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Abstract

In this paper, we show the existence and regularity of mild solutions depend-
ing on the small initial data in Besov spaces to the fractional porous medium
equation. When 1< a <2, we prove global well-posedness for initial data

. —a+L42-2m

U eB,, ” (R") with 1< p<ow, 1<q<ow, and analyticity of solu-

tions with 1< p<ow, 1<q<o. In particular, we also proved that when

1

o =1, both wand e”™u belong to X_.. We solve this equation through

the contraction mapping method based on Littlewood-Paley theory and

Fourier multiplier. Furthermore, we can get time decay estimates of global
1
solutions in Besov spaces, whichis t ¢« as t—> .
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1. Introduction

In this paper, we consider existence and regularity of mild solutions for the ini-
tial value problem of the following fractional porous medium equation (FPME)
in R" for n>2:
du+yA“u+V-(uVPu)=0 in R"x(0,),
Pu=x(-A)" in R" x(0,00),

u(x,0)=u,(x) in R",

where u and Pu denote the density and gas pressure respectively, while

(1
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Uy =Uy(X) denotes the given initial data. And & =+1. The positive operator

a
2

A =(-A)2 can be defined by

A f(x):=c(a,n)PV. Rnwdy,
[x=y]

where c(a,n) is a normalization constant. By the Fourier transform, we can
also get a very simple alternative representation, as A“f = F* [|§|a Fi (5)} >
where F is the Fourier transform and F ' is the inverse Fourier transform,
respectively. To simplify the notation, we consider y =x =1. For FPME re-
search, there have been many results. For example, in 2019, Feng and Liu [1]
used generalized Riccati transformation technique and the differential inequality
method to obtain the oscillation criteria of a class of nonlinear fractional diffe-
rential equations.

If >0, k=1, a=2, m=1, the system (1) reduces to the classical Kel-
ler-Segel model

du+y(-A)u+V-(uvPu)=0 in R"x(0,0),
Pu=x(-A)u in R" x(0,00), ()
u(x,0)=u,(x) in R".

The Keller-Segel system has been established as the model of chemotaxis by
Keller and Segel [2]. Biler and Karch [3] demonstrated local and global solytions
with small initial data of the equation in critical Lebesgue space L* for
l<a < 2. Biler and Wu [4] studied global well-posedness of the equation with
small initial data in the critical Besov spaces B;_qa (RZ) for 1<a <2. Zhao,
Cui and Liu [5] proved small data gl.qg)ﬂ existence and large data local existence
of solutions in critical Besov space B, P for 1< p<2n and 1<q<w.

The purpose of this paper is to prove the well-posedness and Gevrey analytic-
ity of Equation (1) in the Besov spaces. When y =0, x=-1, m=0, the equa-
tion degenerates to the classic form of the Porous Media Equation. We refer it by
PME, and the classical properties of this equation can be found in literature [6].
It can describe the movement of an ideal gas flowing through a porous medium
or be regarded as a kind of non-local quadratic evolution problem. This equa-
tion is widely used in describing Brownian diffusion, gas particle interaction,
and biotaxis. When y =0, x=-1, 0<m<1, the equation was first proposed
by Caffarelli and Vazquez [7]. It has been proved by them that, when the initial
value U, is a bounded function and exponentially decays at infinity, the equa-
tion has a weak solution. In [8], they studied the C” regularity of the weak so-
lution of the equation when y =0, & =-1. For the detailed information about
the solution of this equation, please refer to literature [9].

Secondly, we present some results of Gevrey analyticity in recent years. In 1989,
Foias and Temam discovered this method and employed it for the first time to
study the analyticity of the Navier-Stokes equations with space periodicity
boundary condition, see [10] [11]. In the following periods, a few more authors
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made full use of this method, and extended it to various functional spaces and
equations. For instance, in 2001, Zhan [12] obtained the Gevrey regularity of the
solution of the superconducting phase-locked equation. Ferrari and Titi in [13]
studied the regularity of solutions to a large class of analytic nonlinear parabolic
equations on the two-dimensional sphere. Chueshov and Polat in [14] studied
the Gevrey regularity of the global attractor of the dynamical system generated
by the generalized Benjamin-Bona-Mahony equation with periodic boundary
conditions. Recently, the well-posedness and spatial regularity of the classic K-S

equation have been completed by Zhao [15].
In this paper, we will consider well-posedness and Gevrey analyticity of the
fractional porous medium Equation (1) with initial data in critical Besov spaces
. —a+22-2m

or for 1<a <2 and 1< p,r<o. To address the equations, we con-

sider the following integral equations:
u(t)=e""u, - J'; g -y, (uV (-A)"u ) dr. (3)

where e =7 (e F ) . We use the following the contraction mapping to
get the solution of (3):

G(u)=e""y, —.[; e "Ny ~(uV(—A)_m u)dr.

Then we utilize the Gevrey class regularity to certify analyticity of solutions.
As an application, we get time decay rates in Besov spaces for global solutions.

Let us denote by A, the Fourier multiplier whose symbol is given by
&l =lel -+l

The overall structure of the article is shown below. In Section 2, we review the
Littlewood-Paley dyadic decomposition theory and the definition of Besov spac-
es. In Section 3 and Section 4, we prove Theorem 3.3 and Theorem 3.5 respec-

tively by the standard fixed point argument.

2. Notations and Preliminaries

First of all, let’s introduce some notations mentioned in the paper. We will con-
sider the solution of system (1) in R". For two constants 4 and B, if there is a
finite constant C whose value of each line may vary such that A<CB, we de-
note it as A S B. For a quasi-Banach space X and for any 0<T <o, we use
standard notation LP (O,T; X) to denote the quasi-Banach space of Bochner

measurable functions ffrom (0,T) to Xendowed with the norm

1
MBI CO et ifsp<en,

||f|||_$x : )
(), if p=ce.

SupOStST

Especially, if T =00, we still use || f || rather than || f "Lgx .

LPx
Let us introduce some basic knowledge on Littlewood-Paley theory and Besov
spaces.

Let peC/ (R” ) be a radial positive function such that
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Supp(pc{(feR” :%s|§|sg}, Y p(27¢)=1 forany &#0.

jez
Define the frequency localization operators as follows:
Aju=g;(D)u=7F"p;(&)Fu; Su=y;(D)u=F"y,;(£)ru,

here ¢, (&)= (p(2'j§) and y; = ZkSH(pJ— .
By Bony’s decomposition, we can split the product uv into three parts:

w=T,v+Tu+R(u,v),

with

TUV=ZSj_1uAjv, R(u,v):ZAjuAjv, AV=A_VHAV+A V.
J ]

Let us now define the Besov spaces as follows.

Definition 2.1 For s<-- (or s= ir r=1), seR, p,re[l,»] and
p p

feS (R" ) , we define the homogeneous Besov space B;,r as
A f

Ur
BS, :{f eS'(R")/P(R"): | 5, :(iezzzi“ Lj <oo}.

Here the norm changes normally when p=ow or r=o0,and P is the set

of all polynomials. If ke N and Dk<s<Dikat (or s= ikl if
p Y p

r=1), then B} is defined as the subset of distributions f e S’(R”) so that
0"t e By when |f|=k.

n
Definition 2.2 For 0<T <o, s<—(seR), 1<p,r,p<co, we set (with
p

1
i = 218 o |-

We then define the space [ (O,T; B;r (R” )) as the set of temperate distri-

the usual convention if r =)

A, f

butions £ over (O,T)XR” such that lim;,  S;f =0 in S'((O,T)XR”) and
It ||[¢(s;,r) <®.
Lemma 2.3 [16] Let B be a ball, and C aringin R". There exists a con-

stant C such that for positive real number A, any nonnegative integer k and any

couple of real numbers ( p, I’) with 1< p<r <o, we know

11
suppF (1) 2B = sup,,. o], <c*a ; r]"f"u“ @)

suppF(f)cac = C™ a4 f|, <sup,_, ||o" f

<Xl ©

!

Lemma 2.4 [16] Let f be a smooth function on R"\{0} which is homoge-
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n
neous of degree m. Then for any seR, 1<p,q<c, and s—-m<—, or

n .
s—-m=— and =1, the operator f(D) is continuous from B;q(R") to
D :
3S—-m n
By (R").
Lemma 2.5 [17] Let C be a ring in R". There exist two positive constants

x and K such that for any pe[l,] and any couple (t,A) of positive real

numbers, we have

suppF (f)caC = [ f

< e ™
LP

- (6)

3.The Case 1< a<?2:Well-Posedness, Regularity and Time

Decay
In this chapter we will demonstrate well-posedness and Gevrey analyticity of
,—a+£+2—2m
Equation (1) in critical Besov spaces B, ° for 1<a<2. Let n22,

. —a+My2-2m

1<a<2. Suppose U, €B,, ° (R”). When 1< p,r <o, let us prove the

above properties.

3.1. The Case 1< p<x:Well-Posedness

First of all, we give a priori estimate for the following fractional dissipative equa-
tion:
{6lu+Aau=f, xeR"t>0, @)
u(x,0)=uy(x), xeR".
Proposition 3.1 ([4]) Let seR, 1< p,r,p, <o and 0<T <. There ex-
ists a constant C >0 depending only on a and n such that for any
p, < p=< oo, wehave

"u"E?[B::Y ]SC Juolles, +||f||£¢1[3?;a] ' (8)

Next we present the following vital bilinear estimates.
Lemma 3.2 Let s>0, £>0, 2m-1+&>0, 1< p<+w,

1<r,p,p,p, <+ with l:i.’.i‘ There holds
P P P
Jov -y () = Ml V||a¢2[sif”*3g - (©)

Proof. According to Bony’s paraproduct decomposition, we find that
UV (=A) V=Y AUV (-A)" S+ Y S uv(-A) " AV
j'eZ j'eZ

+> > Auv(-A) ALY

j'ez |i-i<t

=L+, 4.
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Firstly, we estimate |,. Applying Holder’s inequality and Lemmas 2.3, 2.4,
there holds

Aj D AUV(-A)" S v

j'ez L.I‘Z(LP)
P MCRR
“ Tl<a LPl |_P z 2( p]”AkV”L‘T’Z(Lp) (10)
ek [ —2m+ %—s]k
\J%ZMHA u"Lﬂ L) z 2 ”AkV”L’T’Z(LP)

< Z 2- sj’ 2 (s+¢) ||A u"Lpl P "V"L/’Z[Bl 2m+p£J_

li-il=4

Multiplying (10) by 2% and taking |"-norm, we get
"I "L” BSr N"u"Lpl L"Z[ 1fm+? } (11)

Similarly, for |,, utilizing Holder’s inequality and Lemmas 2.3, 2.4, when
2m-1+¢ >0, we find that

lpes, ) = ol e

1 zm+? ] (12)

Now we deal with the term |,. For one thing, we premeditate the case of
2< p <o, firstly using Bernstein’s inequality, then by Hélder’s inequality with

2 1 1
—_— =t
p P P

A > Auv(-A) ALY
jez |j'-j"1

()
n. ny.,

<2 ¥y % 2[_5_"]’2<“>J"||A u

iZj-No |j'-i"lst ) "L{.’l(LP)

2(1 2m+——g] ||A V” (13)

L"Z Lp

o)
Sz—sj z 5 (S p)(l 1)2(5+£)J " u"l_/?l LP " "L"{Bl 2m+p ‘SJ.

i"2j-Ng

For another case: 1< p<2, 2<p'<oo, l+i, =1, firstly using Bernstein’s
p

inequality, then by Holder’s inequality, and exploiting Bernstein’s inequality
again,

AL D AuV(-A)T A

ez |i-jls

()

SZJ’[n—%J Z Z 2—[n—%+sjj’2(s+g)j, 2[1 2m+ 2 s)

i'Zj=No [i-]]<L

, 14
i L?(LP) Lpz(,_p)( )

B
i2i-No P

n——+s ) ., "
s 3, 2 g Mol |
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Under the assumption of Lemma 3.2, we have

n n
S+—>0,n——+s>0.

Therefore we deduce from the estimate (13)-(14) that forall 1< p <o,

1-2m+—-
"|3"Lf’ Bor) ™ ”u"Lf’l { m+P
O

Now we are in a position to prove well-posedness of the system (1) in the case
that 1< <2 and 1<p<o.

206_2=i+i , s=1-2m+>  and
a PP

Theorem 3.3 Let 1<p<ow ,

e=1-a+. Then we havea T =T"(uy) >0 such that the system (1) has a
P

unique solution U e XT* , where

x. [OT B, P e ( )JﬂL”l(OT B2, (R")) N2 (0,787, (R"))

with

S, =£—o¢+2—2m+£,s2 =£—a+2 2m+i i+i=1.
p P p P P P2 P
If T" <o, wehave
Ju o4 (83, )0z (83 =
_—a+ﬂ+2—2m
Furthermore, if the initial value U, is small enough in B, ° (Rn),
then T =o0.
Proof. Define the map
G:u( je (t=r)A ( (—A)’mu)dr. (15)

in the metric space (I =[0,T ]) :
= a0 09IV e
with
n

S, =——oz+2—2m+£,s2 =£—a+2—2m+i.
p P p P2

Exploiting Proposition 3.1 and Lemma 3.2 by choosing p =ﬁ, for any
o

u,ve“;,weget

||G ||L'D-l )QL/’Z( )

< —tA” -m a

o e o
_tAY 2

S “e tA Uy +||u|||:'/r)l(B;1,r)m:!r’2(B;2,r) y

(53 e 5.
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and
d(G(u),G(v)) Snd(u,v). (17)
Now by the standard contraction mapping argument ([16]), there exists a
unique solution U e ~4 for 7 small appropriately. And from Proposition 3.1,
we get

n
~ _—a+—+2-2m < || |
”u"L?[Bplr P .

2 n 2
—ot— +2 2m +||u||_ ) ~ ) < ||u | | —at—+2-2m + .
L?(B;srl‘r)ﬂL?z(B;srz‘r) ~1"0ll8,, P n

Thus the solution z can be extended to the maximum time T, we have

' Eor ' Eor

el {o T B“+n+22m]ﬂ (07783, )N 2 (0.77:B2, ).

If T"<o and ||u||[¢1(5‘5'1)

N (sg) <, we need to premeditate the following
p.r T p.r

integral equation
—(t= a t _(t—7)A% -m
u(t)=e“Nu(T)-[e V- (uv(-a) "u)dx.
Similarly, we show that
Ju (t)||[Tp1(T,T*;B},)ﬂ[§’2 (1782

+ | 2

<[u(T) "E?(T,T*;BE,)OE/T’Z(PT*?B;S:ZJ).

||£¢1(T,T*;s§,)mt¢z(T,T*;B;g,)

Using the contraction mapping argument as in (16), the solution exists on
[T,T*]. Taking 7 closed to T" and by the local existence, the solution exists
on some time larger than T~ , which contradicts the maximum time T . Be-
sides, we can take T =o0 in (16) and (17) if ||u0|
Thus we proved Theorem 3.3. [

n .
o2 s small enough.
Bor P

3.2.The Case l<a<2 and p=oo:Well-Posedness

In this part, we study the endpoint case p=oco. The crucial bilinear estimates
are as follow.

Lemma 3.4 For l<a <2, m>1, we have

HUV(—A)ﬁm v S "U"Lt Sar22m "V"L B2 Zm) . (18)

HES
Proof. We consider the following the estimation of |,:
bl = 5 Il 5 2

<2(a+2m 3)j Z 2a+2m 3)(i'- 1)22 2m)j "A u

~J
li-i'=a

Ll Lx "V"Loo a+2 Zm) .

Therefore, according to Definition 2.2, there holds
[l po-e) S0l greem) Ml (19)

In the same way, for |,, when m>1, we obtain

[Vellgszoe) Sl (s om Mlagez ) (20)
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Now we treat with ;.

Aty S 2 5 gy 22T

i2j-No |i'™-j"t "%("w) "T("w) 21)
(a+2m-3)j (a+2m=3)(j'~})n(2-2m)j’
<2 j;NO 2 2 |a;u o) Ml (g 52-2m)-

Under the hypothesis 1<« <2, we have a+2m—-3<0. Hence considering

3-2m-a)

the estimate (21), and multiplying 2 ! to the resulting inequality, then

taking I' norm yields
[Vallgeszo-e) S 10l ecgoam) Mooy (22)
Due to (19), (20) and (22), we come to the (20). The proof of Lemma 3.9 is

done. U
Theorem 3.5 Let 1<a <2 and p=co. Assume that ||u0|

ga2-2m Is small
enough. When 3—a—2m> 0, then there is a unique solution to this system (1)
that satisties

uel (0,08, (R"))N L (0,82 (R")).

1 P01

Proof. To proving Theorem 3.5, we consider the space
g (B;f’{*z’zm ) nG (Bi”lzm ) . From the mapping (15), Proposition 3.1 and Lemma
3.4, one has

m

soqzem + “UV (-A) "u

6l 52 2mpgzn) < e

(23)
S ol

2
B;%Q—Zm + "u ||E‘{°(B;§+z—zm )ﬂf{ ( Bg:lzm ) .

Applying the standard contraction mapping argument as before, we can show
that system (1) confesses a unique solution in U € L7 (B;j*z’zm)ﬂ C (Bifm) if
1|

g-arzon 18 sufficiently small. U
0,1

3.3. The Case 1< p<o: Gevrey Analyticity

. —ar2-2m+
In this part, we calculate analyticity of system (1) with initial datain B, P

for 1< <2 and 1< p<oo. At the very beginning, let’s review the following
three results.

Lemma 3.6 (Lemma 3.2 in [18]) We consider the operator
1 1
(t—S)é#—S; —ta

E,=e

Ay
} for 0<s<t.Then E, Iseither the identity operator or

is the Fourier multiplier with | kernel whose L' -norm is bounded indepen-
dent of s and t.

1
ta Ay —2tA®
Lemma 3.7 (Lemma 3.3 in [18]) Assume that the operator F, =¢e 2

for t>0. Then F, is the Fourier multiplier which maps boundedly L° — L*
for 1< p< o, and its operator norm is uniformly bounded with respect to
t>0.

Lemma 3.8 (Proposition 3.5 in [15]) Let seR, 1< p<o, 1<r,p <0
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. - L2y,
and 0<T <o . Assume that U, € B;’r(R") and f el (emApr’f’l (R" )]

PLEpSo T

1 a
Then (/) has a unique solution U e ﬂ 4 (etaAlB L J . In addition, there

exists a constant C >0 depending only on « and n so that for any
P < p <o, wesee

"u"I:{.’[e‘iMBZT;} <C| lug B, +||f||£¢{etiAls;;”J : (24)

1
gl f . Now we employ the

Let’s take ”f"@[e‘j”“BBrJ represent for
% (85.)

1

operator €'“* to certificate a result similar to Lemma 3.2.

1 1 1
Lemma 3.9 Let s>0, 1< p<+wo, 1<1, 0,0, 0, $+0 with —=—+—.
P P P2
Then forany &>0, 0<T <o, there holds
-m
v (-a) "y Eg[eéw-;, } S Ilullm{ } lvllu»{ J 25)

In addition, if we choose & =0, then (25) also holds for r=1.

1 1
Proof. Set U (t)= e“ZAlu(t),V (t)= e‘aAlv(t). Then according to the idea of
Lemma 3.2, firstly, by Bony’s paraproduct decomposition to get

1

1 1 1

gl (uV( A" v) =M z‘i e “MA UMY (-A) TS,V
je

l 1 1

+e M Y et hs Uet MY (—A) AV
j'ez
1 1 1

LMY Y e A Ue N (-A) T ALY

j
j'ez |i-i<t

=J,+J,+J,.

To estimate the items J;(i=1,2,3), we draw support a thought in [19] and
[20] and find the coming bilinear operator B, ( f, g) of the descriptor

1 1 1

x(&+ ta ’5*"7‘1 s "7‘1) £ q
e f(&)§(n)dsdr.

R"

Based on the symbols &;, 7;, and &;+7;, we can split the integration do-
main into subdomains. For ¢ = (é’l,---,é'n), U =(,Ltl,~-,/1n),

v=(v, -, v,)€R" suchthat ¢, 4, v, €{-1,1}, we define
D, ={n:¢n, 20,i=12,-,n},
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D, ={&:&420,i=12,-,n},
D, ={&+n:v,(&+n)20i=12--,n}.

Zo is a characteristic function on the domain D. Next we redefine B, (f,g)
as

1 ix-(E+ é 1 —|Sh — 7l " ~
Bt(f’g):: (2713)” .[]R”I]R"e ¢ ﬂ)leet (ke )lD# f (5))(049(77)(15(177-

By this way, we bring in the monodimensional operators:

._i © x££
K, f = znjoe f(£)d¢,

K, f ::ij0 e f (£)de,

21—

and
Luw2 f=1if gg =1,

1
L‘,£1,€z f ::2i © eix»ée—thx\'f‘l f (é)df if g6, = 1
T[ —00

Furthermore for t >0, we have the operator

Zlvf‘ﬂ = K/J1 L[vglxﬂl ® o ® Kﬂn L['Cnvﬂn ' (26)

The above tensor product (26) means that the j-th operator acts on the j-th
variable of the function f( X1,~-,Xn). By calculation we have the following
identity:

Bt(f’g): z 3Kﬂ1®“'®Kun (Ztvivﬂfzt:i:vg)'
§,;1,ve{—1,1}nx

1
L (‘5“7‘1"5‘1"’7‘1)

Observing that for {+neD,, {eD, and neD,, e have

to be a member of the following set:
1 E E
F = {Le'm‘f””” o M =, 2""‘“}'

Notice that Xo,» Xb,> Xo and the elements in F are Fourier multipliers
] v

in L” for 1< p<o, and the operators K, and Z are combination of

tLeu
identity operators and those Fourier multipliers. It is clear that the operators
K, and Z, ., are bounded linear operators on L° with 1< p <o, and the
relevant operator norm of Z, . , is bounded independent of t>0. Moreover,

for 1< p, p,, P, <o, we have

”Bt ( f, g)"Lp f, ||Zt,§,/1 th,;,vg

with =L L

PPB P

o <1l ol

Because of the new restriction of the bilinear operator B, ( f, g) , we can do

prove Lemma 3.9 based on Lemma 3.2. In fact, let’s take the example of J,:
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18,30 =4, > B, (A,U,V(-4) "5,V |
j'e

) ()
-m
5“7”«‘ Ky, @ @K, (2,002, 9(-8) S,V

Z "th%’ JU”L"l LP

\J il=4

4(0)

Z,. V(-A)"S, v

L2 (L°°)

1-2m+ D¢
,_pl ,_p z 2gk2[ P ]||AkV||L¢2(Lp)

\J il<a i-2

< Z o-si'pis+e) || A U"Lp1 B "\/"LPZ[ 1zm+x]

B
‘j*j"ﬁ4 p.q

The rest of terms are similarly estimated. Therefore, we get the estimated
formula (25). I
Theorem 3.10 Let 1< p <. Then the solution obtained in Theorem 3.3 sa-

tisties

1

e Mue .. (27)

. —a+£+2—2m

What is more, if u, €B,, ° (R”) is small enough, then T =0 .

Proof. Taken together with Lemma 3.8 and Lemma 3.9, using the mapping
(15), we get

1
= 1
G U)". . e
" ( ] e MBY, NHP e« B

(s e

—-m
+HuV -A) U e 1
) ( ) | et MBg, Inig? e‘aAIB;SJZ,r

,EA
e u, )

ol (2
L/’l( )ﬂL/’Z(BZ) E@’l[e‘a’\lﬂﬁ{rJHE’T’Z[Q“MB;%,

Based on estimate the above estimate and the contraction mapping argument,

we accomplish the proof.

3.4.The Case 1<a <2 and p=ow:Gevrey Analyticity

Theorem 3.11 Let 1< a <2, p=w. Then the solution obtained in Theorem
3.5 satisfies

etiAlu S I—OO (0 0, BwoiJrZ 2m (Rn ))ﬂ L (0 ® B‘f’ 12”‘ (R” >) -
1

Proof. Suppose U (t):=e"““u(t). Then U(t) meets the following integral

equation

1 1 1 1
U (t) — gl MtA” U _I{em\l(tr)mv (e’“AiU .e—raAlv(_A)—m U J:ldf- (29)
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1
o|g Ly
ek is uniformly bounded for all { and decays ex-
1
o p—Liae
ponentially for |§| > 1, the Fourier multiplier F, := g 2t maps uniformly

Since the symbol e

bounded from L* to L* forall t>0. Using Young’s inequality, there holds

1

£ Ay —tA”

e Ug

(7 (82472 27|k (82 21)

For the nonlinear part, although the operators K, and Z . & don’t map
L” to L” bounded, these operators are bounded in L* when localized in
dyadic blocks. Based on the calculations line from (19) to (22) and by the con-
tinuing the same line as the proof of Lemma 3.9, and notice that Lemma 3.9, we

have
1 1
”U (t )"E;o {etfl/u B2 2m Jm g{eta/u 8221 J

Sl

2
gron U@ 1 :
I} etaAlB';%JrZJm ﬂr_% e‘“AlBﬁ,ffm

This finishes the proof, as expected. [J

3.5. Decay Rate of Solution

In this part, we concentrate on the decay rate estimates of solutions gained in
Theorem 3.3, Theorem 3.5, Theorem 3.10 and Theorem 3.11. The proof is based
on the following consequence. .
Lemma 3.12 ([15]) For all >0 and 1<a <2, the operator A%t M
the convolution operator with a kernel K_(t)e L' (R") for all t>0. Moreo-

ver
|K, ()] <C.t «, (30)

where C_ = ||A"e”‘1 " L
Now we have show that if the initial data u, is small enough in critical Besov

n
. —a+—+2-2m
spaces B, ° for either l<a<2 , 1l<p<owo and 1<r<o or

l<a<2, p=w and r=1, then the solution is in the Gevrey class. As a result,

we obtain the time decay of global mild solution for all o >0 in Besov spaces:

1 1
[A7u(O)]ogoem = ame e ()
p.r B_;vo:+;+272m
off L
R N
<C,t «fe"Mu(t) |
—ot—+2-2m
Bpr
g
n
<t Jugllg =2
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This proof is done.

4, The Case a =1:The Proof of Theorem

In this part, we will prove the case a =1 for the system (1) with initial data in

1-2m+ 2
critical spaces B,, P(1<p<w).

4.1. The Case 1< p<o:Well-Posedness

1- 2m+7 1—2m+7
For any initial data u, e B p1 > we think the resolution space g

Slightly modifying the proof Lemma 3.4, we obtain the consequence as follows.

—2 e
Lemma 4.1 Forany u,vel; " , when l<m<min{l+ﬂ,i+ﬂ},
2 2 2’2 p
we find
Huv(_A)-m v h[ < ol [ } Mo { ] (31)

Proof. Firstly, we calculate the estimation of 1:

| 7(P) S Z | 1) Z 2( p]"AkV"L;"(LP)

‘“‘ (32)

V" 2 m+1+— .,
|_P " LI

—2m+1+—|j
Multiplying 2[ p] to (32), then taking ¢* norm to the resulting in-
equality, we obtain
ML[ 2m+1+p]_

||| " —amanl
o
1 [ Bp,l p

< "”"u [ M]

Meanwhile, for 1,, we obtain

|||2||E:°[B,,,21an < ||“||L;°[spim+“:} T[ .pim+1+;} .
Now we treat with |;. We discuss in two situations. One is the case of
2<p<o:
< %j [ 2m+1)
itley 527 2 B Bhey 2" e
[2m—1—£]] [2m+l+ ](j j) [2m+1+ J
2o nye [ o) M [ ]

the other is that 1< p <2, and satisfies that 2< p’<o and —+i—1 that is
pp
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<2l

£(v)

1- 2m+7] [ m+ +£jj’
z 2 n 2m+1 j 12 p

i2j-Ng

n
"v" . ‘72m+1+5 .
g ( LP) L Bp,l

Multiplying ”A ils

L°°(Lp

||| || —2m+1+—
3 Lt

[1—2m+£) i .
) by 2 P/ and taking /* norm to them, we get
O

< ||u||Lt [ 2m+1+J { 2m+l+J .
Diom

Theorem 4.2 Let 1< p <co. Then there exists a sufficiently small ||u, .5
pl

7+1 2m

such that the system (1) has a unique solution U e [* [0 o0; Bp”1 (R" )J

Proof. According to the Proposition 3.1, Lemma 4.1 and the mapping (15),
there holds
n -m
” ”Ll{ 1 2m+— < ”uo " 12 “UV u -

n 2
1-2m+—
Suoller s + o
P

1om )"
ol )
| By,

By the contraction mapping argument as before, the system (1) admits a

n
1-2m+—
. . . 2% ' n
unique solution in L’ [Bp L P] for small ”Uo "BHW; O
: o

4.2. The Case p=o0: Well-Posedness

In the case p =0, the resolution space L (Bclo'l2 m) is not able to be adjusted to
the system (1). We use the resolution space L7 (Biffm ) nc (Bi,’lzm ) .

Theorem 4.3 Let p = . Assume that ||u0||B.1,§m is small enough. Then there

Is a unique solution to the system (1) that satisfies
uel” (O,oo; B (R” ))ﬂ |:1 (O,oo; B2 7" (R” ))

Proof. By Proposition 3.1,

—tA
o700 e oy S Mol (33)
Next, through Lemma 3.4, we obtain
-m 2
Juv (-a) v gfam) SMleorsmp(ezan): (34)

Therefore think over the mapping (15), we infer from Proposition 3.1, (33)
and (34) that

”G(U)||£;o(sgfm)ng(s§jlzm) S ||“o||g;12m +“UV(—A)7m u

(e ") (35)

< 2
S ol zm + ||U||£;°(Bg;fm)m§(siif”) '
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Thus by the standard contraction mapping argument, system 1 admits a
unique solution in E:O(Bi_fm (R"))ﬂg(Bifm (Rn)) for small initial data
[Uolgzzm - O

4.3. The Case 1< p<oo: Gevrey Analyticity

Theorem 4.4 Let 1< p<ow. Then the solution acquired in Theorem 4.2

meets
1 n
t2n A, "0 . e
e Muel [o,oo, B (R") ).

Proof. The dissipation term €™ is not sufficiently strong to overcome the

operator & ™. Thus, we demand to define a more precise Gevrey operator. Be-

1 1
cause of %|§|1 < §|§| , we choose

1

U (t)=e "u(t).

So U (t) fulfills the integral equation as follows:

0

1 1 1 1
U (t) _ e%ml—muo _.[t|:e2ntA1—(t—r)AV {e_Z"TAlU .e—%rAlv(_A)-m U Hdr' (36)

Ly

R
Because the symbol e2" " 2

is uniformly bounded and decays for any

1 1
—tA—=tA
|§|21, the operator e 2 is a Fourier multiplier map L" to L°

(1< p <o) with uniformly bound independent of £ By Proposition 3.1, there

holds
[ reml
|8, °

With regard to the nonlinear term, we define

2—1nmrm < —%m
e U, <le? u,

} S Jollgtz - (37)

1—2m+%
ol
L; Bp 1

e%tAl—(t—r)A ~ ez—ln(t—r)Al—(t—r)Ae%rAl

1
T tA ==
Hence by the new boundedness properties of the operator €2 2 and the

bilinear operator 5 (f,g) of the form
1 1 1
B(fg)=en" {e ™ fe Z”WQJ,

we can get the Gevrey analyticity of the global solution as before. In fact, the
corresponding operators Kc and Z are bounded independent of t>0,

hence, in regard to 1< p, p,, p, <o, l=i+i,we have
p

ST

|B.(t.0), <2 Zicutls Sl llol

tou
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O

4.4. The Case p=o: Gevrey Analyticity

In order to resolve the Gevrey analyticity of the solution in the case p =, the
following a priori estimate is true:

1 2

1
enut) <l e+ (1) (39)

G (8570 (8227)

i (870 (8227)

Theorem 4.5 Let p = . Then the solution is given in theorem 4.3 which sa-
tisfies

1

¢ e (0,00 B2 (R)) N2 (0,001 B27 (R, )

Proof. Because from previous analysis, for t>0, we know

itAl —tA
e 2n <

~

G (B e 2)

—ZtA
e? u, < I, "Bi;%”‘ . (40)

{8k g (e227)

0

With respect to the nonlinear part, we find out the bilinear operator
l’;’t(f,g) of the form

- Liag [ -Lea, L
B(f,g)=en e fe2 g|

Although the above operator is not bounded from L*xL* to L*, by the

similar analysis as before, we can conclude the results line by line. [

4.5. Decay Rate of Solution

In this part, we hold up the decay rate estimates of solutions gotten in Theorem

obtained in the fourth part. On the strength of Lemma 3.12, we know that for all
1
—=A
>0, the operator A% 2 is the convolution operator with a kernel

K, (t) el (]R") forall t>0.What’s more,

K, (t) L<Ct, (41)
< “La
where C_ =[A%e 2" . Theorem obtained in fourth part shows that if
Ll
Daom
U, € B, is sufficiently small, then the solution is in the Gevrey class. As a

result, for o >0, utilizing (41), we acquire

Ly, Lia
A%u(t)| Zaem =[A%e 20 e u(t)
BP Dii2m

pl .
BP
pl

1
<Gt [e Mu(t)

.%A—Zm
Bp,l

~ — n
<6 g
pl
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5. Conclusions

In summary, we can get the following conclusions:
. —a+£+2—2m

Conclusion 5.1 Let n>2, 1<a<2. Suppose U, B, ° (R”). When

1< p,r <o, there exists the following results:

(1) (Well-posedness for 1<p<ow ) Let 1<p<ow, 205_2:i+i s

a P P

s=1-2m+" and e=1-a+% . Then we havea T =T (up)>0 such that
P

the system (1) has a unique solution U e XT* , Where

XL =L [o,T*; B;f;”'zm(ma")]m 0 (078, (B")) N2 (0,782, (R"))

with
S, =£—a+2—2m+1, S, =£—a+2—2m+i,i+i=l.
p P p P P P2 P
If T" <o, wehave
||U||t¢1*(sg{,)mt¢z(s;g,) = .
. —a+£+2—2m
Furthermore, if the initial value u, is small enough in B, ° (R" ) ,
then T =o0.
(2) (Well-posedness for p=ow) Let 1<a<2 and p=o. Assume that
||u0| 522 is small enough. When 3—«a —2m >0, then there is a unique solu-

tion to this system (1) that satisfies
uel” (o,oo; B arzm (R"))ﬂ El(o,oo; B2 (R” ))

(3) (Analyticity for 1< p<o) Let 1< p <. Then the solution obtained in
(1) satisfies

1
My e XT*.

. —a+Li2-2m

What is more, if u, € B, ° (R”) is small enough, then T =0 .
(4) (Analyticity for p=ow) Let 1<a <2, p=c. Then the solution ob-

tained in (2) satisfies
1

"My e [ (0,oo; B3 (R” ))ﬂ iy (0,00; B2 " (R” ))

(5) (Decay rate for 1< p<ow) With any 020, 1<p<ow or p=o and
r =1, the global solution acquired in (1) and (2) satisfies

o
LIPS a
g a+p+2 2m < Co't ||u0|
p.r

A%u (b))

—a+i2-2m
o) ’
Bpr P

where C_ = "A(’Fe*/\1

.
Corresponding to Conclusion 5.1, when « =1, we can get the results as fol-

lows.
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Nom

Conclusion 5.2 Let n>2,a =1 and suppose U, € B}, (R"). When
1 . /1 n1l n .
1<p<Lw, E<m<m|n E+E'E+_ , there exists results as follows:
p

(1) (Well-posedness for 1< p<o) Let 1< p<oo. Then there exists a suffi-

ciently small ||u0||B,%*“'“ such that the system (1) has a unique solution
pl

ue EOO (0,00, B'E:LZm (Rn )] ]

(2) (Well-posedness for p=ow) Let p=o. Assume that ||u0||31,%m is small

enough. Then there is a unique solution to the system (1) that satisfies
uel” (O,oo; BT (R” ))ﬂ C (O,oo; B2 2" (R” ))

(3) (Analyticity for 1< p<o) Let 1< p <oo. Then the solution acquired in
(1) meets

L . Diaom
"My e [ [O,oo; B,f’1 (R" )]

(4) (Analyticity for p=o) Let p=co. Then the solution is given in (2)
which satisfies
1
ey e [ (0,oo; BL 2" (R”))ﬂ I:l(O,oo; B2 (R” ))

(5) (Decay rate for 1< p<ow) With any 020, 1<p<o or p=ow and
r =1, the global solution got in (1) and (2) fits

||A"u (1)

~ — n
Naam <C t f’||u "_,Hm
gP = Yo 0|[gP ’
pl pl

1

o M
A°e

where C_ =

L
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