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Abstract 
This paper presents a geometric Gaussian Kaczmarz (GGK) method for solv-
ing the large-scaled consistent linear systems of equation. The GGK method 
improves the geometric probability randomized Kaczmarz method in [1] by 
introducing a new block set strategy and the iteration process. The GGK is 
proved to be of linear convergence. Several numerical examples show the effi-
ciency and effectiveness of the GGK method. 
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1. Introduction 

We are concerned with the approximation solution of large-scaled linear systems 
of equation of the form  

 ,Ax b=                              (1) 

where m nA ×∈  is a real matrix, mb∈  is a real vector and nx∈  is an 
unknown vector to be determined. 

The Kaczmarz [2] method is a good candidate for solving large problems (1) 
due to its simplicity and good performance, which is applied in numerous fields, 
such as image reconstruction [3] [4] and digital signal processing [5]. The 
Kaczmarz method can be formulated as  
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where ( )mod 1i k m= + , i.e. all m equations in the linear systems (1) are swept 
through after m iterations. 
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There are many extended Kaczmarz methods are derived in recent years. 
Strohmer and Vershynin in [6] proposed a randomized Kaczmarz (RK) method 
with the expected exponential rate of convergence, which is also known as “li-
near convergence”. In 2018, Bai and Wu [7] proposed a greedy randomized 
Kaczmarz (GRK) method. GRK introduces an effective probability criterion to 
grasp larger entries of the residual vector at each iteration and was proved to be 
of the linear convergence rate. The index set is determined by  

 ( ) ( ) ( ){ }2 22
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In order to improve the influence on the convergence rate by diagonal scalings 
of the coefficient matrix in (1). Yang in [1] presented a geometric probability 
randomized Kaczmarz algorithm (GPRK) to determine a subset kJ  of  
[ ] { }1,2, ,m m= �  by a given rule such that the magnitude of the value of ( )2k

id  
should be larger than a prescribed threshold if the row index ki J∈ , where  
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Generally, the block Kaczmarz methods [8] [9] select some rows from the coeffi-
cient matrix A to construct the block matrix and compute the Moore-Penrose 
pseudoinverse of the block at each iteration. However, the cost of computing the 
Moore-Penrose pseudoinverse of a matrix is so expensive, which impacts gravely 
the CPU time of the algorithm. 

Gower and Richtrik proposed a Gaussian Kaczmarz (GK) method [10] whose 
iteration process is defined by  
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where kζ  is a Gaussian vector with mean 0 m∈  and the covariance matrix 
m mI ×∈ , i.e., ( )~ 0,k N Iζ . Here I denotes the identity matrix. The expected 

linear convergence rate was analyzed in the case that A is of full column rank. 
The idea of the GK method is also used in [11] to avoid computing the pseu-
doinverses of submatrices. We will adapt this iteration process in our method. 

In this paper, we improve the GPRK method in [1] and present a geometric 
Gaussian Kaczmarz (GGK) method. The GGK introduces a new block strategy 
and uses the iteration process of the GK method in (6). The block set strategy of 
GGK is more efficient than that in [1] because it can grasp as many as possible rows 
of the system matrix to participate in projection. This is illustrated in Section 3. 

The rest of this paper is arranged as follows. A geometric Gaussian Kaczmarz 
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algorithm is presented in Section 2. Its convergence is also proved. Section 3 
shows several numerical examples for the proposed method and Section 4 draws 
some conclusions. 

2. A Geometric Gaussian Kaczmarz Algorithm  

This section describes a geometric Gaussian Kaczmarz (GGK) algorithm to 
compute the solution of (1). Algorithm 1 summarizes the GGK algorithm. Steps 
2, 3 and 4 determine the block control sequence { } 0k k

τ
≥

, which is simpler than 
and different from that in [1], which determines the block control sequence by 
probability  
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Steps 5 and 6 give the iteration process of the GGK method. 
The following results show the convergence of Algorithm 1.  
Theorem 1. Assume the linear system (1) is consistent, and then the iterative 

sequence { } 0k k
x

≥
 generated by Algorithm 1 converges to the least-norm solu-

tion †x A b∗ =  of linear systems (1). Moreover, the solution error of linear sys-
tems (1) satisfies  
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Proof. According to Algorithm 1, we have  
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Algorithm 1. A geometric Gaussian Kaczmarz algorithm (GGK). 
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Denote the projector 
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The last equality holds because  
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For each 0k ≥ , since  

( )
( ) ( )

( )

( ) ( ) ( )

( )

22 2
2

2 2 2
2 2 2 2

1
2 2

max max ,
k k

ii i i i
mk k kk

ii i i ii
F F

Ab A x b A x b Ax
d

A AA Aτ τ∈ ∈ =

− − −
= ≥ =∑  

we have  

( )
( )
( )

( )
( )

2
22

2
2 2* *

1 T2 2
max

2T
2 2min* *

2T2 2
max

2T
2min *

2T 2
max

1 .

k

k k

k

k k

k

k k

k

F
F

k k

F
k k

F

F
k

F

b Ax
A

A
x x x x

A A

AA A
x x x x

A A A

AA A
x x

A A A

τ

τ τ

τ

τ τ

τ

τ τ

η

λ

λ
η
λ

λ
η
λ

+

−

− ≤ − −

≤ − − −

 
 = − −  
 

 

This completes the proof. □ 
We remark that  
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which means that Algorithm 1 is convergent. In fact,  
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3. Numerical Experiments  

In this section, we use Algorithm 1 for solving different types of consistent li-
near systems (1) and compare it with GPRK in [1]. All experiments are carried 
out using MATLAB (version R2019b) on a personal computer with 2.0 GHz 
central processing unit (Inter(R) Core(TM) i7-8565U CPU) and 8 GB memory, 
and 64 bit Windows operation system. 

The coefficient matrix m nA ×∈  is either generated by the MATLAB func-
tion ( ),randn m n  or taken from the University of Florida sparse matrix collec-
tion [12]. To ensure each linear system (1) with a selected matrix A is consistent, 
we let mb∈  in (1) be generated by *Ax , where the exact solution * nx ∈  
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is produced randomly by the MATLAB function randn and is to be determined. 
The efficiency of each method is evaluated by the number of iterations (IT) and 
the CPU time (CPU). It can be measured by the speed-up of GGK against GPRK 
(SU) is defined by  

.CPU of GPRKSU
CPU of GGK

=  

The effectiveness of both methods is measured by the relative residual (RR) de-
fined by  

2

2

.kb Ax
RR

b
−

=  

We set the initial solution 0x  be 0 in all experiments, and the iteration does not 
terminate until 610RR −< . The numerical results of each method shown in this 
section are arithmetical average quantities with respect to 50 repeated trials. We 
set 0.3η =  in GGK for each example. 

3.1. Experiments with Sparse Matrix 

This subsection considers the linear systems (1) with sparse matrices. These ma-
trices include some flat ones in Table 1 and the tall ones (their transposes) in 
Table 2 from the University of Florida sparse matrix collection [12]. 
 
Table 1. Comparison of IT, CPU and SU of the GGK method with that of the GPRK me-
thod for different flat spare systems. 

Matrix Name Matrix Size Density GPRK GGK SU 

   IT CPU IT CPU  

bibd_16_8 120 × 12,870 23.33% 2142 0.9867 566.5 0.3650 2.70 

crew1 135 × 6469 5.38% 6346.9 1.3223 804 0.1815 7.29 

df2177 630 × 10,358 0.34% 3186.4 0.4443 40 0.0078 56.96 

us04 163 × 28,016 6.52% 4134.1 5.9783 1635 1.8062 3.31 

GL7d25 2789 × 21,074 0.14% 15,160 11.2236 556.1 0.3721 30.16 

stat96v5 2307 × 75,779 0.13% 17,897 21.0132 149 0.1499 140.18 

bibd_81_3 3240 × 85,320 0.09% 14,044 23.0241 38 0.0371 620.60 

abtaha1T 209 × 14,596 1.68% 30,081 6.6795 1118.7 0.2533 26.37 

abtaha2T 331 × 37,932 1.09% 62,803 48.0985 967.7 0.6389 75.28 

mk12-b2T 1485 × 13,860 0.20% 6477.2 1.2226 33.1 0.0115 106.31 

ch7-9-b2T 1512 × 17,640 0.20% 6387.7 2.2341 31.7 0.0097 230.32 

relat7T 1045 × 21,924 0.36% 53,325 27.6583 1020.2 0.4063 68.07 

Franz9T 4164 × 19,588 0.12% 19,264 8.5559 171.8 0.0700 122.23 

Franz10T 4164 × 19,588 0.12% 19,322 10.7741 172.6 0.0673 160.09 

ch7-6-b3T 4200 × 12,600 0.10% 21,260 9.4338 48.4 0.0150 628.92 

relat7bT 1045 × 21,924 0.36% 65,284 27.8051 1005.9 0.3955 70.30 
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Table 2. Comparison of IT, CPU and SU of the GGK method with that of the GPRK me-
thod for different thin spare systems. 

Matrix Name Matrix Size Density GPRK GGK SU 

   IT CPU IT CPU  

bibd_16_8T 12,870 × 120 23.33% 1040.3 1.0199 299.2 0.2809 3.63 

crew1T 6469 × 135 5.38% 2613 0.4065 522.4 0.1632 2.49 

df2177T 10,358 × 630 0.34% 2023.7 0.7251 43.3 0.0102 71.09 

us04T 28,016 × 163 6.52% 1898.3 2.6322 548.7 0.5170 5.09 

GL7d25T 21,074 × 2789 0.14% 12911 14.6954 443.7 0.1799 81.69 

stat96v5T 75,779 × 2307 0.13% 8190.1 19.1244 153.0 0.1722 111.06 

bibd_81_3T 85,320 × 3240 0.09% 9241.2 20.9510 61.6 0.0738 283.89 

abtaha1 14,596 × 209 1.68% 1819.6 0.6833 235.8 0.0498 13.72 

abtaha2 37,932 × 331 1.09% 1855.5 1.5998 140.9 0.0814 19.65 

mk12-b2 13,860 × 1485 0.20% 4828.3 2.4008 43.8 0.0131 183.27 

ch7-9-b2 17,640 × 1512 0.20% 4734.2 2.3630 44.1 0.0128 184.61 

relat7 21,924 × 1045 0.36% 46,674 35.1415 887.4 0.3432 102.39 

Franz9 19,588 × 4164 0.12% 19,363 14.9236 203.9 0.0861 173.33 

Franz10 19,588 × 4164 0.12% 19,354 16.4306 200.8 0.0842 195.14 

ch7-6-b3 12,600 × 4200 0.10% 16,394 8.9110 51.9 0.0139 641.08 

relat7b 21,924 × 1045 0.36% 46,708 35.0971 920.3 0.3826 91.73 

 
Table 1 and Table 2 list the average number of iterations (IT), computing 

time (CPU), and the related speed-up (SU) of GGK against GPRK. Figure 1 and 
Figure 2 plot RR versus IT (left) and CPU (right) of different methods for solv-
ing (1) with the matrix bibd_16_8 and crew1T, respectively. From Table 1 and 
Table 2 we see that the GGK method needs smaller IT and CPU than the GPRK 
method does in all cases. We can see whether system 1 is overdetermined or un-
derdetermined. When the matrix is flat, the value of SU locates in the interval 
(2.70, 628.92), while for the case of the thin matrix, the value of SU ranges from 
2.49 to 641.08. It is observed from Figure 1 and Figure 2 that the GGK method 
converges faster than the GPRK method. 

3.2. Experiments with Dense Matrix 

In this subsection, the test matrices are dense normally distributed random ma-
trices including thin and flat matrices. The sizes of rows and columns of the se-
lected matrices vary from 2000 to 30,000. 

Table 3 lists the test results of IT, CPU and SU for flat dense matrix with dif-
ferent size. Table 4 displays IT, CPU and SU for a different thin dense matrix with 
different size. Figure 3 and Figure 4 plot RR versus IT (left) and CPU (right) of 
GGK and GPRK methods for solving (1) with the matrix ( )2200,30000A randn=  
and ( )30000,2000A randn= , respectively. From Table 1 and Table 2, we can  
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Figure 1. RR versus IT (left) and CPU (right) of the GGK method compared with the GPRK method for solving (1) with the ma-
trix bibd_16_8. 

 

 
Figure 2. RR versus IT (left) and CPU (right) of the GGK method compared with the GPRK method for solving (1) with the ma-
trix crew1T. 

 
Table 3. Comparison of IT, CPU and SU of the GGK method with that of the GPRK me-
thod for different flat dense systems. 

Matrix Size GPRK GGK SU 

 IT CPU IT CPU  

2000 × 10,000 21,569 297.5576 79.3 1.9810 98.85 

2000 × 20,000 14,052 331.0652 50 2.5747 73.73 

2000 × 30,000 11,762 495.7764 42.2 3.2314 73.30 

2200 × 10,000 25,696 496.4009 86.9 6.0598 111.93 

2200 × 20,000 16,259 537.1076 53.5 5.7038 135.89 

2200 × 30,000 13,282 359.6292 43.9 7.1961 112.97 

2400 × 10,000 29,720 535.0830 96.1 3.6249 205.64 
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Continued 

2400 × 20,000 18,336 351.9513 55.6 3.9913 203.36 

2400 × 30,000 15,271 546.2991 45.6 6.2161 182.75 

2600 × 10,000 35,591 337.0178 105.7 7.0060 162.16 

2600 × 20,000 20,914 390.1169 59.5 5.9782 194.22 

2600 × 30,000 17,055 494.0944 47.6 6.3896 168.46 

2800 × 10,000 41,358 527.2221 116.6 6.6916 171.33 

2800 × 20,000 23,539 497.0007 61.6 6.0664 196.34 

2800 × 30,000 19,092 599.8468 49.3 6.0754 204.63 

3000 × 10,000 46,862 544.3403 127.2 2.5496 213.50 

3000 × 20,000 26,704 603.3008 65.6 2.6693 226.02 

3000 × 30,000 21,106 718.8279 51.5 3.1646 227.15 

 
Table 4. Comparison of IT, CPU and SU of the GGK method with that of the GPRK me-
thod for different thin dense systems. 

Matrix Size GPRK GGK SU 

 IT CPU IT CPU  

10,000 × 2000 12,234 171.3824 61.5 0.8017 213.77 

20,000 × 2000 7567.4 140.4876 34.7 1.3755 102.14 

30,000 × 2000 6470 176.8242 27.6 1.3860 127.58 

10,000 × 2200 14,776 441.3869 69.8 1.0381 425.19 

20,000 × 2200 8633.6 392.7304 37.8 1.0948 358.72 

30,000 × 2200 7323.6 405.4806 29.3 1.3893 291.86 

10,000 × 2400 17,784 556.8869 76.9 1.8008 309.24 

20,000 × 2400 9879.4 490.8223 40.8 1.6075 305.33 

30,000 × 2400 8213.8 521.1035 31.2 2.4817 209.98 

10,000 × 2600 21,949 633.4774 86.1 3.6521 173.46 

20,000 × 2600 11,227 660.0913 43.2 2.3399 282.10 

30,000 × 2600 9188.2 684.8802 33.3 3.3046 207.25 

10,000 × 2800 25,698 758.3984 96.7 4.6805 162.00 

20,000 × 2800 12,680 712.5364 46.2 3.1025 229.67 

30,000 × 2800 10,136 737.2275 35.3 2.1491 343.04 

10,000 × 3000 30,249 662.1158 106.8 6.3898 103.62 

20,000 × 3000 14,236 595.5270 50 5.3462 11.39 

30,000 × 3000 11,201 639.9166 36.6 4.5954 139.25 

 
see in all cases, GGK needs less IT and CPU time than GPRK does, and the 
speed-up of GGK against GPRK ranges from tens of times to hundreds of times, 
i.e., the speed-up of GGK against GPRK varies from 73.30 to 227.15 in the case 
of flat and from 11.39 to 425.19 in the case of thin. Similar results to Figure 1 
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Figure 3. RR versus IT (left) and CPU (right) of the GGK method compared with the GPRK method for solving (1) with the ma-
trix ( )2200,30000A randn= . 

 

 
Figure 4. RR versus IT (left) and CPU (right) of the GGK method compared with the GPRK method for solving (1) with the ma-
trix ( )30000,2000A randn= . 

 
and Figure 2 are drawn from Figure 3 and Figure 4 that the GGK method con-
verges much faster than the GPRK method. 

4. Conclusion 

We develop a geometric Gauss-Kaczmarz (GGK) algorithm for solving large-scale 
consistent linear systems and the convergence is proved for this algorithm. Nu-
merical experiments show that the GGK algorithm has better efficiency and ef-
fectiveness than the GPRK algorithm. In our future work, we will focus on block 
Kaczmarz methods to solve ill-posed problems. 
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