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Abstract 

Alzheimer’s disease (AD) is a leading cause of death, yet there is no dis-
ease-modifying drug therapy currently available. It is critical to establish a 
diagnosis of AD before clinical system onset so that drug therapies can start 
earlier. Unfortunately, this is not the current standard practice. Artificial in-
telligence (AI) holds tremendous promise for identifying AD related struc-
tural changes in brain scan images. This paper discusses the recent applica-
tions and potential future directions for AI in AD diagnostics. Annual brain 
scanning and computer vision-assisted early diagnosis is encouraged, so that 
disease-modifying drug therapy could begin earlier in the progressive pa-
thology. 
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1. Introduction 

Rapid technological advancements in various fields have recently ushered in a 
biomedical revolution. Modern life scientists now rely on interdisciplinary ap-
proaches to tackle what was previously impossible. Artificial intelligence is one 
of the most promising cutting-edge tools being perfected for clinical use, espe-
cially for diagnostic applications. In the recently published article, “Deep Con-
volutional Neural Networks with Ensemble Learning and Generative Adversarial 
Networks for Alzheimer’s Disease Image Data Classification”, the authors pro-
vide a comprehensive overview of the strategies and benefits of incorporating ar-
tificial intelligence (AI) into Alzheimer’s disease (AD) detection from magnetic 
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resonance imaging (MRI) in order to achieve extremely high accuracy and pre-
cision in determining the presence of disease [1]. 

Biomedical data is being generated at an unprecedented pace. Biomedical 
scientists and clinicians alike need to use high-performance computing, bioin-
formatics and cloud storage to efficiently and accurately analyze these data in a 
meaningful way. The modern problems of working with large datasets require 
the modern solution of AI, specifically utilizing the deep learning subdiscipline 
of AI. The general interest surrounding AI, which includes machine learning 
and deep learning, has experienced a meteoric rise in recent history due to the 
promise it holds in revolutionizing healthcare [2]. However, it has been clarified 
that “AI won’t replace radiologists, but radiologists who use AI will replace radi-
ologists who don’t” [3]. 

There is a pressing need to establish an earlier diagnosis for those with neu-
rodegenerative diseases. By the time a diagnosis is made, the extent of damage to 
the central nervous system is beyond repair. It has been shown repeatedly that 
the best defense against neurodegeneration is an early offense, which is only 
made possible through an early diagnosis [4]. Due to the large extent that AD 
occurs in the population, the tremendous societal burden of AD, and the long 
asymptomatic preclinical period AD, there is significant potential that an early 
diagnosis could be critical for turning the tide of the disease [5].  

At the present, an AD diagnosis is established by the clinical presentation of 
cognitive and memory deficits in addition to the histopathological presence of a 
mixed proteinopathy. The biomarkers necessary for an AD diagnosis consist of 
β-amyloid plaques and neurofibrillary tangles composed of hyperphosphory-
lated tau [6] [7]. The incorporation of histological markers through either im-
aging, blood or cerebral spinal fluid (CSF) analysis, is useful in clearly differen-
tiating between mild cognitive impairment (MCI), various stages of AD, or other 
forms of dementia, such as dementia with Lewy bodies or frontotemporal de-
mentia [8] [9] [10]. 

Non-invasive or minimally invasive imaging has become a valuable asset in 
the development of AD diagnosis. For instance, PET scans for β-amyloid pla-
ques require the injection of a specialized radiolabeled tracer, such as florbetapir 
[11]. PET scans for AD diagnostics have been shown to have at least 96% sensi-
tivity and 100% specificity, even for milder forms of the disease [7]. Despite be-
ing FDA approved for many years and offering high diagnostic accuracy, PET 
imaging has not become standard clinical practice due to high costs and patient 
concerns over the use of radiolabeled tracers. MRI scans, however, only use mag-
net and radio waves for imaging. Therefore, MRIs do not use X-rays like those 
used for computerized tomography (CT) and do not use radiolabeled tracers like 
those used for PET scans. However, MRIs are impractical for some patients who 
cannot be exposed to strong magnet waves, like those with a heart pacemaker or 
an aneurysm clip. MRIs can accurately detect cortical atrophy patterns, ventricle 
enlargements, β-amyloid plaques and neurofibrillary tangle presence and density 
among AD patients [12] [13]. Furthermore, brain imaging offers a less invasive 
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alternative to histopathological analysis than a lumbar spinal tap for CSF collec-
tion. It is the opinion of the authors that routine brain imaging should become a 
part of routine medical care, just as mammograms and prostate cancer checks 
have become (Figure 1). However, the risk/benefit analysis of modality type and 
brain scan frequency should be established at the direction of a physician to re-
duce any unnecessary exposure to radiation. Finally, in order to have brain im-
aging become established as a part of routine screenings, there also needs to be 
an established standardization of image interpretation. This is where deep learning 
becomes valuable.  

2. Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a widely used computer vision tool 
for image classification. Briefly, CNNs receive an image input such as an MRI to 
create the input layer, which then feeds into the convolution layers followed by 
pooling layers. There may be many convolution and pooling layers in a CNN to 
extract low-level image information in the early stages of the network and to re-
duce dimensionality until high-level final details of the image are extracted and 
learned according to weights and biases. Finally, a fully connected network of 
layers is built. Critical to the architecture of the CNN is the kernel, which pro-
vides learnability and produces a feature map. The final output is then sent through 
a non-linear activation function, such as a logistic or hyperbolic tangent func-
tion. A benefit of the CNN is that it is able to quickly learn the relevant features 
and patterns of an MRI without requiring flattening or prior knowledge of im-
portant features and their manual extraction. Furthermore, CNN is able to per-
form deep multiclassification analysis to distinguish between patients who are 
cognitively normal (CN), have mild cognitive impairment (MCI), or AD [14]. 
The commonly used GoogLeNet, ResNet-18 and ResNet-152 CNN architectures 
have been shown to have over 98% accuracy in classifying CN, MCI, late MCI 
and AD on patient MRI data [15] [16]. 
 

 
Figure 1. Proposed strategy for establishing earlier AD diagnosis. 
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3. Generative Adversarial Networks 

Generative adversarial networks (GAN) are comprised of a generative neural 
network paired with a discriminative neural network and both networks anta-
gonize each other. The role of the generative network is to produce an example 
image based on prior input. The role of the discriminator is to assess the output 
of the generative network to see if the example images match well to the images 
used in training. Throughout this process, the generative neural network learns 
to build better matching images until the discriminator is satisfied. GANs are 
commonly used for image data augmentation, which is beneficial in image-based 
AD diagnosis. For example, GANs can be used to help enhance an MRI image or 
to actually predict whole brain structural changes throughout time. Therefore, 
GANs can hold tremendous promise in playing a critical role in establishing an 
AD diagnosis. Variation in magnet strength can impact the quality of MRI im-
ages. Common quality classifications include the base quality 1.5-T and the su-
perior 3-T scans. 3-T images reduce the signal-to-noise ratio of 1.5-T by half. 
GANs have been used to take 1.5-T quality input images and convert them into 
3-T quality images, which led to better AD classification [17]. Multimodal as-
sessment, such as combining MRI and PET scans, can increase accuracy in di-
agnostics over single model assessment alone. However, PET images are not al-
ways available. It has recently been shown that GANs can be used to build PET 
scans to compliment MRI scans from the same patient with high accuracy [18].  

4. Ensemble Learning 

Ensemble learning (EL) makes use of several learning algorithms simultaneously 
for the purpose of completing the same image identification task. EL yields a better 
predictive quality than the individual learning algorithms would otherwise in 
isolation because the multiple outcomes can be combined, hence the use of the 
word “ensembled” in its title. EL tends to result in higher accuracy, lower bias 
errors, lower variance errors, and avoids overfitting. Therefore, it is useful when 
a single learning algorithm of interest overfits the data. EL has recently been 
used to classify patient brain PET image data into CN or AD (91% accuracy) and 
mild MCI or severe MCI (86% accuracy) [19]. DTE is an even more recent novel 
EL model, which was able to achieve classification accuracy of 99.09% for dis-
criminated between CN and AD and 98.71% for discrimination between MCI 
and AD based on the ADNI dataset [20]. Another recently developed EL tool 
called DELearning incorporates multilayer deep learning with EL to classify AD 
with more precision, recall, accuracy, and F1-measure score than six other pop-
ular EL methods including AdaBoost, Bagging, LogitBoost, Random Forest, Stack-
ing and Vote [21]. Additionally, a stack of GoogleLeNet, ResNet and DenseNet 
CNNs was recently used in an EL algorithm for multimodal image classification 
[22]. Both MRI and PET images were then combined with AdaBoost for an accu-
racy of 99.27% for identifying CN verses AD, 92.57% for identifying AD verses 
MCI, and 90.35% for identifying MCI verses CN patients [22]. 
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5. Conclusion 

Logan and colleagues offer a compelling argument for routine computer vision 
assisted assessment of central nervous system (CNS) changes that are indicative 
of neurodegeneration onset before clinical symptoms present [1]. Synonymous 
with routine screening for prostate cancer, breast cancer, or high blood pressure, 
routine brain imaging with the assistance of deep learning algorithm interpreta-
tion is necessary for the establishment of early diagnosis and more effective the-
rapeutics for AD. Deep learning appears to be very promising at revolutionizing 
healthcare practice, but it still has some maturing to do. For example, when AI 
was applied in the clinic for COVID-19 diagnostics based on chest radiographs 
and CT scans, it failed miserably [23]. In order to advance the cause of AI in di-
agnostics, better training datasets are needed, external validation is needed, and 
better quality publicly available documentation is needed to facilitate reproduci-
bility [23]. Despite the initial growing pains of getting AI successfully into the 
clinic, the efforts are well worth it. The new dawn of deep learning in radiology 
and the hope it brings to physicians, scientists and the families of patients will 
break over the horizon very soon. 
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