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ABSTRACT 
Parkinson’s disease is a neurological disease which is incurable according to current clinical 
knowledge. Therefore, early detection and provision of appropriate treatment are of prima-
ry importance. Speech is one of the biomarkers that enable the detection of Parkinson’s 
disease affection. Numerous researches are based on recordings from controlled environ-
ments; nonetheless fewer apply real circumstances. In the present study, three objectives 
were examined: recording fragmentation (paragraph, sentences, time-based), variable en-
codings (Pulse-Code Modulation [PCM], GSM-Full Rate [FR], G.723.1) and majority voting 
on 8 kHz records using multiple classifiers. Support Vector Machine (SVM), Long Short-Term 
Memory (LSTM), i-vector and x-vector classifiers were evaluated in contrast with SVM as 
baseline. The highest results in accuracy and F1-score were achieved using i-vector models. 
Although variable encodings generally caused decrease in Parkinson-disease recognition, 
decline was within 2% - 3% at best. Moreover, fragmentation did not yield a clear outcome 
though some classifiers performed with the very similar efficiency along the differently 
fragmented sets. Majority voting did produce a slight increase in classification performance 
compared to as if no aggregation is used. 

 

1. INTRODUCTION  
Parkinson’s disease (PD) is the second most common neurological disorder which is affecting chiefly 

the elderly population. It is characterized by neuron death in the substantia-nigra area and accumulation 
of intracellular protein (α-synuclein) [1]. Its supreme syndrome consists of tremor, rigidity and bradyki-
nesia often confounded with other forms of parkinsonism [2]. PD is an incurable disorder according to 
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current clinical knowledge. Its symptoms and progress can only be restrained.  
Several medicines can be applied to ease motor symptoms: dopamine precursors (e.g. Levodopa) or 

agonists (e.g. apomorphine) can be used to increase the amount of dopamine hormone. Furthermore, in-
hibiting the enzymes (Monoamine oxidase B (MAO-B) or Catechol-O-methyl transferase (COMT)) in-
volved in dopamine metabolism can also be a way to maintain dopamine level [3]. In addition to medica-
tion, a number of therapies (such as movement and speech therapies) have been used to relieve symptoms 
and improve quality of life [4]. For example, the use of speech therapy can improve the patient’s articula-
tion and speech intelligibility. By moving similar muscle groups, the process of eating and swallowing can 
also be aided [5]. However, medications and therapies are necessary for the rest of the patient’s life as they 
are only suitable for symptomatic induction. Therefore, it is key to recognize PD at an early stage and 
conduct medical care in the short term. Furthermore, tele-monitoring systems based on speech are getting 
more renowned due to the low cost [6]. 

Generally, patients with PD may experience monopitch, imprecise consonants or reduced loudness 
[7]. This allows space for speech analysis which is a noninvasive, rapid procedure. Examining speech in 
the early recognition or severity estimation of PD is already a wide area of research. Research articles have 
already included several speech tasks, such as sustained vowels [8], repetition of syllables (e.g., pa-ta-ka) 
[9, 10], read text [11], monologues [12]. Other modalities are also promising for the recognition of Par-
kinson’s disease, such as movement, drawing, or electroencephalography (EEG). There are also multimod-
al solutions in the literature where multiple samples from a given person are examined [13]. In this re-
search, the focus is on speech-based examination and recognition. 

Most research reports methodologies that use the full length of speech recordings for analysis. This is 
the case when the patient reads a particular text. Afterwards, the task of the preprocessor algorithm is to 
extract features from the entire recordings in some way (e.g., moving window). With that methodology, 
one feature vector is resulted for one individual of the database. In this study, we examine the effect of 
segmenting the recordings into multiple durations (paragraph, sentences and time-based segments) on the 
performance of classification. With this augmentation, we can also produce more samples to train and test 
machine learning algorithms that may perform better with the cost of shorter parts to get useful informa-
tion from. As far as we know, this is the first attempt to introduce such an investigation. Moreover, the 
aggregation of several decisions per speaker enables techniques, such as majority voting to improve the 
classification performance. This phenomenon is also investigated. By conducting such a research, it can 
create a basis whether a patient needs to read a longer text or just a part of it. That process may be time- 
and resource-efficient and also more convenient for the patient. 

Secondly, many analyses rely on an artificial environment that is carefully controlled. Therefore, al-
gorithms must deal with ideal, low-noise recordings where the only disturbance can be the presence of the 
disease. However, such rooms and quality microphones are least available in real life situations. This is the 
reason why there is a need to carry out research that takes real circumstances into account. There are al-
ready researches that illustrate processing of recordings coming from ordinary situations [14]. Their re-
search covers certain background noises from different places, speech compression levels, codecs (e.g., 
GSM-full rate), and the impact of online media quality (e.g., Skype) among others. These effects were ex-
amined separately with the given feature set. Further results were obtained using telephone-recorded or 
simulated telephone-quality samples with binary classification accuracy ranging from 59% to 83% [15] 
[16]. The former research used 9783 subject (1483 PD) recordings collected with standard telephone sys-
tems under non-controlled conditions. Sustained /a/ vowels were used and 66.4% ± 1.8% accuracy was 
obtained. The latter paper compares samples recorded by professional microphone and actual telephones. 
They also simulated phone quality from the recordings of the professional microphone. Their results show 
primarily that the accuracy is near to the same (74% - 75%) either by using simulated quality or actual tel-
ephone recorded samples. They reached an accuracy up to 83% using a professional microphone. There-
fore, the second objective of our research is the evaluation of models in a scenario where samples with en-
codings are used in mixed training and testing combinations: telephone communication system (using 
GSM-FR and G.723.1 codecs) and lossless PCM. As far as we know, this is the first attempt to examine 
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G.723.1 encoding, which is most commonly used in technical applications for voice communication over 
Voice over Internet Protocol (VoIP or IP telephony). GSM-FR is currently used in the majority of digital 
wireless telephone calls. Furthermore, it is unique to use all codecs in such a different combination for 
training and testing models. Such studies may provide a basis for examining a patient’s telephone conver-
sation even as an element of remote monitoring. 

In this research, Hungarian-language recordings are used from healthy control and Parkinson’s pa-
tients. Then, the recordings were split into smaller segments and also GSM-FR, G.723.1 codec versions 
were generated. Afterwards, SVM, LSTM, i-vector and x-vector classification models are proposed to rec-
ognize PD samples evaluated in the scenarios described earlier. 

This paper is structured as the following: in the second Chapter, the applied methodology is pre-
sented. It includes the Hungarian Parkinson’s Speech Dataset (HPSD), fragmentation of the recordings 
and the description of the classification tasks. In the third Chapter, the results are presented and in the 
fourth Chapter, conclusions are drawn. Finally, in the fifth Chapter, the key points of our research are 
summarized. 

2. MATERIALS AND METHODS 
The research reported in this article was based on the process shown in Figure 1. The recordings in 

the HPSD (detailed in Chapter 2.1) were fragmented while retaining the original samples. Beside the full 
length recordings (Paragraph) two additional sets were constructed: one that includes a few sentence long 
sample set (Sentences) and another includes a few second-long chunk set (Time-based). 

Two additional codec versions (GSM-FR, G.723.1) of the three sets were generated while retaining the 
original PCM. In total, nine sets (three codecs for the three splitted sets) were available for further exami-
nation. 

The nine speech sets were examined using four classification algorithms: SVM, LSTM, i-vector and 
x-vector. We conducted experiments for training and testing with samples of different durations and en-
codings. Furthermore, majority voting was performed for the sentences and time-based chunks using 
SVM algorithm. 

2.1. HPSD Database 

For the experiments, HPSD was used that contains recordings of 85 PD patients. The samples were 
recorded in two health institutes in Budapest: Semmelweis University and Virányos Clinic. The severity of 
PD patients was noted on the Hoehn and Yahr (H-Y) scale. It is a nonlinear scale ranging from 1 to 5,  
 

 
Figure 1. Flowchart of the applied method: Speech database, splitting (paragraph, sentences, 
time-based), encoding-decoding (PCM, GSM-FR, G.723.1), classification (SVM, i-vector, x-vector, 
LSTM). 
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where one indicates mild (unilateral) symptoms, while five stands for the most severe (bed or wheel- 
chair-bound) symptoms [17]. 

Overall, 85 healthy control (HC) and 85 PD recordings were collected using the tale of The North 
Wind and the Sun. From these, 86 males (mean age: 57.5 ± 15.0, mean H-Y for PD patients: 2.7 ± 1.1) and 
84 females (mean age: 58.2 ± 11.3, mean H-Y for PD patients: 2.6 ± 1.1). HC subjects admitted that they 
had no known disease and were not during any medical treatment. All subjects signed a statement of con-
sent when recordings were taken. 

Recording was done with an external audio interface (Terratec 6fire USB) with PCM audio coding, 16 
kHz sampling frequency and 16-bit quantization. A clip-on condenser microphone (Audio-Technica 
ATR3350) was used for recording in a quiet office environment. 

2.2. Preprocessing 

Recordings were normalized to peak amplitude. Samples were re-sampled at 8 kHz. Also, 16 kHz 
samples were retained to conduct a baseline model. 

2.3. Variable Fragmentation 

Recordings were split automatically by Praat [18] into two duration types (using available annota-
tion): three-sentence long fragments (sentence boundaries were known) and 3 seconds-long chunks. The 
total number and mean length (standard deviation is included between brackets) of samples in each frag-
mentation set are shown in Table 1 for the classes. 

2.4. Variable Encodings 

GSM encodings were done by Sound eXchange (SoX) for GSM-FR and a Matlab implementation for 
G.723.1 [19]. GSM-FR uses a bitrate of 13 kbit/s, G.723.1 uses a bitrate of 6.3 kbit/s (in Matlab implemen-
tation). 

2.5. Classification Methods 

2.5.1. Support Vector Machine 
A linear and a radial basis function (rbf) kernel based SVM model were created in python (version 

3.7.4) environment. In both cases, hyperparameters were set to default values (gamma: 1/feature number, 
C: 1.0, epsilon: 0.001). 

Feature extraction for the SVM-based method was performed using the SurfBoard python package 
[20]. Instead using the original SurfBoard recipe, only 12 MFCCs (Mel-frequency cepstral coefficients) 
were extracted for later comparison of classification procedures. Mean and standard deviation statistics 
were accumulated into the final feature vector for each sound sample, along with their first derivative. A 
total of 48 features were extracted from each recording. Input features were normalized by scaling between 
−1 and 1. 
 
Table 1. Number of samples and their length after splitting. 

 
Number of Recordings 

Mean Length (Standard Deviation) of 
Recordings in Seconds 

HC PD HC PD 

Paragraph 85 85 44.5 (±4.9) 59.0 (±23.2) 

Sentences 340 340 10.4 (±2.6) 13.4 (±4.6) 

Time-based 1029 1414 3.1 (±0.6) 3.2 (±0.3) 

https://doi.org/10.4236/jbise.2022.151002


 

 

https://doi.org/10.4236/jbise.2022.151002 10 J. Biomedical Science and Engineering 
 

2.5.2. i-Vector and x-Vector 
In speaker recognition and verification, i-vectors are state-of-the-art methods along with their deep 

learning variations [21]. In this model, factor analysis (FA) is used to compute a (originally) speaker- and 
session-dependent GMM supervector [22, 23] (created by concatenating the parameters of a background 
GMM with a large number of mixtures): 

, 0 ,s h s hm m Tw= + ,                                      (1) 

where m0 is the GMM-UBM supervector, T is the speaker and channel factor, called total variability space 
and ws,h~ N(0,1) are hidden variables, called total factors. The total factors are not observable, but can be 
estimated using FA. These total factors then can be used as features to a classifier, and came to be known 
as i-vectors (short for identity vector). The i-vector approach can be considered as a dimensionality reduc-
tion technique of the GMM supervector. Instead of speakers, other entities, such as diseases, can also be 
applied in the method, thus accomplishing classification tasks. The dimension of the i-vector in this study 
was set to 100. 

Alternative to i-vectors, a deep learning based method (called x-vector) was also developed primarily 
for speaker verification [24]. It is based on a multiple layered DNN architecture (with fully connected lay-
ers) with different temporal context at each layer (which they call “frames”). Due to the wider temporal 
context, the architecture is called time-delay NN (TDNN). The TDNN embedding architecture can be 
seen in Figure 2 and Table 2. 
 

 
Figure 2. X-vector DNN embedding architecture in [24]. 
The two parts: frame level (with the 5 frame layers) and 
segment level (with segment 6, segment 7 and softmax). 
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Table 2. X-vector DNN layer architecture [24]. It contains the layers, contexts and the input, output 
dimensions. 

Layer Layer Context Total Context Input × Output 

frame 1 [t − 2, t + 2] 5 120 × 512 

frame 2 {t − 2, t, t + 2} 9 1536 × 512 

frame 3 {t − 3, t, t + 3} 15 1536 × 512 

frame 4 {t} 15 512 × 512 

frame 5 {t} 15 512 × 1500 

stats pooling [0, T} T 1500T × 3000 

segment 6 {0} T 3000 × 512 

segment 7 {0} T 512 × 512 

softmax {0} T 512 × N 

 
The first five layers operate on speech frames, with small temporal context centered at the current 

frame t. For example, the frame indexed as 3 sees a total of 15 frames, due to the temporal context of the 
earlier layers. After training with disease types as target vectors, the output of layer segment6 (“x-vector”) 
is used as input to a classifier. The dimension of the x-vectors was set to 512. 

The i-vector and x-vector implementations in this study followed the KALDI recipe of Snyder in 
which 12 MFCCs were used as input features. 

Probabilistic linear discriminant analysis (PLDA) [25] was used for scoring i-vector and x-vector re-
presentation of samples. Classification was achieved by selecting the class (HC or PD) that had a higher 
score resulting from the algorithm. 

2.5.3. Long Short-Term Memory 
A deep learning classification method following [26] was also evaluated in the current study. The DL 

architecture consists of two parts: an autoencoder and LSTM part. It learns a feature representation and a 
disease specific part performs classification in a muti-learning setup (Figure 3). 

12 MFCCs of the audio samples were used as input features with 25 ms calculation window and 10 ms 
time step. The method was implemented in Tensorflow 2.1. Complexity of the network was set to the val-
ues described in the original study, summarized in Table 3. 

2.5.4. Evaluation Setup 
5-fold cross validation was applied during the experiments to split the samples into training and test 

sets. These sets never contained samples from the same speaker (cross-validation splitting was done ac-
cording to speaker ids). No model optimization was performed, default values described previously were 
applied as hyperparameters; hence, no development set was available due to the relatively low number of 
samples. All hyperparameters were chosen according to the referenced studies. Classifier methods were 
evaluated by accuracy and F1-score, referred as “Acc.” and “F1” in the later Tables describing results. For 
each test case, more detailed results are shown in Appendix depicting also specificity and sensitivity. 

Three experimental scenarios were evaluated. A baseline performance level was created by linear and 
rbf kernel SVM using samples without resampling (16 kHz) and applying all three fragmentation sets (pa-
ragraph, sentences, time-based). 

The possible performance variation of SVM, LSTM, i-vector and x-vector methods due to different 
encodings and fragmentation sets were evaluated using varying codecs and fragmentation sets applied as  
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Figure 3. LSTM-auto encoder-multitask learning network in [26]. The upper part serves the task of 
the autoencoder while the lower part performs the classification. 
 
Table 3. Number of units in DL layers. 

Layer Name Units 
LSTM 100 

fcencoder_1 30 
fcencoder_2 30 

fct 200 
time distributed layer 128 
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train and test sets. 
A majority voting scheme was also examined with linear and rbf kernel SVM in which the decision 

for each speaker was determined by selecting the most frequently occurring class label of the given speak-
er’s samples. 

3. RESULTS 
3.1. Baseline Results of 16 kHz PCM Encodings 

Linear and rbf SVM trained with the original 16 kHz PCM version of the samples (without resam-
pling) was used as an overall baseline. Results on the three fragmentation sets are shown in Table 4. Acc. 
and F1 abbreviation refer to accuracy and F1-score, respectively. 

Using full length recordings (paragraph) 85.3% accuracy and 85.4% F1-score were achieved with li-
near kernel SVM. By splitting paragraphs into sentences, nearly the same results can be observed in both 
accuracy (from 85.3% to 85.0%) and F1-score (from 85.4% to 85.2%). However, time-based chunking re-
sulted in a slight decrease (from 85.0% to 83.5%) in accuracy and a slight improvement in F1-score (from 
85.2% to 86.1%) compared to sentences results. 

With the algorithm of rbf kernel SVM, the results are nearly the same as with the linear kernel. The 
paragraph case performed a bit lower while the outcomes increased slightly with sentences. The 
time-based training and testing resulted about the same accuracy and F1-score as the linear kernel SVM 
did. 

An extended version of result table of the baseline experiment can be seen in Table A1, Appendix A. 

3.2. Variable Fragmentation Results of 8 kHz PCM Encodings 

In order to evaluate the effects of samples with various durations on the classification performance, 
trials were run by applying fragmentation sets as various train and test sets combinations. The results can 
be seen in Table 5 for all classifier models. 

In case of paragraph training, testing with recordings of same duration yielded the best accuracy and 
F1-score values for most of the classifiers. Of these, rbf kernel SVM had achieved the highest accuracy 
(89.4%) and F1-score (89.7%). It can also be seen that if shorter recordings are used for testing, the results 
generally deteriorated. It is noteworthy that this change was within 1% - 2% for i-vector while at most 15% 
for LSTM. 

For training with samples fragmented into sentences it can be seen that the best results were obtained 
when the test was made with paragraphs (i-vector, x-vector, SVM-linear). However, the difference is not 
significant. Within this, the i-vector resulted in the highest accuracy (90.0%) and F1-score (90.3%). It also 
ensues from these outcomes that training and testing with sentences did not achieve the result that train-
ing with sentences and testing with paragraphs (only with SVMs). 

By training with time-based segments and testing with paragraphs, i-vector yielded the best results  
 
Table 4. Baseline results (accuracy and F1-score) of 16 kHz PCM recordings with linear and rbf 
kernel SVM. 

Trained/Tested on 
rbf kernel linear kernel 

Acc. F1 Acc. F1 

Paragraph/Paragraph 84.7% 84.5% 85.3% 85.4% 

Sentences/Sentences 86.0% 86.0% 85.0% 85.2% 

Time-based/Time-based 83.8% 86.2% 83.5% 86.1% 
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Table 5. Results of 8 kHz PCM recordings of different durations using multiple classification model. 

Trained/ 
Tested  

on 

i-vector x-vector LSTM SVM-linear SVM-rbf 

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

P/P 88.8% 89.4% 84.1% 83.6% 81.2% 80.2% 84.1% 84.6% 89.4% 89.7% 

P/S 88.5% 89.1% 79.1% 78.0% 78.2% 76.9% 74.7% 78.9% 80.7% 83.1% 

P/T 88.2% 90.2% 74.2% 75.9% 73.7% 66.9% 74.9% 81.6% 79.5% 84.2% 

S/P 90.0% 90.3% 80.6% 80.9% 81.2% 81.4% 84.7% 84.3% 80.0% 77.3% 

S/S 88.8% 89.4% 79.3% 78.9% 80.0% 79.8% 84.6% 84.6% 86.2% 86.3% 

S/T 88.4% 90.3% 75.2% 77.6% 74.0% 70.1% 79.1% 81.1% 81.3% 83.2% 

T/P 89.4% 89.8% 76.5% 76.5% 83.5% 82.7% 85.9% 85.9% 82.4% 82.6% 

T/S 89.0% 89.2% 77.5% 77.1% 84.7% 84.2% 82.4% 83.7% 85.0% 85.9% 

T/T 87.4% 89.4% 74.7% 77.0% 81.0% 77.6% 82.6% 85.5% 84.6% 87.0% 

In the first column, the abbreviations are: P—Paragraph, S—Sentences, T—Time-based. 
 
(accuracy: 89.4%, F1-score: 89.8%). Testing with sentences and time-based segments, the i-vector also 
achieved the highest metrics values. Moreover, all classifiers reached higher performance than 80% both in 
accuracy and F1-score except the x-vector and LSTM. These are deep learning based algorithms that may 
need more data to ensure robust classification. 

The slight increase of performance when trained on smaller audio chunks (sentences and time-based) 
may result from the increased number of training data for which all machine learning applications are 
sensitive. However, the small amount of change in accuracy and F1-score imply that in-formation regard-
ing Parkinson speech disorder is also present in smaller speech segments. 

The extended version of Table 5 can be found in Appendix A named as Table A2. 

3.3. Variable Encoding Results of 8 kHz Recordings 

In real-world scenarios, recordings can be affected by channel mismatches, such as differences in en-
codings of mobile phone audio signal. To investigate the performance degradation in such cases, the three 
different encodings were applied in all train and test sets combinations. The obtained results are shown in 
Tables 6-8 for the fragmentation sets separately. The rows show the results of different training and test-
ing codec combinations, the columns show the results of the different classifiers. 

Using paragraphs (Table 6), the i-vector achieved the highest accuracy (90.6%) and F1-score (90.4%) 
when trained with PCM and tested with G.723.1. Similar high results to i-vector were obtained using SVM 
with radial basis function as kernel in case of PCM/GSM-FR (accuracy: 87.6%, F1-score: 87.1%). In the 
case of the other classifier, a larger fluctuation can be realized. The x-vector and LSTM show a decrease in 
performance when the models trained with PCM and tested with G.723.1 instead of GSM-FR. However, 
the linear kernel SVM provides nearly the same performance (even higher in the case of GSM-FR/PCM 
than in the case of PCM/GSM-FR). A similar degradation was perceived generally when training was done 
with codecs, and tested was done with PCM. 

Using sentence splitted recordings (Table 7), the i-vector achieved the top results (accuracy: 90.0% - 
86.5%, F1-score: 90.2% - 87.5%). Moreover, training with G.723.1 and testing with PCM codec yielded 
nearly the same accuracy and F1-score as PCM/GSM-FR using i-vector and linear kernel SVM. A decrease 
is also observed when training was done with GSM codecs and the testing was done with PCM in many 
cases. However, the SVMs’, LSTM’s and i-vector’s decreases are narrow along the cases. 
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Table 6. Results of variable encodings on PARAGRAPH 8 kHz recordings using multiple classifica-
tion models. 

Trained/ 
Tested on 

i-vector x-vector LSTM SVM-linear SVM-rbf 
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

PCM/ 
GSM-FR 

87.1% 88.3% 81.2% 79.5% 81.2% 80.0% 80.6% 81.6% 87.6% 87.1% 

PCM/ 
G.723.1 

90.6% 90.4% 78.2% 76.7% 77.6% 72.9% 80.6% 79.2% 84.1% 82.8% 

GSM-FR/ 
PCM 

87.6% 87.7% 78.8% 79.3% 82.4% 83.0% 85.9% 86.7% 86.5% 87.3% 

G.723.1/ 
PCM 

87.1% 87.8% 74.7% 73.6% 80.6% 82.2% 75.9% 80.0% 81.8% 83.8% 

 
Table 7. Results of variable encodings on SENTENCES 8 kHz recordings using multiple classifica-
tion models. 

Trained/ 
Tested on 

i-vector x-vector LSTM SVM-linear SVM-rbf 

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

PCM/ 
GSM-FR 

86.5% 87.5% 80.6% 80.2% 82.1% 82.0% 83.1% 83.4% 85.1% 85.6% 

PCM/ 
G.723.1 

90.0% 90.2% 76.5% 76.5% 79.3% 77.0% 80.4% 82.2% 84.3% 85.4% 

GSM-FR/ 
PCM 

89.1% 89.5% 75.9% 76.6% 80.9% 81.6% 83.7% 83.7% 83.5% 83.0% 

G.723.1/ 
PCM 

87.6% 87.9% 75.3% 74.4% 79.3% 80.2% 80.3% 78.0% 83.5% 82.4% 

 
Table 8. Results of variable encodings on TIME-BASED 8 kHz recordings using multiple classifica-
tion models. 

Trained/ 
Tested on 

i-vector x-vector LSTM SVM-linear SVM-rbf 
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

PCM/ 
GSM-FR 

87.2% 89.3% 80.0% 79.3% 81.0% 77.7% 83.1% 86.4% 84.2% 87.1% 

PCM/ 
G.723.1 

86.1% 87.9% 76.5% 76.5% 81.0% 76.0% 82.6% 85.9% 82.7% 85.9% 

GSM-FR/ 
PCM 

87.8% 89.4% 75.9% 76.0% 82.6% 78.8% 81.2% 83.5% 82.4% 84.4% 

G.723.1/ 
PCM 

85.9% 87.7% 75.3% 72.7% 80.1% 77.4% 78.9% 80.0% 81.0% 82.6% 
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For time-based segments (Table 8), the best results came with the i-vector as well (accuracy: 87.8% - 
85.9%, F1-score: 89.4% - 87.7%). A small decrease can be observed along all the classifiers examining dif-
ferent cases. 

Looking at Tables 6-8, and comparing it to Table 4, performance changes can be observed and the 
trend of metrics’ increase/decrease is not that clear so far. This implies that using these coded speech sam-
ples does not have an unequivocal effect on trained models. However, choosing such models, this perfor-
mance changes can be minimal. The i-vector approach, due to its dimension reduction method, can be 
considered as a robust machine learning algorithm in present case. The second machine learning solution 
would be the rbf kernel SVM with narrow decrease and high performance. 

The expended result tables of Tables 6-8 can be found in Appendix A as Tables A3-A5, respectively. 

3.4. Majority Voting on 8 kHz SVM Results 

Due to the fragmentation of recordings, multiple samples were available for each speaker. A way of 
fusing decisions made for a speaker is majority voting. The result of majority voting for time-based and 
sentence fragmentation experiments can be seen in Table 9 for SVM with linear and rbf (MV: majority 
voting, no MV: without majority voting). 

It can be deduced from Table 9 that improvement was achieved with majority voting on both 
time-based and sentence sets compared to not aggregating decisions for the subjects. The accuracy of SVM 
with rbf kernel changed from 84.6% to 87.1% and the F1-score changed from 87.0% to 87.8% in case of 
time-based segments. Using sentences, the accuracy from 86.2% rose to 87.6% while the F1-score in-
creased from 86.3% to 88.1%. Using linear kernel, accuracy (time-based: 82.6% to 87.1%, sentences: 84.6% 
to 87.7%) and F1-score (time-based: 85.5% to 87.8%, sentences: 84.6% to 87.9%) also improved for both 
time-based and sentence chunking experiments. 

Using paragraphs to train and test SVM with rbf, 89.4% accuracy and 89.7% F1-score were achieved 
(Table 5). It can be seen that higher performance cannot be achieved by majority voting in this case. How-
ever, improvement is observed with majority voting rather than paragraph method (accuracy: 84.1%, 
F1-score: 84.6%) using linear kernel SVM. 

The extended version of majority voting result table can be found in Table A6, Appendix A. 

4. DISCUSSION 
The results obtained with the baseline models (accuracy: 85.3% - 83.5%) can be compared with other 

findings in the literature. Based on a survey [27], it reports accuracy above 66% using SVM. Moreover, 
most research achieved over 85% accuracy. The comparison should also be treated with caution, as the 
speech databases applied were different. 

Table 4 and Table 5 show a few percent performance difference between the 8 and 16 kHz recordings 
with the SVM classifier. Specifically, 8 kHz recordings resulted in a slight decrease (max. −2%) for the  
 
Table 9. Results of majority voting using SVM with linear and rbf kernel on 8 kHz samples. 

Experiment 
  rbf kernel linear kernel 

Training On Testing On Acc. F1 Acc. F1 

no MV Time-based Time-based 84.6% 87.0% 82.6% 85.5% 

MV Time-based Time-based 87.1% 87.8% 87.1% 87.8% 

no MV Sentences Sentences 86.2% 86.3% 84.6% 84.6% 

MV Sentences Sentences 87.6% 88.1% 87.7% 87.9% 
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linear kernel, while for the rbf kernel, they resulted in a slight increase (max +5%). Using multiple classifi-
cation models, better results were achieved in many cases than baseline outcomes. This is because 16 kHz 
recordings may contain interfering noises, which may impair recognition. Moreover, the different classifi-
ers process information differently that can be resulted in distinct performances as well. 

The experiments of Chapter 3.2 do not give a clear result as to whether it is worthwhile to use re-
cordings of different durations for training and testing. On the other hand, it seems that i-vector, x-vector 
and SVM kept their result range narrow along with the different training/testing layouts. 

In the case of deep learning solutions, it may be worth noting that the full length recordings produced 
results comparable the other classifiers. On the other hand, the performance of these classifiers typically 
deteriorated when splitted segments were used. In this case, despite the increase in the number of training 
data, the recordings no longer contained as much information as it would be efficient for high perfor-
mance training. A possible way to increase the performance of x-vector is to use a pre-trained x-vector 
extractor trained on a large dataset of a different domain (such as speaker verification). However, there are 
doubts about this method precisely because of domain differences. Testing this is beyond the scope and 
aim of this paper, but it would be worthwhile to investigate the matter. The i-vector approach however had 
small variation in performance taking all fragmentations into consideration. It was already experienced 
that in case of a small number of samples, i-vector outperforms x-vector [28]. 

In terms of encoding experiments, the classifiers performed worse when telephone coded recordings 
were used for testing. The results were even more deteriorated when the model was trained with GSM en-
coded samples. However, it should be noted that there is a little change between telephone coded and 
PCM recordings based on manual inspection of spectrograms. The variation in performance is also not 
significant along multiple classifiers. Based on these findings, it is not necessarily true that prediction on 
low quality recordings (8 kHz sampling rate, GSM encoding with low bitrate) cannot be performed using a 
model trained with recordings acquired in a high quality setup (16 kHz sampling rate, lossless coding). 
There is a moderate performance loss however, which must be taken into consideration. 

If multiple recordings per speaker are available, majority voting may give opportunity to improve the 
classification performance rather than using multiple decisions per subject separately. This is because 
there may be some samples with a difficulty to distinguish between PD and HC. Moreover, this method 
did exceed the results of training and testing with complete paragraphs using SVM with linear kernel. 

5. CONCLUSION 
In the present study, recognition of Parkinson’s disease was performed. Multiple phenomena were 

examined: the effect of speech recording fragmentation and mixed use of variable encodings. Full length 
recordings (paragraphs, short read tale) were divided into sentences and short time-based chunks. Mul-
tiple classification models were applied on these sets separately and crosswise. Effect of telephone codecs 
beside lossless PCM (using samples resampled to 8 kHz) was also considered throughout the classification 
performance. The results were compared to a baseline outcome of SVM with linear and rbf kernel func-
tion. Finally, majority voting was carried out where multiple samples had been available per subject. 

Similar results can be obtained on the 8 kHz recordings than on the 16 kHz ones using linear kernel 
SVM. Changing only the kernel of SVM, the result improved. Using x-vector and i-vector, the result was 
increased even more. In addition, the separate and crosswise experiments did not give a clear result 
whether it is worthwhile to do classification using either smaller segments or crosswise training/testing 
layout. However, the outputs of certain models are slightly altered in different training/testing designs. 
Using telephone codecs, the change in recording quality is reflected in the outcomes of the algorithms. As 
well, certain machine learning models could handle telephone codecs with narrow deviations in perfor-
mance. 

Finally, the use of majority voting was able to marginally increase the performance of the classifier. 
Moreover, better results were achieved as using paragraphs in case of linear kernel SVM. It can be con-
cluded that majority voting may improve the performance in case of multiple samples per subject. Fur-
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thermore, GSM encodings does not deteriorate the performance of the models to be unusable. Especially, 
certain classifiers can retain the same result with GSM coded samples than with purely PCM ones. 

Based on the results presented here, two main statements can be made. 1) The patient’s speech over a 
telephone call could be also examined with such an algorithm (that trained on GSM coded samples). Thus, 
the procedure would not necessarily require a personal presence and call quality would also be taken into 
account. This may even play a role in monitoring patients in a treatment follow-up or pre-screening sub-
jects using cheap devices and protocol. 2) It is still an open question, what is the speech length sufficient 
for an evaluation. It may be enough to record only a part of the read text instead of the full version. This is 
more time efficient and convenient for both the doctor and the patient. 
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APPENDIX A 
Table A1. Extended results table of the baseline experiments using SVM algorithms. 

 
Trained/Tested on Paragraph/Paragraph Sentences/Sentences Time-based/Time-based 

rb
f k

er
ne

l 

Spec. 85.9% 85.9% 78.3% 

Sen. 83.5% 86.2% 87.8% 

Pred. 85.5% 85.9% 84.8% 

Acc. 84.7% 86.0% 83.8% 

F1 84.5% 86.0% 86.2% 

lin
ea

r k
er

ne
l 

Spec. 84.7% 83.5% 77.8% 

Sen. 85.9% 86.5% 87.7% 

Pred. 84.9% 84.0% 84.5% 

Acc. 85.3% 85.0% 83.5% 

F1 85.4% 85.2% 86.1% 

In the second column, the abbreviations are: Spec.—Specificity, Sen.—Sensitivity, Prec.—Precision, Acc.— 
Accuracy, F1—F1-score. 
 
Table A2. Extended results table of the recordings’ length variation experiments. 

Trained/Tested on P/P P/S P/T S/P S/S S/T T/P T/S T/T 

i-v
ec

to
r 

Spec. 83.5% 83.2% 80.7% 87.1% 83.5% 81.1% 85.9% 86.8% 81.7% 

Sen. 94.1% 93.8% 93.7% 92.9% 94.1% 93.6% 92.9% 91.2% 91.5% 

Prec. 85.1% 84.8% 86.9% 87.8% 85.1% 87.2% 86.8% 87.3% 87.3% 

Acc. 88.8% 88.5% 88.2% 90.0% 88.8% 88.4% 89.4% 89.0% 87.4% 

F1 89.4% 89.1% 90.2% 90.3% 89.4% 90.3% 89.8% 89.2% 89.4% 

x-
ve

ct
or

 

Spec. 87.1% 84.4% 79.6% 78.8% 80.9% 77.0% 76.5% 79.1% 77.0% 

Sen. 81.2% 73.8% 70.3% 82.4% 77.6% 74.0% 76.5% 75.9% 73.1% 

Prec. 86.3% 82.6% 82.6% 79.5% 80.2% 81.5% 76.5% 78.4% 81.4% 

Acc. 84.1% 79.1% 74.2% 80.6% 79.3% 75.2% 76.5% 77.5% 74.7% 

F1 83.6% 78.0% 75.9% 80.9% 78.9% 77.6% 76.5% 77.1% 77.0% 

LS
TM

 

Spec. 78.5% 75.3% 75.2% 81.9% 79.3% 78.9% 80.6% 82.8% 83.9% 

Sen. 84.4% 82.0% 71.1% 80.5% 80.7% 67.9% 87.0% 86.9% 77.0% 

Prec. 76.5% 72.4% 63.2% 82.4% 78.8% 72.4% 78.8% 81.8% 78.1% 

Acc. 81.2% 78.2% 73.7% 81.2% 80.0% 74.0% 83.5% 84.7% 81.0% 

F1 80.2% 76.9% 66.9% 81.4% 79.8% 70.1% 82.7% 84.2% 77.6% 
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Continued 
SV

M
-li

ne
ar

 

Spec. 81.2% 54.7% 45.0% 87.1% 84.1% 81.8% 85.9% 74.1% 74.7% 

Sen. 87.1% 94.7% 96.6% 82.4% 85.0% 77.2% 85.9% 90.6% 88.4% 

Prec. 82.2% 67.6% 70.7% 86.4% 84.3% 85.4% 85.9% 77.8% 82.8% 

Acc. 84.1% 74.7% 74.9% 84.7% 84.6% 79.1% 85.9% 82.4% 82.6% 

F1 84.6% 78.9% 81.6% 84.3% 84.6% 81.1% 85.9% 83.7% 85.5% 

SV
M

-r
bf

 

Spec. 87.1% 66.8% 58.2% 91.8% 85.3% 83.7% 81.2% 78.5% 78.4% 

Sen. 91.8% 94.7% 94.9% 68.2% 87.1% 79.6% 83.5% 91.5% 89.1% 

Prec. 87.6% 74.0% 75.7% 89.2% 85.5% 87.0% 81.6% 81.0% 85.0% 

Acc. 89.4% 80.7% 79.5% 80.0% 86.2% 81.3% 82.4% 85.0% 84.6% 

F1 89.7% 83.1% 84.2% 77.3% 86.3% 83.2% 82.6% 85.9% 87.0% 

In the second column, the abbreviations are: Spec.—Specificity, Sen.—Sensitivity, Prec.—Precision, Acc.— 
Accuracy, F1—F1-score. In the first row, the abbreviations are: P—Paragraph, S—Sentences, T— 
Time-based. 
 
Table A3. Extended results table of the variable encodings on PARAGRAPH experiments. 

Trained/Tested on PCM/GSM-FR PCM/G.723.1 GSM-FR/PCM G.723.1/PCM 

i-v
ec

to
r 

Spec. 76.5% 92.9% 87.1% 81.2% 

Sen. 97.6% 88.2% 88.2% 92.9% 

Prec. 80.6% 92.6% 87.2% 83.2% 

Acc. 87.1% 90.6% 87.6% 87.1% 

F1 88.3% 90.4% 87.7% 87.8% 

x-
ve

ct
or

 

Spec. 89.4% 84.7% 76.5% 78.8% 

Sen. 72.9% 71.8% 81.2% 70.6% 

Prec. 87.3% 82.4% 77.5% 76.9% 

Acc. 81.2% 78.2% 78.8% 74.7% 

F1 79.5% 76.7% 79.3% 73.6% 

LS
TM

 

Spec. 77.9% 70.4% 84.8% 87.1% 

Sen. 85.3% 92.7% 80.2% 76.0% 

Prec. 75.3% 60.0% 85.9% 89.4% 

Acc. 81.2% 77.6% 82.4% 80.6% 

F1 80.0% 72.9% 83.0% 82.2% 
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Continued 
SV

M
-li

ne
ar

 

Spec. 75.3% 87.1% 80.0% 55.3% 

Sen. 85.9% 74.1% 91.8% 96.5% 

Prec. 77.7% 85.1% 82.1% 68.3% 

Acc. 80.6% 80.6% 85.9% 75.9% 

F1 81.6% 79.2% 86.7% 80.0% 

SV
M

-r
bf

 

Spec. 91.8% 91.8% 80.0% 69.4% 

Sen. 83.5% 76.5% 92.9% 94.1% 

Prec. 91.0% 90.3% 82.3% 75.5% 

Acc. 87.6% 84.1% 86.5% 81.8% 

F1 87.1% 82.8% 87.3% 83.8% 

In the second column, the abbreviations are: Spec.—Specificity, Sen.—Sensitivity, Prec.—Precision, Acc.— 
Accuracy, F1—F1-score. In the first row, the abbreviations are: P—Paragraph, S—Sentences, T— 
Time-based. 
 
Table A4. Extended results table of the variable encodings on SENTENCES experiments. 

Trained/Tested on PCM/GSM-FR PCM/G.723.1 GSM-FR/PCM G.723.1/PCM 

i-v
ec

to
r 

Spec. 78.2% 87.9% 85.6% 85.6% 

Sen. 94.7% 92.1% 92.6% 89.7% 

Prec. 81.3% 88.4% 86.5% 86.2% 

Acc. 86.5% 90.0% 89.1% 87.6% 

F1 87.5% 90.2% 89.5% 87.9% 

x-
ve

ct
or

 

Spec. 82.4% 76.5% 72.9% 78.8% 

Sen. 78.8% 76.5% 78.8% 71.8% 

Prec. 81.7% 76.5% 74.4% 77.2% 

Acc. 80.6% 76.5% 75.9% 75.3% 

F1 80.2% 76.5% 76.6% 74.4% 

LS
TM

 

Spec. 81.7% 74.4% 83.7% 82.2% 

Sen. 82.4% 86.4% 78.5% 76.8% 

Prec. 81.5% 69.4% 85.0% 83.8% 

Acc. 82.1% 79.3% 80.9% 79.3% 

F1 82.0% 77.0% 81.6% 80.2% 
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Continued 
SV

M
-li

ne
ar

 

Spec. 81.5% 70.6% 83.8% 90.6% 

Sen. 84.7% 90.3% 83.5% 70.0% 

Prec. 82.1% 75.4% 83.8% 88.1% 

Acc. 83.1% 80.4% 83.7% 80.3% 

F1 83.4% 82.2% 83.7% 78.0% 

SV
M

-r
bf

 

Spec. 82.1% 76.8% 86.8% 89.7% 

Sen. 88.2% 91.8% 80.3% 77.4% 

Prec. 83.1% 79.8% 85.8% 88.3% 

Acc. 85.1% 84.3% 83.5% 83.5% 

F1 85.6% 85.4% 83.0% 82.4% 

In the second column, the abbreviations are: Spec.—Specificity, Sen.—Sensitivity, Prec.—Precision, Acc.— 
Accuracy, F1—F1-score. In the first row, the abbreviations are: P—Paragraph, S—Sentences, T— 
Time-based. 
 
Table A5. Extended results table of the variable encodings on TIME-BASED experiments. 

Trained/Tested on PCM/GSM-FR PCM/G.723.1 GSM-FR/PCM G.723.1/PCM 

i-v
ec

to
r 

Spec. 80.2% 85.3% 85.7% 84.9% 

Sen. 92.3% 86.7% 89.3% 86.6% 

Prec. 86.5% 89.0% 89.6% 88.8% 

Acc. 87.2% 86.1% 87.8% 85.9% 

F1 89.3% 87.9% 89.4% 87.7% 

x-
ve

ct
or

 

Spec. 83.5% 76.5% 75.3% 84.7% 

Sen. 76.5% 76.5% 76.5% 65.9% 

Prec. 82.3% 76.5% 75.6% 81.2% 

Acc. 80.0% 76.5% 75.9% 75.3% 

F1 79.3% 76.5% 76.0% 72.7% 

LS
TM

 

Spec. 84.1% 80.9% 83.9% 85.1% 

Sen. 77.0% 81.1% 80.6% 74.3% 

Prec. 78.4% 71.5% 77.2% 80.9% 

Acc. 81.0% 81.0% 82.6% 80.1% 

F1 77.7% 76.0% 78.8% 77.4% 
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Continued 
SV

M
-li

ne
ar

 

Spec. 69.7% 70.5% 79.2% 86.7% 

Sen. 92.8% 91.4% 82.6% 73.2% 

Prec. 80.8% 81.0% 84.5% 88.3% 

Acc. 83.1% 82.6% 81.2% 78.9% 

F1 86.4% 85.9% 83.5% 80.0% 

SV
M

-r
bf

 

Spec. 72.8% 71.0% 82.6% 85.3% 

Sen. 92.4% 91.2% 82.2% 77.9% 

Prec. 82.4% 81.2% 86.7% 87.9% 

Acc. 84.2% 82.7% 82.4% 81.0% 

F1 87.1% 85.9% 84.4% 82.6% 

In the second column, the abbreviations are: Spec.—Specificity, Sen.—Sensitivity, Prec.—Precision, Acc.— 
Accuracy, F1—F1-score. In the first row, the abbreviations are: P—Paragraph, S—Sentences, T— 
Time-based. 
 
Table A6. Extended results table of the majority voting experiments on SVMs. 

Experiment no MV MV no MV MV 

Testing On Time-based Time-based Sentences Sentences 

rb
f k

er
ne

l 

Spec. 78.4% 81.2% 85.3% 83.5% 

Sen. 89.1% 92.9% 87.1% 91.8% 

Prec. 85.0% 83.2% 85.5% 84.8% 

Acc. 84.6% 87.1% 86.2% 87.6% 

F1 87.0% 87.8% 86.3% 88.1% 

lin
ea

r k
er

ne
l 

Spec. 74.7% 81.2% 84.1% 85.9% 

Sen. 88.4% 92.9% 85.0% 89.4% 

Prec. 82.8% 83.2% 84.3% 86.4% 

Acc. 82.6% 87.1% 84.6% 87.7% 

F1 85.5% 87.8% 84.6% 87.9% 

In the second column, the abbreviations are: Spec.—Specificity, Sen.—Sensitivity, Prec.—Precision, Acc.— 
Accuracy, F1—F1-score. In the first row, the MV stands for the majority voting abbreviation. 
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