 72 were downregu-
lated in their respective mRNA and protein levels in the infected condition. 
Gene Ontology (GO) analysis revealed that the upregulated genes were most-
ly associated with immune system processes whereas the downregulated genes 
were involved in oxidation-reduction process and metabolism of lipid, and 
fatty acids. Protein-protein interaction (PPI) network analysis uncovered an 
interaction-hub including, Psmb8, Psmb9 and Tap1 for upregulated proteins 
and Cyp1A2, Cyp4A10 and Cyp3A11 for down-regulated proteins. Further 
studies are needed to validating these effector molecules. These molecules are 
likely to play a vital role in disease pathogenesis, as well as can be used as po-
tential diagnostic marker and drug target candidates. 
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1. Introduction 

Toxoplasmosis is one of the major public health problems world-wide, and is 
caused by an apicomplexian protozoan parasite Toxoplasma gondii [1]. T. gon-
dii is unique in nature, because it can infect all type of nucleated cells of warm- 
blooded animals and humans [2]. Major transmission routes of the parasite can 
be oocysts contaminated foods, water and vegetables [3], ingestion of under-
cooked meat and meat products [2] and congenital transmission from T. gondii 
infected pregnant women [4] [5] and blood transfusion/organ transplantation 
[6] [7]. Generally, the primary infection is asymptomatic or with mild flu-like 
symptoms in immune competent host, but can be fatal and severe in immune 
compromised individual and fetus bearing pregnant women [8]. 

T. gondii is critical in a sense that it can evade the immune system after acute 
infection and thereby undergoes developmental switching from fast replicating 
tachyzoite to slow replicating dormant bradyzoite preferentially in skeletal mus-
cle and brain [9] [10]. This transformation from one parasite stage to another 
establishes chronic infection. As the parasite can infect any cells, it can affect 
other organs including heart [11], eyes [12], kidney [13] and liver [14]. Liver is 
an important organ where the entire metabolism e.g. carbohydrate, lipids, pro-
teins, detoxification of xenobiotics and drugs takes place [15]. Many studies 
show that the parasite causes a number of pathological changes in liver including 
hepatitis, granuloma hepatomegaly and necrosis [14]. Furthermore, Ustun and 
colleagues has shown that T. gondii infection can be associated with liver cirrho-
sis [16]. These data nevertheless confirm the existence of hepatic toxoplasmosis. 
It has to be stressed that understanding of host parasite interaction is important 
for disease pathogenesis and designing new drugs. Recently, He J-J and col-
leagues has performed transcriptome and proteome analysis of T. gondii in-
fected mouse liver to understand the impact of infection on host liver both at 
RNA and protein level [17] [18]. The authors identified differentially regulated 
genes (n = 2758) and proteins (n = 301) including up-and down-regulated genes 
and proteins in T. gondii infected mouse liver compared to non-infected one 
[17] [18]. However, one of the major limitations of the studies was to overlook 
the correlation of gene expression at both mRNA and protein level. This is im-
portant, because the entire transcript at RNA level does not participate in pro-
tein synthesis through translation which suggests the presence of epigenetic reg-
ulation at transcription or translation level. Therefore, this study has been de-
signed to integrate both transcriptome and proteome data set of T. gondii in-
fected mouse liver for identifying the genes those are regulated as same fashion 
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in both transcription and translation. Herein, we have integrated whole tran-
scriptome shotgun sequencing (RNAseq) and tandem mass spectrometry (LC- 
MS/MS) proteomics of T. gondii infected mouse liver to get better understand-
ing of host-parasite interaction and molecular mechanism of disease pathogene-
sis. The integrated analysis of transcriptomics and proteomics data merges large 
number of RNA transcripts with relatively less number of proteins to find out 
common candidates by cross matching the sequence identifier. The outcome of 
this integrated technology helps further analysis on gene ontology to discover 
accurate biological role of selected and common transcript/proteins. 

A large number of cellular processes are mediated by physical interactions 
among proteins such as, signal transduction, enzyme activity, and post-translational 
modification. A protein-protein interaction (PPI) network has a small number 
of highly connected protein nodes (known as hubs) and many poorly connected 
nodes. These hub proteins are the most important for survival and reproduction 
of that particular organism. They may function as effector molecules for disease 
pathogenesis, diagnostic marker and drug target. As homology modeling of 
these hub proteins were also analyzed in this study, the information might be 
useful to get a rough idea where the alpha carbons of key residues sit the folded 
protein. They can guide site-directed mutagenesis experiments, or hypotheses 
about structure-function relationships. Even within the pharmaceutical industry 
homology modeling can be valuable in structure-based drug discovery and drug 
design. 

All of these analyses were done on integrated transcriptomic and proteomic 
data. So, findings of our study may provide useful insights of pathogenesis of T. 
gondii infection and host-parasite interaction. 

2. Methods and Materials 
2.1. Retrieval of Data Set 

Raw data files of transcriptome and proteome analyses of T. gondii infected 
mouse liver were retrieved separately from online database deposited from the 
study of He J-J and colleagues [17] [18]. Briefly, in these studies BLALB/c mice 
and PYS strain were used as host and T. gondii parasite respectively. Three mice 
were either infected with T. gondii tachyzoite (n = 200) and/or were treated with 
PBS for non-infected control. Liver tissues were collected from 6 days post in-
fected and control mice for experimental analysis. RNA sequencing and LC-MS 
analysis were performed with the infected and non-infected liver tissue to de-
termine gene expression pattern at RNA level and protein profiling at protein 
level. From the raw data set, differentially regulated genes and proteins files were 
sorted and used for further analysis in this study. Outline of the whole procedure 
is shown in Figure 1. 

2.2. Analysis of Differentially Expressed Genes and Proteins  

Venn analysis was performed with differentially expressed genes and proteins to  
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Figure 1. A schematic representation of the workflow for analyzing transcriptome and 
proteome data. Abbreviations: DEG, Differentially Expressed Gene; DEP, differentially 
expressed b proteins; DAVID, Database for Annotation, Visualization and Integrated 
Discovery; PPI, Protein-Protein Interaction; STRING, Search Tool for the Retrieval of 
Interacting Genes/Proteins; CytoNCA, A Cytoscape apps for network centrality analysis; 
MCODE, a cytoscape apps for molecular complex detection. 
 
find out the common transcripts those are translated into proteins using Venn 
diagram online software of the VIB/UGent  
(http://bioinformatics.psb.ugent.be/webtools/Venn/). Transcript those trans-
lated into proteins was further analyzed in pursues software  
(http://www.coxdocs.org/doku.php?id=perseus:start) to find out up and  
down-regulated DEGs/DEPs. The program provided a scatter diagram which 
clearly showed these two groups separately.  

GO analysis was performed on 159 DEGs/DEPs to study the global biological 
changes in liver function after T. gondii infection by using DAVID (Data-base 
for Annotation, Visualization, and Integrated Discovery) tool. The tool was used 
for gene ontology search to investigate biological processes, cellular components 
and molecular functions. GO terms having an EASE score (a modified Fisher 
Exact P-Value) less than 0.05 and Count (number of DEGs/DEPs involved in 
any GO terms) equal or greater than 5 were considered.  

Differentially expressed up and down regulated genes/proteins were also ana-
lyzed through Cytoscape 64-bit program for identification of their association on 
different pathways including biological process, cellular process and molecular 
function.  
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2.3. Analysis of Protein-Protein Interaction 

Protein-protein interaction network was also prepared by using both STRING 
and Cytoscape program. Protein-protein interactions were generated in STRING 
and subsequently the interaction network was imported into Cytoscape software 
for visualization and further analysis. STRING parameters were kept as it is 
(minimum required interaction score (medium confidence) was 0.4 and as 
maximum number of interactors, only query proteins being displayed. Average 
local clustering coefficient of this PPI was 0.754 and PPI enrichment p-value was 
less than 1.0e−16. These proteins were found to interact among themselves than 
expected. 

2.4. Analysis of mRNA-Protein Stability 

Data containing protein and mRNA copy numbers, half-lives, transcription rate 
and translation rate constants in mouse fibroblasts (NIH3T3) was downloaded 
from online repository [19]. In this study they used amino acids and a nucleo-
side analogue 4-thiouridine (4sU) for labelling to measure simultaneously protein 
and mRNA turnover in a population of exponentially growing non-synchronized 
NIH3T3 mouse fibroblasts. They quantified proteins by liquid chromatography 
and online tandem mass spectrometry (LC-MS/MS) and identified 84,676 pep-
tide sequences. Later they assigned them to 6445 unique proteins (false discovery 
rate, 1% at the peptide and protein level). After pulse labelling, they fractionated 
RNA samples into the newly synthesized and pre-existing fractions and analyzed 
them by mRNA sequencing and quantified by mapping reads to their exonic re-
gion. They calculated mRNA half-lives based on the ratios of newly synthesized 
RNA/total RNA ratio and the pre-existing RNA/total RNA ratio. On the other 
hand, proteins were five times more stable than mRNAs. Notably, they did not 
find any correlation between protein and mRNA half-lives (R2 = 0.02). So, to in-
vestigate the experimental noise they performed a second independent large-scale 
experiment and measured mRNA and protein levels and their half-lives again. 
The overall correlation of half-lives and levels between both replicates was good. 
They deposited the raw data to publicly available online database.  

3. Results 

Proteotranscriptomics approach has not been utilized to its full potential to 
study the host-pathogen interactions. Here, we integrated transcriptomic and 
proteomic approaches to identify factors involved in the pathogenesis of Toxop-
lasma gondii (T. gondii) infected mouse liver. Recently, He J-J et al. studied 
transcriptome and proteome of mouse liver before and after T. gondii infection 
using RNA sequencing [17] and liquid chromatography-mass spectrometric 
(LC-MS/MS) technique [18]. The authors deposited the raw data to publicly 
available online database. Herein, raw data files of transcriptome and proteome 
of T. gondii infected mouse liver were retrieved separately and used for further 
analysis to integrate both approaches for searching novel factors involving dis-
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ease pathogenesis and drug target. 

3.1. Identification of Common Differentially Expressed  
Genes/Proteins 

From transcriptome analysis of T. gondii infected mouse liver, 18,000 transcripts 
were identified at RNA level [17]. Among them 2758 transcripts were differen-
tially expressed. On the other hand, proteome analysis of T. gondii infected 
mouse liver revealed 3700 proteins of which 301 were differentially expressed 
[18]. 

After analyzing 2758 differentially expressed genes (DEGs) and 301 differen-
tially expressed proteins (DEPs), common DEGs and DEPs expressed in both 
transcriptome and proteome level were identified by merging two datasets in 
Perseus software. Results revealed that 159 DEGs/DEPs were expressed at both 
RNA and protein level as shown in Figure 2(a). Our data also showed that 2599  
 

 
Figure 2. (a) Venn diagram of differentially expressed genes/proteins of T. gondii in-
fected mouse liver. Transcriptomic analysis of T. gondii infected mice liver identified 
2758 DEGs and proteomic analysis of infected mouse liver identified 301 DEPs in T. gon-
dii infected mice liver. After analysis 159 DEGs/DEPs were found at both RNA and pro-
tein level. (b) Scatter diagram of common 159 differentially regulated genes/proteins. 
Perseus software was used to create this figure using transcriptomic Log2 and proteomic 
Log2 data of 159 DEGs/DEPs. 
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DEGs were only found at RNA level whereas 142 DEPs were found at protein 
level. List of common 159 DEGs/DEPs are shown in supplementary Table S1. 

3.2. Identification of Up and Down-Regulated Genes/Proteins 

Among these 159 differentially expressed genes/proteins, 86 were found to be 
up-regulated while 72 were down-regulated (Supplementary Table S2 and Table 
S3, respectively) using Perseus software. These DEGs/DEPs were used to create a 
scatter plot with four quadrants (Figure 2(b)) where quadrant I revealed 86 
DEGs/DEPs (orange) which had increased level of expression that indicates 
higher transcriptomic and proteomic log2 value. In quadrant III, there were 72 
DEGs/DEPs (purple) which had low transcriptomic and proteomic log2 value. 
Quadrant II represented one single DEGs/DEPs (blue) which was considered as 
mixed expression and deviated from its principle. From this figure it was also 
found that no DEGs/DEPs had fallen into quadrant IV. 

3.3. Gene Ontology (GO) Analysis of Up-Regulated Genes/Proteins 

GO analysis was performed on 159 DEGs/DEPs to study the global biological 
changes in liver function after T. gondii infection by using DAVID. This reveals 
that 86 up-regulated genes/proteins were associated with 17 biological processes, 
16 cellular components and 10 molecular functions (Supplementary Table S4). 
Different GO terms and its participating DEGs/DEPs number were used to pre-
pare Figures 3(a)-(c). Among 17 biological processes top four processes (Im-
mune System Process, Innate Immune Response, Cellular Response to Interfe-
ron-beta and Adaptive Immune Response) have significant FDR value and larg-
est number of genes enriched. From GO analysis it was also found out that the 
up-regulated gene products mainly enriched in the extracellular exosome (44), 
blood micro-particle (14), extracellular space (25) and extracellular region (24). 
These were the top 4 terms of GO cellular component having significant FDR 
value. Cytoplasm and membrane were two other cellular components having 
large number of DEGs/DEPs enriched (38 and 37 respectively) but their FDR 
value was high. So, they were not considered as enriched terms. Similarly, Figure 
3(c) revealed that “GTPase activity” (FDR = 0.0029), “GTP binding” (FDR = 
0.034), “Serine-type endopeptidase inhibitor activity” (FDR = 0.196) and “Pep-
tidase inhibitor activity” (FDR = 0.196) were the most enriched term with 9, 10, 
6 and 6 genes hits respectively.  

3.4. Gene Ontology (GO) Analysis of Down-Regulated  
Genes/Proteins 

72 down regulated DEGs/DEPs were found to be associated with 7 biological 
pathways, 10 cellular components and 15 molecular functions (Figures 4(a)-(c)). 
GO terms along with their associated genes were listed in supplementary Table 
S5. Among 7 biological pathways, oxidation-reduction process, metabolic 
process, lipid metabolic process and transport were the top four terms having 
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Figure 3. (a) Gene ontology for biological process analysis of up-regulated genes/proteins. 
(b) Gene ontology for cellular component (CC) annotation of up-regulated genes/proteins. 
(c) Gene ontology molecular function (MF) annotation of up-regulated genes/proteins. 
 
the largest number of genes enriched. Down-regulated cellular component and 
associated differentially expressed genes/proteins were shown in Figure 4(b). 
This figure revealed that the down-regulated gene products mainly located in the 
Organelle Membrane (12), Mitochondria (26), Endoplasmic Reticulum Mem-
brane (17) and Intracellular Membrane-bounded Organelle (17). These were the 
top four terms of GO cellular component having significant FDR value. 
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Figure 4. (a) Gene ontology for biological process analysis of down-regulated genes/proteins. 
(b) Gene ontology for cellular component (CC) annotation of down-regulated genes/proteins. 
(c) Gene ontology for molecular function (MF) annotation of down-regulated genes/ 
proteins. 
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From this analysis it was also found out that Oxidoreductase activity, Monoox-
ygenase activity, Heme binding and Catalytic activity were the most enriched 
term with 24, 12, 13 and 16 genes hits respectively (Figure 4(c)). 

3.5. Gene Ontology Analysis of Unique Differentially Expressed 
Transcript (DETs) and Differentially Expressed Proteins 
(DEPs) 

From the Figure 2(a) it was found that 2599 differentially expressed transcripts 
didn’t take part in translation. That’s why these 2599 DETs and 142 DEPs were 
considered as unique. According to DAVID tool, 318 biological processes were 
found to be associated with 2599 DETs. Top 20 GO terms were shown in sup-
plementary Figure 1(a). 203 DETs fell into the category of “Oxidation-reduction 
process”, whose FDR value was 5.26E−40. The category of “Immune system 
process” (FDR = 3.86E−24), “Inflammatory response” (FDR = 1.09E−18), “Me-
tabolic process” (FDR = 6.39E−18) were associated with 120, 103, 123 DETs re-
spectively. These were the significantly enriched biological processes with the 
largest number of DETs hits. Similarly, GO annotation also revealed that 18 bi-
ological processes were associated with 142 differentially expressed proteins 
(Supplementary Figure S1(b)). According to the supplementary Figure S1(b), 
DEPs were associated with “Protein folding” (FDR = 0.011936) whereas, 14 DEPs 
with “Translation” (FDR = 0.026348). These were the significantly enriched GO 
terms with the largest number of DEPs hits. 22 DEPs fell into the category of 
“Transport” (FDR = 52.771). In spite of associating with large number of DEPs 
this GO term was not considered as significant due to its FDR value. 

3.6. Protein-Protein Interaction (PPI) Analysis of Common DEPs 

From gene ontology annotation it was found that immune system process is the 
most significantly enriched up-regulated biological process and oxida-
tion-reduction process is the most significant down-regulated biological process 
in T. gondii infection. Protein-protein interaction (PPI) network of DEPs asso-
ciated with these biological processes (immune system process and oxida-
tion-reduction process) was generated by STRING (Search Tool for the Retrieval 
of Interacting Genes/Proteins) database. This data then imported into Cytoscape 
(https://cytoscape.org/) software to visualize the protein interaction relationship 
network and to analyze significant clusters and hub proteins. Data showed that 
Immune system processes were mediated by 26 DEPs in mouse. According to 
DAVID output this was the top-most biological process having a significant 
FDR value (5.75E−21) which was up-regulated after T. gondii infection. Al-
though GO analysis showed that 26 up-regulated proteins were involved in im-
mune system process, after generating a PPI in STRING it was found that one 
protein, Pml, does not interact with any other protein. So, after filtering out dis-
connected protein, a PPI network containing 76 interactions for a total of 25 
DEPs was generated as shown in Figure 5(a). Such enrichment (25 DEPs had 76  
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Figure 5. (a) Protein-protein interaction (PPI) among up-regulated proteins involved in 
immune system process. Nodes represent proteins (brown color) while, blue arrow 
represents interaction between proteins. (b) Protein-protein interaction (PPI) among 
down-regulated proteins involved in oxidation-reduction process. Nodes (purple color) 
represent proteins while, blue arrow represents interaction between proteins. 
 
interactions) suggested that the proteins were at least partially biologically con-
nected, as a group. 25 DEPs which were involved in this PPI, were Ifit3, Serp-
ing1, Fgb, Fga, Samhd1, C3, Serpina3g, Cd74, Lcn2, Irgm1, Gbp2b, Tap1, 
S100a9, Tap2, Zbp1, Psmb9, Anxa1, Psmb8, Cfh, Cd14, H2-K1, Fgg, Ifit1 and 
H2-Aa. Gene ontology analysis of 72 down-regulated DEPs revealed that the top 
most biological process was oxidation-reduction process having a significant 
FDR value (2.60E−17). Analysis result showed that 26 DEPs were involved in 
this process. A protein-protein interaction (PPI) among these 26 proteins was 
generated in STRING database and imported the data into Cytoscape software 
for visualization. Among these 26 DEGs/DEPs, Me1 did not interact with other 
proteins. Figure 5(b) was designed after filtering out this disconnected protein. 
Default parameters were used as before. A PPI network containing 79 interac-
tions for a total of 25 DEPs was generated in Cytoscape software. Average local 
clustering coefficient of this interaction is 0.615 and PPI enrichment p-value is 
less than 1.0e−16. This indicated that these proteins interacted among them-
selves than expected. 25 DEPs of this PPI were Fmo3, Cyp3a16, Cyp2b9, Cyp8b1, 
Cyp3a11, Hsd17b6, Bbox1, Cyp2c29, Pah, Cat, Ido2, Fads2, Ndufb6, Ndufb5, 
Hsd3b3, Ehhadh, Uqcrfs1, Cyp4a10, Cyp2c50, Cyp3a25, Cyp2c54, Cyp1a2, 
Acadsb, Hao2, and Aldh3a2. 

3.7. Determination of mRNA-Protein Stability Using Half Life 

Snapshot analysis of mRNA and protein levels alone cannot provide sufficient 
information to understand the dynamic nature of gene expression comprehen-
sively. Of note the impact of mRNA and protein half-lives on their respective 
abundance may provide important insight into the regulatory pattern. We took 
advantage of the mRNA and protein half-lives datasets in moue fibroblast cells 
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from Bjorn Schwanhausser et al. In brief, the authors quantify cellular mRNA 
and protein expression levels and turnover in parallel in a population of unper-
turbed moue fibroblast cells by Pulse labelling to determine mRNA and protein 
half-lives [19].  

Among the 159 common DEGs/DEPs which were identified in this current 
study, only 51 DEGs/DEPs were found to be matched from the half-life retrieved 
data. Again, among these 51 DEGs/DEPs, 31 had known stability according to 
retrieved data. These 31 DEGs/DEPs and their stability were enlisted in Table 1. 
Using these 31 DEGs/DEPs a scatter plot was generated for better understanding 
by using ggplot package of R programming language which was shown in Figure 
6. Identification of the stability was based on half-lives of a particular gene on its 
mRNA and protein level. Intestinally, the hub-protein Tap1 showed higher mRNA 
and protein half-lives implying that hub-proteins may have higher mRNA and 
protein stability to carry out biological functions. 

4. Discussion 

Study of host-pathogen interaction is important for understanding the disease 
pathogenesis and drug treatment. Recently, He J-J and colleagues did transcrip-
tome and proteome analysis separately on T. gondii PYS strain infected BALB/c  
 
Table 1. List of common DEGs/DEPs along with their stability. 

mRNA Stable, 
Protein Stable 
(Quadrant I) 

mRNA Stable, 
Protein Unstable 

(Quadrant II) 

mRNA Unstable, 
Protein Unstable 

(Quadrant III) 

mRNA Unstable, 
Protein Stable 
(Quadrant IV) 

Gbp4 Cd74 Cd14 Ifit1 

Samhd1 Stat3 Eif1a Lactb2 

Aldoa Cp Hmox1 
 

Arhgdib Fth1 
  

Dpp9 Pml 
  

G6pdx Xdh 
  

Gbp2 Cat 
  

Mvp Fads2 
  

Tap1 Fkbp8 
  

Pgm2 Ndufb5 
  

Abcd3 Oat 
  

Acadsb 
   

Atp5j 
   

Me1 
   

Ugp 
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Figure 6. mRNA-Protein stability confirm by half-life: A scatter plot showing stability of common DEGs/DEPs. 15 genes fell into 
quadrant I whose encoded mRNAs and proteins both were stable. Quadrant II had 11 genes whose encoded mRNAs were stable 
and proteins were unstable. 3 genes fell into quadrant III whose encoded mRNAs and proteins both were unstable and lastly, qua-
drant IV had 2 genes whose encoded mRNAs were unstable but proteins were stable. 

 
mice liver. In this study, raw date of transcriptome and proteome from T. gondii 
infected and uninfected mouse liver tissues were further analyzed through inte-
grated proteotranscriptomic approaches. It has to be stressed that liver is an im-
portant organ that perform multiple task in the body. For example, 1) It can act 
as a storage site of glycogen, vitamins and minerals; 2) It can act as a house of 
metabolism of carbohydrate, proteins fat and drugs; 3) It helps for the synthesis 
and excretion of bile acid, bilirubin, cholesterol, etc. Besides, after acute infection 
T. gondii can undergoes stage conversion from fast replicating tachyzoite to slow 
replicating bradyzoite not only in brain and skeletal muscle but also in liver, eyes 
etc. Thus, T. gondiimay causes liver cirrhosis and inflammation. Therefore, 
study of transcriptome and proteome of T. gondii infected mouse liver might 
help to understand the mechanism on the impact of the parasite on liver func-
tion. Some previous studies on serological, biochemical and direct detection of 
T. gondii have revealed that T. gondii infection plays an important role in liver 
pathologies [16] [20]. However, mechanism of how T. gondii establishes hepatic 
infection remains unclear. 

Transcriptome of T. gondii infected and non-infected mouse liver revealed 
2758 differentially regulated genes and 301 differentially regulated proteins, 
among them 159 differentially expressed genes (DEGs) were identified as com-
mon and those were translated into differentially expressed proteins (DEPs). 
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This data suggests that all of the differentially expressed genes are not completely 
translated into proteins. The possible reasons could be: 1) There might be some 
unstable RNA that does not participate in protein synthesis 2) Among these, 
even some protein may degrade quickly therefore not found at the time of trans-
lation. 

After infection T. gondii developed strategies to manipulate host immune 
system, energy metabolism, and signaling by inducing host cell gene transcrip-
tion [21]. Gene ontology analysis of these 159 DEGs/DEPs showed that immune 
response, extracellular exosome, blood micro-particle, extracellular space, GTPase 
activity, peptidase inhibitor activity and identical protein binding activity be-
come up-regulated while, oxidation-reduction, fatty acid metabolism, lipid me-
tabolism, organelle membrane, mitochondria, oxidoreductase activity, heme bind-
ing and monooxygenase activity become down-regulated during the early stage 
of T. gondii infection. In a previous study on proteomic profiling on mouse liver 
during acute toxoplasmosis it was suggested that endosome and proteolysis ac-
tivity become upregulated after T. gondii infection [18] while, our results dem-
onstrated that extracellular exosome and peptidase inhibitor activity become 
up-regulated in this parasitic infection. This discrepancy between the results 
may be attributed to the use of different tools. Regardless, up-regulation of im-
mune response related terms and down-regulation of different metabolic path-
ways are, overall, consistent with previous transcriptomic and proteomic reports 
in previous studies [22] [23] [24]. 

Understanding PPI is essential for understanding molecular and cellular me-
chanism, in healthy and diseased states of an organism. Consequently, this know-
ledge can be translated into effective diagnostic and therapeutic strategies such as 
drug or vaccine development. Here, proteins involved in most significantly enriched 
up-regulated (Immune system process) and down-regulated (Oxidation-reduction 
process) biological process were used to generate PPI.  

Investigation of the modular properties of protein–protein interaction (PPI) 
networks can facilitate further discovery of the underlying molecular interaction 
mechanisms that drive cell response under specific conditions, such as drug 
treatment [25]. In some previous studies interaction networks were used to pre-
dict gene function, to identify novel disease-related genes and to understand the 
overlapping association across disease phenotypes [26] [27]. Recently, computa-
tional approaches have been used to build topological clusters as functional 
modules in PPI networks [28]. 

MCODE was used as discovery tools to further analyze the network and ex-
tract sub network from the whole PPI. Based on the topological structure three 
densely connected clusters were found from the whole PPI of proteins involved 
in immune system process (Figure 5). Cluster 1 proteins had high score that in-
cludes 9 nodes and 34 edges. Nodes are following-Ifit3, Ifit1, Iigp1, Zbp1, Psmb8, 
Psmb9, Tap1, Gbp2b, Irgm1proteins. Based on the importance connectivity of 
these 9 proteins only three (Psmb8, Psmb9 and Tap1) were identified as hub 
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protein by CytoNCA application. Psmb8 has established well known association 
with the etiology and pathology of toxoplasmosis [29]. 

The proteasome is a multi-catalytic proteinase complex which is characterized 
by its ability to cleave peptides with Arginine, Phenyl alanine, Tyrosine, Leucine, 
and Glutamate adjacent to the leaving group at neutral or slightly basic pH. The 
proteasome has an ATP-dependent proteolytic activity. Psmb8 (proteasome 
subunit beta type-8) subunit belongs to the peptidase T1B family (276 amino 
acid) and is required for adipocyte differentiation. This subunit is involved in 
antigen processing to generate class I binding peptides and in the inflammatory 
response pathway. A previous study showed that T. gondii infection induce the 
expression of Psmb8 mRNA in antigen presenting cell (APC) and increase the 
capacity of APC to induce the production of IFN-γby antigen-specific CD8+ T 
cells [29]. In vitro infection of a dendritic cell (DC) cell line with T. gondii can 
also induce the expression of Psmb8and resulted in enhanced proteasome pro-
teolytic activity. In their study they also observed that mice lacking Psmb8were 
also shown to be highly susceptible to infection with T. gondii and showed a re-
duced number of functional CD8+ T cells. 

Another subunit, Psmb 9, belongs to the peptidase T1B family (219 amino ac-
id). It is involved in antigen processing to generate class I binding peptides and 
contributes to (nuclear factor kappa-beta 1A (NFKB1A) degradation and sub-
sequently NFKB1 generation. Luisa Möhle and colleagues identified a strong in-
crease of mRNA expression for the immunoproteasome subunits Psmb 9 (LMP 
2) and Psmb 8 (LMP7) in whole-brain RNA from T. gondii infected mice [30]. 

TAP 1 (Antigen peptide transporter 1) belongs to the ABC transporter super-
family (ABCB family) and MHC peptide exporter subfamily (724 amino acid). 
They are involved in the transport of antigens from the cytoplasm to the endop-
lasmic reticulum for association with major histocompatibility complex I (MHC 
class I) molecules. It also acts as a molecular scaffold for the final stage of MHC 
class I folding, namely the binding of peptide. Nascent MHC class I molecules 
associate with TAP via tapasin based on similarity. Goldszmid RS and colleagues 
revealed that TAP 1 plays an important role in the induction of interfe-
ron-gamma-producing natural killer (NK) cells and demonstrate that NK cell li-
censing can influence host resistance to T. gondii infection through its effect on 
cytokine production in addition to its role in cytotoxicity. So, it can be said that 
TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection 
by controlling NK cell IFN-gamma production [31]. Furthermore, six other 
proteins from cluster one including Ifit3, Ifit1, Iigp1, Zbp1, Gbp2b and Irgm1 
were also associated with up-regulating immune response after T. gondii infec-
tion. Though in my present study Ifit3 and Ifit1 were found to be significantly upre-
gulated during acute T. gondii infection, there is no such study which show the 
association of Ifit3 and Ifit1with T. gondii infection. Association of rest of the 4 
proteins with toxoplasmosis was found previously. 

Z-DNA binding protein 1 (ZBP1) is one of the most abundant host transcripts 
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during acute and chronic T. gondii infection. In one study, Pittman KJ and col-
leagues determined that ZBP1 functions to control T. gondii growth thus mini-
mizing the infection (Pittman et al., 2016). Another study showed that Zbp1 can 
initiate innate immune responses by binding cytosolic DNA (Wang et al., 2008). 
However, there are few reports regarding the contribution of Zbp1 to NF-κ-beta 
activation in the spleen of mice infected by T. gondii [32]. 

IIGP1 (Interferon-inducible GTPase1) is essential for interferon-γ-induced 
cell-autonomous immunity against T. gondii in mice, but the mechanism of re-
sistance is poorly understood. In a study Sascha Martens and colleagues showed 
that IIGP1 accumulate at live T. gondii containing vacuoles in a GTP-dependent 
manner. After maturation-like process vesiculation of the parasitophorous va-
cuole membrane occurs. This culminates in disruption of the parasitophorous 
vacuole and finally of the parasite itself. They also found that over-expression of 
IIGP1 leads to accelerated vacuolar disruption while, targeted deletion of the 
IIGP1 gene results in partial loss of the IFN-γ-mediated T. gondii growth re-
striction in mouse astrocytes [33]. 

GBP2 (guanylate binding proteins) is also a GTPase protein which inhibits 
replication of Toxoplasma gondii. Some previous studies showed that murine 
GBP2 (mGBP2) is highly expressed in several cell types, including T and B cells 
after stimulation and revealed that mGBP2-deficient mice has a marked immune 
susceptibility to T. gondii [34]. So, it can be said that mGBP2 is an essential im-
mune effector molecule mediating anti-parasitic resistance. IRGM1 proteins 
(immunity-related GTPases) provide an early defense mechanism in mice against 
the protozoal pathogen, T. gondii. IRGM knocked-out mice show striking sus-
ceptibility to T. gondii infection [35] [36]. Zbp1 can initiate innate immune res-
ponses by binding cytosolic DNA [37]. However, there are few reports regarding 
the contribution of Zbp1 to NF-κB activation in the spleen of mice infected by T. 
gondii.  

By similar manner, 2 sub networks (significant clusters) were extracted using 
MCODE application from whole PPI of proteins which were involved in down-
regulating oxidation-reduction process. Among 9 proteins (CYP3A16, CYP2C29, 
CYP1A2, CYP2C54, CYP3A25, CYP3A11, CYP2C50, CYP4A10, CYP2B9) of 
highly scored cluster 1 three proteins were identified as hub proteins by Cy-
toNCA algorithm, which are following-CYP1A2, CYP4A10 and CYP3A25). 
Surprisingly, all of the proteins are members of cytochrome P450 superfamily of 
enzymes. The former application (MCODE) analyzes network based on topo-
logical structure, while the latter (CytoNCA) provides an estimate of functions 
based on gene annotations. Some previous studies also revealed the association 
of these down-regulated proteins with acute T. gondii infection in mouse liver 
[32]. 

Sub networks and hub proteins provide novel hypotheses for pathways in-
volved in disease [38] [39]. They have some special biological properties, for ex-
ample, they tend to be more essential than non-hub proteins [40] [41], they are 
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found to play a central role in modular organization of the protein interaction 
network [42] [43] and some studies indicate that hub proteins may also be evo-
lutionarily conserved to a larger extent than non-hubs [43]. 

Investigation of the modular properties of protein-protein interaction (PPI) 
networks can facilitate further discovery of the underlying molecular interaction 
mechanisms that drive cell response under specific conditions, such as drug 
treatment [25]. In some previous studies interaction networks were used to pre-
dict gene function, to identify novel disease-related genes and to understand the 
overlapping association across disease phenotypes [27] [44]. Recently, computa-
tional approaches have been used to build topological clusters as functional 
modules in PPI networks [28]. 

The resulting hub proteins and functional clusters of my current study might 
be useful to reveal the pathological mechanism of T. gondii induced toxoplas-
mosis in host. Further investigation into these hub proteins elucidating their role 
in regulating immune system and oxidation-reduction process can be an inter-
esting avenue of exploration and can be of help while designing drugs. They can 
also be used as bio-marker in the diagnostic field. 

In this current study, structure prediction of these hub proteins was also done 
by homology modeling. Homology modeling has become a useful tool for the 
prediction of protein structure when only sequence data are available. Structural 
information is often more valuable than sequence alone for determining protein 
function, dynamics and interactions with ligands or other proteins. The “low- 
resolution” structure provided by homology modeling contains sufficient infor-
mation about the spatial arrangement of important residues in the protein and 
may guide the design of new experiments, for example site-directed mutagene-
sis. Even within the pharmaceutical industry homology modeling can be valua-
ble in structure-based drug discovery and drug design. 

The resulting hub proteins and functional clusters of the current study might 
be useful to reveal the pathological mechanism of T. gondii-induced toxoplas-
mosis in the host. Further investigation into these hub proteins elucidating their 
role in regulating immune system and oxidation-reduction process can be an 
interesting avenue of exploration and can be of help while designing drugs. They 
can also be used as bio-marker in the diagnostic field. 

5. Conclusion 

In summary, the current study showed that how multi-OMICS integration ap-
proach can efficiently be used to elucidate the intricate molecular pathways that 
may contribute to the onset, development and progression of pathological con-
dition during Toxoplasma gondii infection. The multi-OMICS integration of 
transcriptome and proteome lead to the identification of the effector molecules 
(hub proteins) that may potentially be of great importance and subsequently uti-
lized in the in discovery of next-generation biomarker and the designing of effi-
cient and rapid diagnosis of Toxoplasma gondii infections. Since the identified 
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hub-proteins showed differential expression pattern depending on the infection 
status, these proteins can be considered as ideal candidates for therapeutic and 
diagnostic targets. Further studies to pinpoint testing of identified effector mo-
lecules are to be performed. In vitro and in vivo study of these molecules would 
be interesting to confirm their functional activities and efficacy. Limitation of 
the study: Since Toxoplasma gondii is an intracellular protozoan parasite and 
causes mostly in asymptomatic infection in human. Due to primary asympto-
matic infections and followed by self-recovery, proteome data from T. gondii 
infected clinical patients are not available and difficult to generate. Therefore, 
studying of T. gondii in mouse model could be insightful information for scien-
tific arena. 
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Supplementary 

 
Figure S1. (a): Gene ontology for biological processes annotation of 2599 unique differentially expressed transcripts (DETs), (b): 
Gene ontology for biological processes annotation of 142 unique differentially expressed proteins (DEPs). 
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Table S1. List of 159 common differentially expressed genes/proteins. 

Symbol Description 
Log2 ratio at 
mRNA level 

Log2 ratio at 
protein level 

Gm12250 Interferon-gamma-inducible p47 GTPase 5.2422 2.52406 

S100a9 Calcium-binding regulatory protein of the S-100 family 6.58627 2.24458 

Cd14 Leucine-rich repeat (LRR) protein 7.69689 2.1177 

Igtp Interferon gamma induced GTPase 3.20934 2.08236 

Hpx Hemopexin 3.40922 2.07279 

Fga Fibrinogen alpha chain 2.1146 2.07005 

Fga Fibrinogen alpha chain 3.05053 2.07005 

H2-Aa Histocompatibility 2, class II antigen A, alpha 3.345 2.0552 

Fgb Fibrinogen beta chain 2.86568 1.95568 

Iigp1 Interferon inducible GTPase 1 3.60687 1.86592 

Serpina3h Serine (or cysteine) peptidase inhibitor, clade A, member 3H 4.68257 1.86592 

Iigp1 Interferon inducible GTPase 1 8.21509 1.86592 

Cd74 
CD74 antigen (invariant polypeptide of major histocompatibility complex, 
class II antigen-associated) 

3.8439 1.84157 

Cd74 
CD74 antigen (invariant polypeptide of major histocompatibility complex, 
class II antigen-associated) 

3.85715 1.84157 

Fgg Fibrinogen gamma chain 2.87791 1.81967 

Serpina3g Serine (or cysteine) peptidase inhibitor, clade A, member 3G 6.33941 1.7476 

Lcn2 Lipocalin 2 8.63454 1.73422 

Lrg1 Leucine-rich HEV glycoprotein 4.27619 1.72814 

Irgm1 Immunity-related GTPase family M protein 1 2.67923 1.7277 

Arhgdib Rho, GDP dissociation inhibitor (GDI) beta 2.99967 1.70487 

H2-K1 Histocompatibility 2, K1, K region 1.14535 1.70443 

Gbp2b Guanylate binding protein 1 4.73796 1.67942 

Itih4 Inter alpha-trypsin inhibitor, heavy chain 4 2.38453 1.67897 

Itih4 Inter alpha-trypsin inhibitor, heavy chain 4 2.39753 1.67897 

Anxa1 Annexin A1 2.50225 1.55631 

Cp Ceruloplasmin 2.90501 1.55483 

Zbp1 Z-DNA-binding protein 1 3.81553 1.50894 

Zbp1 Z-DNA-binding protein 1 4.7951 1.50894 

Serpina3n Serine protease inhibitor A3N 3.62354 1.49262 

Fam49b Protein FAM49B 2.25686 1.48491 

Serping1 Plasma protease C1 inhibitor 1.275 1.46937 

Tap1 Antigen peptide transporter 1 3.14638 1.45786 

Egfr Epidermal growth factor receptor 2.75854 1.45575 

Egfr Epidermal growth factor receptor 2.86143 1.45575 
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Continued 

Itgb2 Integrin beta-2 3.53275 1.3989 

Gbp6 Guanylate binding protein 6 3.70259 1.39726 

Ifi44 Interferon-induced protein 44 3.04406 1.37518 

Lgmn Legumain 2.51305 1.37462 

Ptpn1 Tyrosine-protein phosphatase non-receptor type 1 1.72369 1.36737 

Samhd1 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 3.1593 1.35106 

Samhd1 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 4.30208 1.35106 

Tap2 Antigen peptide transporter 2 1.68331 1.33457 

Tgm2 Protein-glutamine gamma-glutamyltransferase 2 2.065 1.32423 

Hk3 Hexokinase-3 8.32981 1.301 

Gbp2 Guanylate-binding protein 2 4.08145 1.26243 

Orm1 Alpha-1-acid glycoprotein 4.17885 1.18142 

Mvp Major vault protein 1.63176 1.1375 

Psmb9 Proteasome subunit beta 1.93217 1.13488 

Lgals3bp Galectin-3-binding protein 1.82358 1.11703 

Iqgap1 Iqgap1 protein 2.33781 1.11703 

G6pdx Glucose-6-phosphate 1-dehydrogenase X 2.64194 1.06212 

Fn1 Fibronectin 1.30989 1.05936 

Lcp1 Plastin-2 3.09339 1.0552 

Uba7 Ubiquitin-like modifier-activating enzyme 7 2.14919 1.03562 

Xdh Xanthine dehydrogenase 1.98023 1.03492 

Vim Vimentin 3.10772 1.02148 

Fkbp5 Peptidyl-prolyl cis-trans isomerase FKBP5 2.24193 1.00288 

Ifit1 Interferon-induced protein with tetratricopeptide 1.99492 0.996389 

Clic1 Chloride intracellular channel protein 1 1.7613 0.950842 

Siglec1 Sialic acid binding Ig-like lectin 1 3.01283 0.950842 

Eppk1 Epiplakin 3.21857 0.944858 

Cmpk2 UMP-CMP kinase 2, mitochondrial precursor 1.59206 0.938098 

Anxa3 Annexin A3 1.96052 0.932817 

Psmb8 Proteasome subunit beta type-8 1.889 0.92372 

Cfh Complement factor H 2.11825 0.877352 

C3 Complement C3 1.46798 0.868687 

Gatm Glycine amidinotransferase, mitochondrial 1.53664 0.864731 

Arpc1b Actin-related protein 2/3 complex subunit 1B 1.59543 0.83754 

Fth1 Ferritin heavy chain 2.28842 0.835924 

Stat3 Signal transducer and activator of transcription 3 1.47583 0.835116 

Stat3 Signal transducer and activator of transcription 3 1.92825 0.835116 

https://doi.org/10.4236/cmb.2022.121003


T. Tarannum et al. 
 

 

DOI: 10.4236/cmb.2022.121003 45 Computational Molecular Bioscience 
 

Continued 

Pml Protein PML 2.04284 0.825379 

Pld4 Phospholipase D4 2.4984 0.820485 

Pzp Alpha-2-macroglobulin 1.40793 0.727703 

Fgl1 Fibrinogen-like protein 1 2.92407 0.712816 

Ifit3 Interferon-induced protein with tetratricopeptide 1.57508 0.704872 

Gbp4 Guanylate-binding protein 4 5.58761 0.644318 

Gbp4 Guanylate-binding protein 4 6.78899 0.644318 

Hmox1 Heme oxygenase 1 2.55661 0.641546 

Tpm3 Tropomyosin alpha-3 chain 2.6855 0.641546 

Pgm2 Phosphoglucomutase-2 −1.28895 0.636915 

Oas1g 2'-5'-oligoadenylate synthase 1A 3.73967 0.627607 

Dpp9 Dipeptidyl peptidase 9 1.17385 0.625738 

Aldoa Fructose-bisphosphate aldolase A 2.43601 0.602172 

Rab7 Ras-related protein Rab-7a 1.22934 0.593593 

Serpina3k Serine protease inhibitor A3K 1.24149 0.591679 

Eif1a Eukaryotic translation initiation factor 1A 2.00872 0.591679 

Apoc3 Apolipoprotein C-III −1.86959 −0.58857 

Ndufb5 NADH dehydrogenase (Ubiquinone) 1 beta −1.5095 −0.59292 

Inmt Indolethylamine N-methyltransferase −9.1501 −0.59728 

Aadac Arylacetamide deacetylase −2.27363 −0.59728 

Ces2a Pyrethroid hydrolase Ces2a −4.30604 −0.60384 

Gstm1 Glutathione S-transferase Mu 1 −4.00942 −0.60384 

Abcb11 Bile salt export pump −3.11676 −0.60604 

Gcsh Glycine cleavage system H protein −2.04067 −0.60604 

Aacs Acetoacetyl-CoA synthetase −2.32445 −0.60823 

Echdc1 Isoform 2 of Ethylmalonyl-CoA decarboxylase −1.83671 −0.61043 

Hacl1 2-hydroxyacyl-CoA lyase 1 −1.56776 −0.61485 

Slc2a2 Solute carrier family 2, facilitated glucose −3.56513 −0.62816 

Pklr Pyruvate kinase −2.32813 −0.63039 

Ugp2 Ugp2 protein −2.41366 −0.63263 

Ndufb6 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 −1.3219 −0.63487 

Fkbp8 FK-506-binding protein 38 −1.36783 −0.63711 

Tymp Thymidine phosphorylase −2.93575 −0.64611 

Abat 4-aminobutyrate aminotransferase −2.45914 −0.70369 

Abca8a ABC transporter A subfamily member, A8a −4.36047 −0.82113 

Abcd3 Putative uncharacterized protein −1.8338 −0.78588 

Acaa1b Putative uncharacterized protein −7.88352 −1.59946 
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Acadsb Acyl-Coenzyme A dehydrogenase, short/branched chain −1.70773 −0.67346 

Acsl1 Long-chain-fatty-acid-CoA ligase 1 −2.39423 −0.78588 

Acss3 Acyl-CoA synthetase short-chain family member 3 −2.4508 −0.74662 

Adck3 Chaperone activity of bc1 complex-like −5.68017 −0.87832 

Afmid Kynurenine formamidase −4.21945 −0.84166 

Agxt Isoform Peroxisomal of Serine-pyruvate aminotransferase −3.10264 −0.64837 

Aldh3a2 Aldehyde dehydrogenase −3.54492 −0.6529 

Apoa2 Apolipoprotein A-II −2.94256 −1.02327 

Atp5j ATP synthase-coupling factor 6 −1.0603 −0.81097 

Bbox1 Gamma-butyrobetaine dioxygenase −2.83706 −0.96578 

Cat Catalase −3.75739 −0.78837 

Ces1c Carboxylesterase 1C −4.18488 −1.39973 

Ces1e Carboxylesterase 1E −7.19784 −1.33643 

Cyp1a2 Cytochrome P450 family 1 subfamily a polypeptide 2 −6.90204 −1.30401 

Cyp2a22 Cyp2a22 protein −5.84631 −1.38836 

Cyp2b9 Cytochrome P450 2B9 −6.8513 −1.13289 

Cyp2c29 Cytochrome P450 2C29 −7.58211 −1.47794 

Cyp2c50 Isoform 2 of Cytochrome P450 2C50 −9.30694 −0.99712 

Cyp2c50 Isoform 2 of Cytochrome P450 2C50 −8.29929 −0.99712 

Cyp2c50 Isoform 2 of Cytochrome P450 2C50 −8.23267 −0.99712 

Cyp2c54 Cytochrome P450 2C54 −9.23214 −0.78339 

Cyp3a11 Cytochrome P450 3A11 −3.8865 −0.9105 

Cyp3a16 Cytochrome P450, family 3, subfamily a, polypeptide 16 −3.50156 −0.82368 

Cyp3a25 Cytochrome P450 3A25 −3.91863 −1.27579 

Cyp4a10 Cytochrome P450 4A10 −4.88865 −1.152 

Cyp8b1 7-alpha-hydroxycholest-4-en-3-one 12-alpha-hydroxylase −4.80208 −0.92413 

Ehhadh Peroxisomal bifunctional enzyme −3.15994 −1.08009 

Etnppl Ethanolamine-phosphate phospho-lyase −5.33103 −1.18771 

Fads2 Delta-6 desaturase (Fragment) −3.0613 −0.83908 

Fmo3 Dimethylaniline monooxygenase [N-oxide-forming] 3 −5.56319 −1.08927 

Gck Isoform 2 of Glucokinase −4.13301 −0.75633 

Gls2 Glutaminase liver isoform −2.78405 −0.75147 

Gm4952 Glycine N-acyltransferase-like protein −5.85372 −0.76366 

Hao2 Putative uncharacterized protein −13.3741 −1.50226 

Hsd17b6 17-beta-hydroxysteroid dehydrogenase type 6 −2.14597 −0.68038 

Hsd3b3 3 beta-hydroxysteroid dehydrogenase/Delta 5->4-isomerase type 3 −9.32331 −0.94342 

Hsd3b3 3 beta-hydroxysteroid dehydrogenase/Delta 5->4-isomerase type 3 −8.79514 −0.94342 
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Ido2 Indoleamine 2,3-dioxygenase 2 −1.98034 −0.73217 

Lactb2 Beta-lactamase-like protein 2 −2.51727 −1.04394 

Me1 NADP-dependent malic enzyme −2.04421 −0.72738 

Oat Putative uncharacterized protein −2.13265 −0.83393 

Pah Putative uncharacterized protein −2.67804 −1.55216 

Pygl Glycogen phosphorylase, liver form −2.27605 −0.73697 

Reep6 Receptor expression-enhancing protein 6 −2.1388 −0.78588 

Reep6 Receptor expression-enhancing protein 6 −1.81864 −0.78588 

Sult2a1 Bile salt sulfotransferase 1 −2.52348 −1.54372 

Sult2a5 Sulfotransferase family 2A member 1 family −3.87193 −1.28279 

Thrsp Thyroid hormone-inducible hepatic protein −5.47987 −1.18442 

Ttc36 Tetratricopeptide repeat protein 36 −2.27664 −1.43051 

Ttr Transthyretin −2.80447 −0.78339 

Uqcrfs1 Cytochrome b-c1 complex subunit Rieske −1.23339 −0.76857 

 
Table S2. List of 86 common up-regulated genes/proteins. 

Symbol Description 
Log2 ratio at 
mRNA level 

Log2 ratio at 
protein level 

Cd74 
CD74 antigen (invariant polypeptide of major histocompatibility 
complex, class II antigen-associated) 

3.843901 1.841571 

Cd74 
CD74 antigen (invariant polypeptide of major histocompatibility 
complex, class II antigen-associated) 

3.857146 1.841571 

Egfr Epidermal growth factor receptor 2.86143 1.455755 

Egfr Epidermal growth factor receptor 2.758544 1.455755 

Fga Fibrinogen alpha chain 3.050532 2.070046 

Fga Fibrinogen alpha chain 2.114599 2.070046 

Gbp4 Guanylate-binding protein 4 6.788995 0.644318 

Gbp4 Guanylate-binding protein 4 5.587608 0.644318 

Iigp1 Interferon inducible GTPase 1 8.21509 1.865919 

Iigp1 Interferon inducible GTPase 1 3.606874 1.865919 

Itih4 Inter alpha-trypsin inhibitor, heavy chain 4 2.384532 1.678973 

Itih4 Inter alpha-trypsin inhibitor, heavy chain 4 2.397529 1.678973 

Samhd1 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 3.159299 1.351063 

Samhd1 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 4.302077 1.351063 

Stat3 Signal transducer and activator of transcription 3 1.928252 0.835116 

Stat3 Signal transducer and activator of transcription 3 1.475831 0.835116 

Zbp1 Z-DNA-binding protein 1 4.795101 1.508936 
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Zbp1 Z-DNA-binding protein 1 3.815526 1.508936 

Aldoa Fructose-bisphosphate aldolase A 2.436009 0.602172 

Anxa1 Annexin A1 2.502246 1.556307 

Anxa3 Annexin A3 1.960524 0.932817 

Arhgdib Rho, GDP dissociation inhibitor (GDI) beta 2.99967 1.704872 

Arpc1b Actin-related protein 2/3 complex subunit 1B 1.595427 0.83754 

C3 Complement C3 1.467976 0.868687 

Cd14 Leucine-rich repeat (LRR) protein 7.69689 2.117695 

Cfh Complement factor H 2.118245 0.877352 

Clic1 Chloride intracellular channel protein 1 1.761302 0.950842 

Cmpk2 UMP-CMP kinase 2, mitochondrial precursor 1.592055 0.938098 

Cp Ceruloplasmin 2.905007 1.554834 

Dpp9 Dipeptidyl peptidase 9 1.173849 0.625738 

Eif1a Eukaryotic translation initiation factor 1A 2.008719 0.591679 

Eppk1 Epiplakin 3.218575 0.944858 

Fam49b Protein FAM49B 2.256859 1.484911 

Fgb Fibrinogen beta chain 2.865676 1.955685 

Fgg Fibrinogen gamma chain 2.877913 1.819668 

Fgl1 Fibrinogen-like protein 1 2.924074 0.712816 

Fkbp5 Peptidyl-prolyl cis-trans isomerase FKBP5 2.241925 1.002882 

Fn1 Fibronectin 1.309886 1.059355 

Fth1 Ferritin heavy chain 2.288422 0.835924 

G6pdx Glucose-6-phosphate 1-dehydrogenase X 2.641936 1.062122 

Gatm Glycine amidinotransferase, mitochondrial 1.536639 0.864731 

Gbp2 Guanylate-binding protein 2 4.081453 1.262433 

Gbp2b Guanylate binding protein 1 4.737961 1.679424 

Gbp6 Guanylate binding protein 6 3.702585 1.397255 

Gm12250 Interferon-gamma-inducible p47 GTPase 5.242204 2.524064 

H2-Aa Histocompatibility 2, class II antigen A, alpha 3.345002 2.055196 

H2-K1 Histocompatibility 2, K1, K region 1.145345 1.704429 

Hk3 Hexokinase-3 8.329807 1.301002 

Hmox1 Heme oxygenase 1 2.556608 0.641546 

Hpx Hemopexin 3.409221 2.072792 

Ifi44 Interferon-induced protein 44 3.044058 1.375178 

Ifit1 Interferon-induced protein with tetratricopeptide 1.994923 0.996389 
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Ifit3 Interferon-induced protein with tetratricopeptide 1.575076 0.704872 

Igtp Interferon gamma induced GTPase 3.20934 2.082362 

Iqgap1 Iqgap1 protein 2.33781 1.11703 

Irgm1 Immunity-related GTPase family M protein 1 2.67923 1.727703 

Itgb2 Integrin beta-2 3.532746 1.398898 

Lcn2 Lipocalin 2 8.63454 1.734222 

Lcp1 Plastin-2 3.093387 1.055196 

Lgals3bp Galectin-3-binding protein 1.823581 1.11703 

Lgmn Legumain 2.513047 1.374622 

Lrg1 Leucine-rich HEV glycoprotein 4.276191 1.728138 

Mvp Major vault protein 1.63176 1.137504 

Oas1g 2’-5’-oligoadenylate synthase 1A 3.739666 0.627607 

Orm1 Alpha-1-acid glycoprotein 4.178853 1.181421 

Pld4 Phospholipase D4 2.498401 0.820485 

Pml Protein PML 2.042842 0.825379 

Psmb8 Proteasome subunit beta type-8 1.889003 0.92372 

Psmb9 Proteasome subunit beta type-9 1.932167 1.134878 

Ptpn1 Tyrosine-protein phosphatase non-receptor type 1 1.72369 1.367371 

Pzp Alpha-2-macroglobulin 1.407928 0.727703 

Rab7 Ras-related protein Rab-7a 1.229339 0.593593 

S100a9 Calcium-binding regulatory protein of the S-100 family 6.586273 2.244583 

Serpina3g Serine (or cysteine) peptidase inhibitor, clade A, member 3G 6.33941 1.747602 

Serpina3h Serine (or cysteine) peptidase inhibitor, clade A, member 3H 4.682567 1.865919 

Serpina3k Serine protease inhibitor A3K 1.241492 0.591679 

Serpina3n Serine protease inhibitor A3N 3.623544 1.492622 

Serping1 Plasma protease C1 inhibitor 1.275004 1.469365 

Siglec1 Sialic acid binding Ig-like lectin 1 3.012835 0.950842 

Tap1 Antigen peptide transporter 1 3.146375 1.457857 

Tap2 Antigen peptide transporter 2 1.683309 1.334568 

Tgm2 Protein-glutamine gamma-glutamyltransferase 2 2.065 1.324235 

Tpm3 Tropomyosin alpha-3 chain 2.685497 0.641546 

Uba7 Ubiquitin-like modifier-activating enzyme 7 2.149189 1.035624 

Vim Vimentin 3.107717 1.02148 

Xdh Xanthine dehydrogenase 1.980225 1.03492 
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Table S3. List of common 72 down-regulated genes/proteins. 

Symbol Description 
Log2 ratio at 
mRNA level 

Log2 ratio at 
protein level 

Cyp2c50 Isoform 2 of Cytochrome P450 2C50 −9.30694 −0.99712 

Cyp2c50 Isoform 2 of Cytochrome P450 2C50 −8.23267 −0.99712 

Cyp2c50 Isoform 2 of Cytochrome P450 2C50 −8.29929 −0.99712 

Hsd3b3 3 beta-hydroxysteroid dehydrogenase/Delta 5->4-isomerase type 3 −9.32331 −0.94342 

Hsd3b3 3 beta-hydroxysteroid dehydrogenase/Delta 5->4-isomerase type 3 −8.79514 −0.94342 

Reep6 Receptor expression-enhancing protein 6 −1.81864 −0.78588 

Reep6 Receptor expression-enhancing protein 6 −2.1388 −0.78588 

Aacs Acetoacetyl-CoA synthetase −2.32445 −0.60823 

Aadac Arylacetamide deacetylase −2.27363 −0.59728 

Abat 4-aminobutyrate aminotransferase −2.45914 −0.70369 

Abca8a ABC transporter A subfamily member, A8a −4.36047 −0.82113 

Abcb11 Bile salt export pump −3.11676 −0.60603 

Abcd3 Putative uncharacterized protein −1.8338 −0.78588 

Acaa1b Putative uncharacterized protein −7.88352 −1.59946 

Acadsb Acyl-Coenzyme A dehydrogenase, short/branched chain −1.70773 −0.67346 

Acsl1 Long-chain-fatty-acid-CoA ligase 1 −2.39423 −0.78588 

Acss3 Acyl-CoA synthetase short-chain family member 3 −2.4508 −0.74662 

Adck3 Chaperone activity of bc1 complex-like −5.68017 −0.87832 

Afmid Kynurenine formamidase −4.21945 −0.84166 

Agxt Isoform Peroxisomal of Serine-pyruvate aminotransferase −3.10264 −0.64837 

Aldh3a2 Aldehyde dehydrogenase −3.54492 −0.6529 

Apoa2 Apolipoprotein A-II −2.94256 −1.02327 

Apoc3 Apolipoprotein C-III −1.86959 −0.58857 

Atp5j ATP synthase-coupling factor 6 −1.0603 −0.81097 

Bbox1 Gamma-butyrobetaine dioxygenase −2.83706 −0.96578 

Cat Catalase −3.75739 −0.78836 

Ces1c Carboxylesterase 1C −4.18488 −1.39973 

Ces1e Carboxylesterase 1E −7.19784 −1.33643 

Ces2a Pyrethroid hydrolase Ces2a −4.30604 −0.60384 

Cyp1a2 Cytochrome P450 family 1 subfamily a polypeptide 2 −6.90204 −1.30401 

Cyp2a22 Cyp2a22 protein −5.84631 −1.38836 

Cyp2b9 Cytochrome P450 2B9 −6.8513 −1.13289 

Cyp2c29 Cytochrome P450 2C29 −7.58211 −1.47794 

Cyp2c54 Cytochrome P450 2C54 −9.23214 −0.78339 

Cyp3a11 Cytochrome P450 3A11 −3.8865 −0.9105 
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Cyp3a16 Cytochrome P450, family 3, subfamily a, polypeptide 16 −3.50156 −0.82368 

Cyp3a25 Cytochrome P450 3A25 −3.91863 −1.27579 

Cyp4a10 Cytochrome P450 4A10 −4.88865 −1.152 

Cyp8b1 7-alpha-hydroxycholest-4-en-3-one 12-alpha-hydroxylase −4.80208 −0.92413 

Echdc1 Isoform 2 of Ethylmalonyl-CoA decarboxylase −1.83671 −0.61043 

Ehhadh Peroxisomal bifunctional enzyme −3.15994 −1.08009 

Etnppl Ethanolamine-phosphate phospho-lyase −5.33103 −1.18771 

Fads2 Delta-6 desaturase (Fragment) −3.0613 −0.83908 

Fkbp8 FK-506-binding protein 38 −1.36783 −0.63711 

Fmo3 Dimethylaniline monooxygenase [N-oxide-forming] 3 −5.56319 −1.08927 

Gck Isoform 2 of Glucokinase −4.13301 −0.75633 

Gcsh Glycine cleavage system H protein −2.04067 −0.60603 

Gls2 Glutaminase liver isoform −2.78405 −0.75147 

Gm4952 Glycine N-acyltransferase-like protein −5.85372 −0.76366 

Gstm1 Glutathione S-transferase Mu 1 −4.00942 −0.60384 

Hacl1 2-hydroxyacyl-CoA lyase 1 −1.56776 −0.61485 

Hao2 Putative uncharacterized protein −13.3741 −1.50226 

Hsd17b6 17-beta-hydroxysteroid dehydrogenase type 6 −2.14597 −0.68038 

Ido2 Indoleamine 2,3-dioxygenase 2 −1.98034 −0.73216 

Inmt Indolethylamine N-methyltransferase −9.1501 −0.59728 

Lactb2 Beta-lactamase-like protein 2 −2.51727 −1.04394 

Me1 NADP-dependent malic enzyme −2.04421 −0.72738 

Ndufb5 NADH dehydrogenase (Ubiquinone) 1 beta −1.5095 −0.59292 

Ndufb6 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 −1.3219 −0.63487 

Oat Putative uncharacterized protein −2.13265 −0.83393 

Pah Putative uncharacterized protein −2.67804 −1.55216 

Pklr Pyruvate kinase −2.32813 −0.63039 

Pygl Glycogen phosphorylase, liver form −2.27605 −0.73697 

Slc2a2 Solute carrier family 2, facilitated glucose −3.56513 −0.62816 

Sult2a1 Bile salt sulfotransferase 1 −2.52348 −1.54372 

Sult2a5 Sulfotransferase family 2A member 1 family −3.87193 −1.28279 

Thrsp Thyroid hormone-inducible hepatic protein −5.47987 −1.18442 

Ttc36 Tetratricopeptide repeat protein 36 −2.27664 −1.43051 

Ttr Transthyretin −2.80447 −0.78339 

Tymp Thymidine phosphorylase −2.93575 −0.64611 

Ugp2 Ugp2 protein −2.41366 −0.63263 

Uqcrfs1 Cytochrome b-c1 complex subunit Rieske −1.23339 −0.76857 
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Table S4. List of up-regulated genes/proteins and associated GO terms. 

Term Description Genes FDR 

Biological processes 

GO:0002376 Immune system process 

H2-K1, IRGM1, C3, S100A9, PML, ANXA1, 
SAMHD1, SERPING1, GBP2B, PSMB8, CD74, 
PSMB9, LCN2, IFIT3, FGG, IFIT1, FGA, 
SERPINA3G, FGB, TAP2, TAP1, CFH, H2-AA, 
IIGP1, CD14, ZBP1 

5.75E−21 

GO:0045087 Innate immune response 
IRGM1, C3, S100A9, ANXA1, PML, SAMHD1, 
SERPING1, IFIT3, LCN2, FGG, IFIT1, FGA, FGB, 
CFH, IIGP1, CD14, ZBP1 

4.88E−09 

GO:0035458 
Cellular response to  
interferon-beta 

IFIT3, IFIT1, IRGM1, GBP6, IGTP, IIGP1, GBP2B, 
GBP2 

3.57E−07 

GO:0002250 Adaptive immune response 
FGG, FGA, FGB, SERPINA3G, TAP2, TAP1, 
ANXA1, CD74 

0.001988979 

GO:0006953 Acute-phase response ORM1, SERPINA3N, ITIH4, STAT3, FN1 0.016555934 

GO:0034097 Response to cytokine 
SERPINA3K, SERPINA3N, SERPINA3G, ITIH4, 
PML, STAT3 

0.026453654 

GO:0006879 Cellular iron ion homeostasis LCN2, HPX, HMOX1, CP, FTH1 0.045710521 

GO:0051607 Defense response to virus 
IFIT3, IFIT1, PML, SAMHD1, GBP2B, OAS1G, 
ZBP1 

0.080418113 

GO:0019882 
~antigen processing and 
presentation 

H2-K1, H2-AA, CD74, PSMB8, PSMB9 0.094415132 

GO:0010466 
Negative regulation of  
peptidase activity 

SERPINA3K, SERPINA3N, PZP, SERPINA3G, 
ITIH4, SERPING1 

0.154739303 

GO:0043434 
Response to peptide  
hormone 

SERPINA3K, SERPINA3N, GATM, SERPINA3G, 
ANXA1 

0.306643017 

GO:0007160 Cell-matrix adhesion FGG, FGA, FGB, ITGB2, FN1 0.395726443 

GO:0007596 Blood coagulation FGG, FGA, C3, FGB, SERPING1 0.52544175 

GO:0070374 
Positive regulation of ERK1 
and ERK2 cascade 

EGFR, FGG, FGA, C3, FGB, CD74 1.369527162 

GO:0045766 
Positive regulation of  
angiogenesis 

C3, LRG1, HMOX1, ITGB2, ANXA3 2.056385341 

GO:0071222 
Cellular response to  
lipopolysaccharide 

LCN2, GBP6, GBP2, CD14, CMPK2 13.58949423 

GO:0006955 Immune response H2-K1, H2-AA, OAS1G, FTH1, CD74 29.72515146 

Cellular component 
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Continued 

GO:0070062 Extracellular exosome 

ALDOA, FKBP5, C3, LGMN, VIM, G6PDX, 
S100A9, ITGB2, FTH1, IQGAP1, CD74, RAB7, 
TPM3, FGG, LGALS3BP, FAM49B, FGA, LRG1, 
FGB, ITIH4, CFH, TGM2, FGL1, FN1, ARHGDIB, 
H2-K1, GBP6, GATM, ANXA1, SERPING1, CLIC1, 
PSMB8, ANXA3, PSMB9, LCN2, ARPC1B, 
SERPINA3K, SERPINA3N, HPX, CP, GBP4, LCP1, 
CD14, MVP 

7.76E−16 

GO:0072562 Blood microparticle 
C3, SERPING1, CLIC1, SERPINA3K, SERPINA3N, 
LGALS3BP, FGG, FGA, HPX, FGB, ITIH4, CFH, 
CP, FN1 

3.79E−12 

GO:0005615 Extracellular space 

XDH, ALDOA, PZP, C3, S100A9, LGALS3BP, 
FGG, FGA, LRG1, FGB, CFH, FN1, ANXA1, 
SERPING1, CLIC1, LCN2, SERPINA3K, ORM1, 
SERPINA3N, SERPINA3H, HPX, SERPINA3G, CP, 
LCP1, CD14 

9.32E−07 

GO:0005576 Extracellular region 

XDH, PZP, C3, S100A9, ANXA1, SERPING1, 
GBP2B, FTH1, LCN2, ORM1, SERPINA3K, 
SIGLEC1, FGG, SERPINA3N, LGALS3BP, FGA, 
HPX, FGB, ITIH4, CFH, CP, FGL1, CD14, FN1 

9.38E−05 

GO:0005829 Cytosol 

XDH, G6PDX, VIM, ANXA1, UBA7, PML, PSMB8, 
STAT3, RAB7, CMPK2, PSMB9, LCN2, IGTP, 
HMOX1, HK3, TGM2, DPP9, PTPN1, LCP1, ZBP1, 
ARHGDIB 

0.009533 

GO:0030670 Phagocytic vesicle membrane H2-K1, IRGM1, TAP1, ANXA3, RAB7 0.037403 

GO:0009897 
External side of plasma 
membrane 

H2-K1, FGG, FGA, FGB, H2-AA, CD74, CD14 1.601494 

GO:0009986 Cell surface 
EGFR, H2-K1, FGG, FGA, FGB, ANXA1, ITGB2, 
CD74, CD14 

3.221346 

GO:0005737 Cytoplasm 

XDH, ALDOA, FKBP5, VIM, G6PDX, S100A9, 
PML, GBP2B, IQGAP1, RAB7, TPM3, FGG, FGA, 
FGB, ITIH4, TGM2, CFH, IIGP1, DPP9, 
ARHGDIB, ZBP1, EGFR, EPPK1, ANXA1, IFI44, 
CLIC1, PSMB8, ANXA3, STAT3, PSMB9, IFIT3, 
ARPC1B, IFIT1, SERPINA3G, PTPN1, GBP2, 
LCP1, MVP 

4.382999 

GO:0005925 Focal adhesion 
EGFR, ARPC1B, VIM, ANXA1, TGM2, IQGAP1, 
LCP1 

4.50095 

GO:0005913 Cell-cell adherens junction EGFR, ALDOA, ANXA1, PTPN1, CLIC1, IQGAP1 8.377285 

GO:0005783 Endoplasmic reticulum 
EGFR, H2-K1, IRGM1, TAP2, HMOX1, TAP1, 
PLD4, PML, TGM2, IIGP1, PTPN1, CD74 

12.93212 
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Continued 

GO:0016020 Membrane 

ALDOA, FKBP5, G6PDX, S100A9, PML, ITGB2, 
GBP2B, IQGAP1, CD74, RAB7, LGALS3BP, 
FAM49B, IGTP, TAP2, HMOX1, TAP1,  
TGM2, IIGP1, ARHGDIB, EGFR, H2-K1,  
IRGM1, GBP6, GATM, PLD4, ANXA1,  
CLIC1, ANXA3, SIGLEC1, GM12250,  
H2-AA, PTPN1, GBP4, GBP2, CD14,  
LCP1, MVP 

19.81221 

GO:0031012 Extracellular matrix LGALS3BP, VIM, S100A9, TGM2, FN1 27.42094 

GO:0031410 Cytoplasmic vesicle 
IRGM1, GBP6, ANXA1, PTPN1, GBP2B, GBP2, 
RAB7 

36.50644 

GO:0005764 Lysosome IRGM1, LGMN, H2-AA, CD74, RAB7 37.37253 

Molecular function 

GO:0003924 GTPase activity 
IRGM1, GBP6, IGTP, IIGP1, GBP2B, GBP4, GBP2, 
RAB7, ARHGDIB 

0.002934 

GO:0005525 GTP binding 
IRGM1, GBP6, IGTP, GM12250, TGM2, IIGP1, 
GBP2B, GBP4, GBP2, RAB7 

0.034515 

GO:0004867 
Serine-type endopeptidase 
inhibitor activity 

SERPINA3K, SERPINA3N, PZP, SERPINA3G, 
ITIH4, SERPING1 

0.196148 

GO:0030414 Peptidase inhibitor activity 
SERPINA3K, SERPINA3N, PZP, SERPINA3G, 
ITIH4, SERPING1 

0.196148 

GO:0042802 Identical protein binding 
EGFR, IFIT3, VIM, G6PDX, IIGP1, DPP9, LCP1, 
STAT3, FN1 

5.139194 

GO:0098641 
Cadherin binding involved in 
cell-cell adhesion 

EGFR, ALDOA, ANXA1, PTPN1, CLIC1, IQGAP1 7.269523 

GO:0019901 Protein kinase binding 
EGFR, VIM, ITGB2, PTPN1, IQGAP1, STAT3, 
MVP 

10.86314 

GO:0005198 Structural molecule activity FGG, FGA, FGB, VIM, ANXA1 19.00636 

GO:0042803 
Protein homodimerization 
activity 

LCN2, XDH, FGG, TAP2, HMOX1, TAP1, G6PDX, 
ANXA1, PML 

19.36988 

GO:0005515 Protein binding 

XDH, C3, VIM, PML, ITGB2, IQGAP1,  
CD74, RAB7, TPM3, LGALS3BP,  
FAM49B, TAP2, ITIH4, FN1, EGFR,  
PLD4, ANXA1, STAT3, IFIT3, LCN2,  
SERPINA3K, SIGLEC1, IFIT1,  
H2-AA, GBP4, LCP1 

22.71878 
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Table S5. List of down-regulated genes/proteins and associated GO terms. 

Term Description Genes FDR 

Biological processes 

GO:0055114 
Oxidation-reduction 
process 

ME1, HSD3B3, ACADSB, NDUFB5, NDUFB6, CYP3A25, 
EHHADH, CYP2B9, PAH, UQCRFS1, ALDH3A2, BBOX1, 
FMO3, HSD17B6, CAT, CYP2C54, CYP3A16, CYP3A11, 
CYP2C29, IDO2, FADS2, CYP1A2, CYP2C50, CYP4A10, 
HAO2, CYP8B1 

2.60E−17 

GO:0008152 Metabolic process 
HSD3B3, ACADSB, EHHADH, ECHDC1, PAH, ACSS3, 
ALDH3A2, AFMID, GSTM1, AADAC, TYMP, ACSL1, 
PYGL, PKLR, AACS, ACAA1B, UGP2 

1.89E−09 

GO:0006629 Lipid metabolic process 
HACL1, ACADSB, ACSL1, SULT2A1, EHHADH, APOC3, 
HSD17B6, FADS2, CYP1A2, AACS, ACAA1B, THRSP 

3.76E−04 

GO:0006631 
Fatty acid metabolic 
process 

CYP4A10, ACADSB, APOA2, ACSL1, EHHADH, FADS2, 
AACS, ACAA1B 

0.0011 

GO:0019373 
Epoxygenase P450  
pathway 

CYP2A22, CYP2C54, CYP2B9, CYP2C29, CYP2C50 0.003784 

GO:0042493 Response to drug 
APOA2, ACSL1, ABCB11, ABAT, ABCD3, CAT, 
UQCRFS1, AACS 

0.169252 

GO:0006810 Transport 
TTR, NDUFB5, APOA2, NDUFB6, ABCB11, SLC2A2, 
APOC3, ABCA8A, ABCD3, FADS2, UQCRFS1, ATP5J 

38.61568 

Cellular component 

GO:0031090 Organelle membrane 
CYP4A10, AADAC, CYP2C54, CYP3A16, CYP3A25, 
CYP3A11, CYP2B9, FMO3, CYP2C29, CYP1A2,  
CYP8B1, CYP2C50 

1.00E−11 

GO:0005739 Mitochondrion 

ME1, ETNPPL, HSD3B3, FKBP8, ACADSB, NDUFB5, 
NDUFB6, EHHADH, UQCRFS1, AGXT, ACSS3, 
ALDH3A2, BBOX1, GLS2, ACSL1, ABCD3, GCSH,  
CAT, ACAA1B, ATP5J, LACTB2, GM4952, GCK,  
HAO2, ABAT, OAT 

4.24E−08 

GO:0005789 
Endoplasmic reticulum 
membrane 

REEP6, HSD3B3, CYP2C54, CYP3A25, CYP3A16, 
CYP3A11, CYP2B9, CYP2C29, FADS2, CYP1A2, 
ALDH3A2, CYP2C50, AADAC, CYP4A10, ACSL1,  
FMO3, CYP8B1 

6.94E−07 

GO:0043231 
Intracellular  
membrane-bounded  
organelle 

CYP2C54, CYP3A25, CYP3A16, CYP3A11, CYP2B9, 
CYP2C29, CYP1A2, ALDH3A2, CYP2C50, AADAC, 
CYP4A10, ACSL1, FMO3, ABCD3, HSD17B6, CAT, 
CYP8B1 

1.56E−06 

GO:0005783 Endoplasmic reticulum 

REEP6, HSD3B3, CYP2C54, CYP3A25, CYP3A16, 
CYP2B9, CYP3A11, CYP2C29, FADS2, CYP1A2, 
ALDH3A2, CYP2C50, AADAC, CYP4A10, ACSL1,  
FMO3, HSD17B6, CAT, CES1E, CYP8B1, CES1C 

3.58E−06 
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Continued 

GO:0005777 Peroxisome 
HACL1, ACSL1, EHHADH, HAO2, ABCD3, CAT, 
ACAA1B, AGXT 

2.27E−04 

GO:0005829 Cytosol 
ME1, SULT2A5, SULT2A1, EHHADH, ECHDC1, 
ALDH3A2, INMT, AFMID, TYMP, APOA2, GCK, 
SLC2A2, APOC3, PKLR, CAT, AACS, THRSP 

0.145049 

GO:0005743 
Mitochondrial inner 
membrane 

HSD3B3, NDUFB5, NDUFB6, ABCA8A, ABCD3, 
UQCRFS1, ALDH3A2, ATP5J 

0.259456 

GO:0005759 Mitochondrial matrix GLS2, ACADSB, ABAT, OAT, AGXT, LACTB2 0.369843 

GO:0070062 Extracellular exosome 
ACADSB, ABCB11, ECHDC1, PAH, ALDH3A2, BBOX1, 
CYP4A10, TTR, APOA2, PYGL, APOC3, PKLR, HAO2, 
ABAT, CAT, UGP2 

20.70699 

Molecular function 

GO:0016491 Oxidoreductase activity 

ME1, HSD3B3, ACADSB, CYP2C54, CYP3A25, CYP3A16, 
CYP2B9, EHHADH, CYP3A11, CYP2C29, IDO2, FADS2, 
PAH, CYP1A2, UQCRFS1, ALDH3A2, BBOX1, CYP2C50, 
CYP4A10, HAO2, FMO3, HSD17B6, CAT, CYP8B1 

5.09E−15 

GO:0004497 Monooxygenase activity 
CYP4A10, CYP2C54, CYP3A16, CYP3A25, CYP3A11, 
CYP2B9, FMO3, CYP2C29, PAH, CYP1A2, CYP8B1, 
CYP2C50 

1.79E−10 

GO:0020037 Heme binding 
CYP3A25, CYP3A16, CYP2C54, CYP3A11, CYP2B9, 
CYP2C29, IDO2, CYP1A2, CYP2C50, CYP4A10, 
CYP2A22, CAT, CYP8B1 

1.52E−09 

GO:0005506 Iron ion binding 
CYP3A25, CYP3A16, CYP2C54, CYP3A11, CYP2B9, 
CYP2C29, PAH, CYP1A2, BBOX1, CYP2C50,  
CYP4A10, CYP2A22, CYP8B1 

1.47E−08 

GO:0070330 Aromatase activity 
CYP2C54, CYP3A16, CYP3A25, CYP3A11, CYP2B9, 
CYP2C29, CYP1A2, CYP2C50 

5.45E−08 

GO:0016705 

Oxidoreductase activity, 
acting on paired donors, 
with incorporation or  
reduction of molecular 
oxygen 

CYP4A10, CYP2C54, CYP3A16, CYP3A25, CYP3A11, 
CYP2B9, CYP2C29, CYP1A2, CYP8B1, CYP2C50 

9.66E−08 

GO:0003824 Catalytic activity 
ETNPPL, HACL1, HSD3B3, EHHADH, ECHDC1, PAH, 
ACSS3, AGXT, ACSL1, PYGL, PKLR, HAO2, ABAT, 
AACS, OAT, ACAA1B 

1.39E−07 

GO:0016712 

Oxidoreductase activity, 
acting on paired donors, 
with incorporation or  
reduction of molecular 
oxygen, reduced flavin or 
flavoprotein as one donor, 
and incorporation of one 
atom of oxygen 

CYP2A22, CYP3A16, CYP3A25, CYP3A11, CYP2B9, 
CYP2C29, CYP1A2 

1.03E−05 
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Continued 

GO:0008392 
Arachidonic acid  
epoxygenase activity 

CYP4A10, CYP2A22, CYP2C54, CYP2B9, CYP2C29, 
CYP2C50 

8.90E−04 

GO:0008395 
Steroid hydroxylase  
activity 

CYP2A22, CYP2C54, CYP2B9, CYP2C29, CYP2C50 0.053216 

GO:0030170 
Pyridoxal phosphate 
binding 

ETNPPL, PYGL, ABAT, OAT, AGXT 0.057234 

GO:0016740 Transferase activity 
SULT2A5, ETNPPL, SULT2A1, AGXT, INMT, GSTM1, 
GM4952, TYMP, GCK, PYGL, PKLR, ABAT, OAT, 
ACAA1B, UGP2 

0.788706 

GO:0042803 
Protein homodimerization 
activity 

GSTM1, APOA2, PYGL, ABAT, ABCD3, PAH, CAT, 
AGXT, THRSP 

9.244787 

GO:0046872 Metal ion binding 

ME1, HACL1, CYP2C54, CYP3A25, CYP3A16, CYP3A11, 
CYP2B9, CYP2C29, IDO2, PAH, CYPF2, UQCRFS1, 
LACTB2, BBOX1, CYP2C50, CYP4A10, PKLR, ABAT, 
CAT, CYP8B1, UGP2 

14.20634 

GO:0042802 Identical protein binding ETNPPL, TTR, HACL1, FKBP8, ABAT, OAT, UGP2 27.05591 
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