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Abstract 
This work shows that novel virus-like mesopore silica-zinc oxide/Ag nano-
particles (SZnOAg) synthesized and professionally collected on NIR laser ir-
radiation with quercetin to improve the elimination the mutated virus as a 
biomedical application. A unique type of silica nanoparticles with a self-in- 
flating tubular surface has been successfully synthesized using a novel sin-
gle-micelle epitaxial growth process. The properties of the nanoparticles can 
be tuned with respect to their core diameter, tubular length, and outer di-
ameter. Due to their biomimetic appearance, they can rapidly transform liv-
ing cells into virus-like particles, this SZnOAg nanomaterial has specific eli-
mination effect on bacteriophage and Covid-19. Using epitaxial growth, we 
can construct virus-like structures that can be used for biomedicine applica-
tions. These nanomaterials and NIR laser could open the way to a new range 
of antiviral materials, due to the low-efficiency cellular uptake of current na-
noparticles, their applications in the biomedical field are limited. Herein, it 
clearly shows that novel mesoporous silica nanoparticles can be easily exhi-
bited superior cellular uptake property. 
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1. Introduction 

Nanoparticles have been designed for biomedical applications such as intracel-
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lular drug delivery and molecular imaging [1] [2] [3] [4] [5]. Their efficiency 
heavily relies on the cellular uptake performance [6] [7] [8] [9]. The interaction 
between nanoparticles and biological hosts (e.g., HeLa cell, Escherichia coli) 
plays an important role in the cellular uptake process, which is greatly depen-
dent on the chemical and physical properties of the nanoparticles [10] [11] [12]. 
Previous reports have introduced various methods to enhance the cellular up-
take property by controlling factors that could influence the interaction between 
nanomaterials and biological hosts, such as chemical composition, particle shape, 
and surface charge [13] [14] [15] [16]. However, studies on regulating the inte-
raction between nanomaterials and biological hosts by improving the surface 
topological structures of nanomaterials are relatively rare [17]-[22]. In addition, 
Ag NPs showed average size of ~15 nm [23].  

2. Ease of Use 

In this work, uniform ease synthesized virus-like mesoporous silica-zinc oxide 
with Ag nanoparticles (SZnOAg) have been successfully synthesized using a sin-
gle micelle epitaxial culture reaction. [24] [25] The nanoparticles were fully de-
veloped and exhibited uniform surface characteristics via a novel single micelle 
epitaxial growth approach in a low-surfactant-concern oil/water bi-phase reac-
tion system, with the using of hexadecyltrimethylammonium bromide (CTAB) 
as a structural template and tetraethyl orthocarbonate (TEOC) as a precursor. 
[26] The virus-like particles of mesoporous silica exhibit a uniform particle size 
and a well-controllable inner diameter. They can also form a rough surface struc-
ture by growing radially from the inner portions of the silica nanospheres. Also, 
the virus-like nanoparticles have unique internalization pathways.  

3. Aim of the Work  

Inhibit virus spreading by using omicron virus-like nanomaterials and NIR-Laser 
system. Uniform virus-like mesoporous silica-zinc oxide nanoparticles can be 
synthesized in a bi-phase reaction system with a low surfactant concentration, 
which allows the assembly of reactants to take place at the oil−water interface for 
continuous interfacial growth [27]. 

4. Materials and Methods 
4.1. Materials 

The oil phase was adopted in the upper of the beaker to be a (TEOC) solution in 
hydrophobic organic solvent (such as cyclohexane), while the bottom water phase 
was an aqueous solution of cationic surfactant (CTAB) as a template and NaOH 
as a catalyst. Scanning electron microscopy (SEM) and transmission electron 
microscopy (TEM) images of the obtained mesoporous silica nanoparticles clearly 
show a unique virus-like morphology with uniform particle size of ~160 nm (Figure 
1). Quercetin is one of the most important flavonoids and belongs to the class of 
flavanol’s [28]. 
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Figure 1. Quercetin and virus-like mesoporous silica-ZnO-Ag nanoparticles with inner 
portions of the silica nanospheres consist of ZnO/Ag cubic cluster with hexadecyltrime-
thylammonium bromide (CTAB) as a structural template and tetraethyl orthocarbonate 
(TEOC) as a precursor.  

4.2. Methods  

In this framework, experimental results have demonstrated that quercetin exerts 
strong inhibitory effects on ACE2 in vitro, and in vivo when tested in rats [29]. 
Furthermore, the screening of a library of 150 compounds, allowed the identifi-
cation of quercetin as a potent inhibitor of SARS-CoV-2 3CLpro [30]. Taken to-
gether, these results suggest that quercetin may prevent the entry of SARS-CoV-2 
in the host cell, binding the S-protein and inhibiting ACE2 receptors [31]. 

5. Statistical Analysis 

In this study, we consider the bacteriophage as a target virus, this virus has a 
symmetrical structure, approximately 57 nm wide and 100 nm long, with very 
long double-strand DNA in the head [32]. We then clearly demonstrate the spe-
cific elimination of bacteriophage bound to the complex, through the photo-
thermal effect of the SZnOAg backbone under NIR laser irradiation (1060 nm). 
The irradiated solutions of SZnOAg—bacteriophage complexes (300 µg·ml−1) in 
PBS (1 ml) by using a 1060 nm laser (5 W) (Figure 2); we also irradiated PBS 
alone (1 ml) as a control. We measured the temperature of the solutions (away 
from the laser beam) at 1 min intervals by using a mercury thermometer. We 
measured the temperature of the solutions (away from the laser beam) at 1 min 
intervals by using a mercury thermometer. Under the NIR laser irradiation (1060 
nm laser irradiation, 1 W·cm−2, 15 min), hyperthermia generated by mesoporous 
nanoparticles destroying virus cell membrane and biofilm promoting and in-
creasing Ag+ release from the nanocarrier, resulting in photothermal-enhanced 
antibacterial activity.  
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Figure 2. Schematic description photothermal effect of the quercetin and SZnOAg under 
NIR laser irradiation (1060 nm) and its synergistic antiviral effects. 

6. Results 

Spherical nano-systems with average size and pores of 200 - 240 nm and 3.4 - 4.8 
nm, respectively were successfully fabricated. In vitro antibacterial activity was 
evaluated against Virus cells by adding SZnOAg with laser irradiation at same 
concentration (128 μg·mL−1), 22% and 76% of cells death were achieved [33]. 
Results corroborate antibacterial assays displaying a NIR-responsive Ag+ release, 
with 11.3% and 37.3% of release with laser irradiation, respectively, which indi-
cate that multimodal synergistic therapy on SZnOAg with laser irradiation based 
could effectively treat MRSA skin infection. Beyond that, the animals evaluated 
showed no obvious changes in their body weight suggesting no biotoxicity. 
These findings made ZnO and Ag nanomaterials a promising multimodal na-
noplatform against bacterial infections and for further clinical translations. Sin-
gle ZnO nanoparticle was formed by uneven surface, which showed crystallinity 
with d-spacing of 0.265 nm for nanocrystal as shown in Figure 3. The aggregates 
generated a macro-mesoporous network based on interparticle interactions.  

The virus-like nanoparticles’ rough surface morphology results mainly from 
the mesoporous silica nanotubes spontaneously grown via an epitaxial growth 
process. The obtained nanoparticles show uniform particle size and excellent 
monodispersed. The structural parameters of the nanoparticles can be well 
tuned with controllable core diameter (~50 - 180 nm), tubular length (~7 - 80 
nm), and outer diameter (~6 - 11 nm). Thanks to the biomimetic morphology, 
the virus-like nanoparticles show greatly superior cellular uptake property (in-
vading living cells in large quantities within few minutes, <5 min), unique inter-
nalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), 
which is much longer than that of conventional mesoporous silica nanoparticles 
(0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate 
various virus-like mesoporous core-shell structures, paving the way toward de-
signed synthesis of virus-like nanocomposites for biomedicine applications [34]. 
Figure 4 shows X-ray diffraction pattern of zinc oxide. For atomic composition  
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Figure 3. FE-TEM images with crystallinity and electron diffraction. 
 

 
Figure 4. X-ray diffraction pattern of zinc oxide nanorod arrays. Notes: Inset shows the 
X-ray diffraction pattern of zinc oxide nano powder.  
 
analysis, synthesized ZnO nanoparticles consisted of 47.38% Zn and 52.62% O 
Compared with synthesized ZnO nanoparticles, hybrid- and nano-ZnO particles 
had 44.8% and 48.16% Zn and 55.2% and 51.84% O, respectively. On XPS spec-
tra, binding energy peaks of Zn2p were detected at 1021 eV, and 1044 eV for 
Zn2p3/2 and Zn2p1/2. 

7. Discussion 

Materials Wild-type T7 bacteriophage (4.8 × 1012 pfu·ml−1) was prepared by us-
ing a T7 select packaging kit (Novagen). Zinc oxide (purity = 95%), SiO (purity 
= 99.99%), Zn nanomaterial was synthesized with (purity = 98.5%). The meas-
ured temperature of the solutions (away from the laser beam) is at 1 min inter-
vals by using a mercury thermometer. We irradiated solutions of complex (300 
µg·ml−1) in PBS (1 ml) by using a 1060 nm laser (5 W) (Figure 2). The measured 
temperature of the solutions (away from the laser beam) is at 1 min intervals by 
using a mercury thermometer. Structural analysis Structural characterization of 
the SZnOaAg complexes was performed by scanning electron microscopy (SEM) 
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(JSM6700F; JEOL) (acceleration voltage: 20 kV), transmission electron micro-
scopy (TEM) (JEM-3010; JEOL) (acceleration voltage: 200 or 300 kV) and by 
atomic force microscopy (AFM) (JSPM-4210; JEOL) using a tapping-mode can-
tilever. 2.3. Particle diameter analysis: the particle diameter of the complex was 
measured by dynamic light scattering (DLS) (LB-550; HORIBA). The complex 
was dissolved in distilled water (300 µg·ml−1) and the solution was filtered through 
a cellulose acetate membrane (Advantec; pore size = 200 nm) without filtration 
after 5 d.  

7.1. Morphology, Crystallinity, Particle Size Distribution, and  
Atomic Composition 

The resulting nanoparticles exhibited uniform particle size and good mono-dis- 
persibility. Synthesized ZnO nanoparticles generated spherical cluster shapes up 
to 3 μm with average size was 48.3 ± 3.5 nm in diameter with a narrow size dis-
tribution as shown in Figure 5. TEM image of mesoporous show interior spher-
ical mesoporous silica cores with a diameter of ~110 nm; separated peripheral si-
lica nanotubes perpendicular to the core surface with a length of ~35 nm and 
outside/inside diameters of 10/2.5 nm, respectively (Figure 5 & Figure 6). The 
size of the mesoporous silica cores can be tuned from ~60 to 160 nm by chang-
ing feeding amount of the surfactant (CTAB). 

7.2. Optical Property and Photoinduced Exothermicity of the CNH 
Complex 

Under NIR laser irradiation (1060 nm), aqueous suspensions of the CNH com-
plexes (300 µg·ml−1) exhibit a significant increase in temperature, whereas con-
trols (without the SZnOAg complexes) showed a much smaller heating effect 
because of absorbance by water (Figure 7). Even on prolonged laser irradiation  
 

 
Figure 5. SEM image of mesoporous silica-zinc oxide nanomaterials. 
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Figure 6. TEM image of mesoporous silica-zinc oxide nanomaterials. 

 

 
Figure 7. Temperature curves for a solution of NIR laser-induced exothermicity of SZnOAg 
and quercetin SZnOAg-virus complex (concentration = 300 µg·ml−1) in PBS buffer alone 
(as a control) under continuous NIR laser irradiation (1060 nm, 5 W). 
 
(60 min), there was no sedimentation of the complexes. These results confirm 
that the NIR laser driven on SZnOAg complexes act as a powerful exothermic 
material. 

8. Conclusion 

The high-efficiency cellular uptake of synthesized nanomaterial quercetin-SZnOAg- 
virus complex with excellent applications in the biomedical field was verified. 
The novel mesoporous silica nanoparticles can be easily synthesized and exhi-
bited superior cellular uptake property, which on NIR laser irradiation effective-
ly eliminates the virus. These results strongly suggest that functional nanomate-
rials could soon be produced that exhibit photo-exothermic elimination of harm-
ful viruses, such as HIV, SARS, and avian influenza virus. The present work 
makes important progress for biomedical applications of nanomaterials in the 
field of omicron mutated Covid-19 antiviral material. 
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