A Note on m-Möbius Transformations

Dorin Ghisa

York University, Toronto, Canada

Email: dghisa@yorku.ca

How to cite this paper: Ghisa, D. (2021) A Note on m-Möbius Transformations. Advances in Pure Mathematics, 11, 883-890.
https://doi.org/10.4236/apm.2021.1111057
Received: October 21, 2021
Accepted: November 20, 2021
Published: November 23, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Lie groups of bi-Möbius transformations are known and their actions on non orientable n-dimensional complex manifolds have been studied. In this paper, m-Möbius transformations are introduced and similar problems as those related to bi-Möbius transformations are tackled. In particular, it is shown that the subgroup generated by every m-Möbius transformation is a discrete group. Cyclic subgroups are exhibited. Vector valued m-Möbius transformations are also studied.

Keywords

Möbius Transformation, Complex Manifold, Lie Group

1. Introduction

When investigating Lie groups of Möbius transformations of the Riemann sphere, we were brought in [1] [2] and [3] to the study of some bi-Möbius transformations. These are functions $f: \overline{\mathbb{C}} \times \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ of the form:

$$
f\left(z_{1}, z_{2}\right)=\frac{A z_{1} z_{2}+a\left(1-z_{1}-z_{2}\right)}{a\left(z_{1} z_{2}-z_{1}-z_{2}\right)+A} \text {, where } a \in \mathbb{C} \backslash\{0,1\} \text { and } A=a^{2}-a+1
$$

Proposition 1: The function $f\left(z_{1}, z_{2}\right)=z_{1} \circ z_{2}$ is a composition law in $\overline{\mathbb{C}}$ satisfying:
a) $z_{1} \circ z_{2}=z_{2} \circ z_{1}$ for every $z_{1}, z_{2} \in \overline{\mathbb{C}}$
b) $z \circ 1=1 \circ z=z$ for every $z \in \overline{\mathbb{C}}$
c) $z \circ(1 / z)=1$ for every $z \in \overline{\mathbb{C}}$
d) $\left(1 / z_{1}\right) \circ\left(1 / z_{2}\right)=1 /\left(z_{1} \circ z_{2}\right)$ for every $z_{1}, z_{2} \in \overline{\mathbb{C}}$
e) $z_{1} \circ\left(z_{2} \circ z_{3}\right)=\left(z_{1} \circ z_{2}\right) \circ z_{3}$ for every $z_{1}, z_{2}, z_{3} \in \overline{\mathbb{C}}$
f) $z_{1} \circ z_{2}=a$ if and only if $z_{1}=a$ or $z_{2}=a$ and $z_{1} \circ z_{2}=1 / a$ if and only if $z_{1}=1 / a$ or $z_{2}=1 / a$.

It is obvious that this composition law defines a structure of Abelian group on
$\overline{\mathbb{C}}$ whose unit element is 1 and the inverse of any z is $1 / z$. By removing the elements a and $1 / a$ we get a subgroup G_{a} of this group. Since $\overline{\mathbb{C}} \backslash\{a, 1 / a\}$ is a differentiable manifold on which the group operations are conformal mappings the subgroup G_{a} is a Lie group.

Theorem 1. For every $z \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}$ the group $\langle z\rangle$ generated by z is a subgroup of G_{a}.

Proof: Let us denote $z^{(n+1)}=z \circ z^{(n)}$, every $n \in \mathbb{Z}$, where $z^{(0)}=1$ and $z^{(1)}=z$ and notice that $z \circ z^{(0)}=z \circ 1=z$. An easy induction argument shows that for every $m, n \in \mathbb{Z}$ we have $z^{(m)} \circ z^{(n)}=z^{(m+n)}$ and in particular $z^{(n)} \circ z^{(-n)}=z^{(0)}=1$, which means that indeed $\langle z\rangle$ is a subgroup of G_{a}. Let us notice that, for $z \neq 1$ we have $z^{(n)}=1$ if and only if $n=0$.

If $z_{1} \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}$ then $g_{z_{1}}\left(z_{2}\right)=f\left(z_{1}, z_{2}\right)=\frac{\left(A z_{1}-a\right) z_{2}-a\left(z_{1}-1\right)}{a\left(z_{1}-1\right) z_{2}+A-a z_{1}}$ is a Möbius transformation in z_{2} and if $z_{2} \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}$ then $h_{z_{2}}\left(z_{1}\right)=f\left(z_{1}, z_{2}\right)=\frac{\left(A z_{2}-a\right) z_{1}-a\left(z_{2}-1\right)}{a\left(z_{2}-1\right) z_{1}+A-a z_{2}}$ is a Möbius transformation in z_{1}. Indeed, $\left(A z_{1}-a\right)\left(A-a z_{1}\right)+a^{2}\left(z_{1}-1\right)^{2}=0$ if and only if $z_{1}=a$ or $z_{1}=1 / a$, which has been excluded and similarly $\left(A z_{2}-a\right)\left(A-a z_{2}\right)+a^{2}\left(z_{2}-1\right)^{2}=0$ if and only if $z_{2}=a$ or $z_{2}=1 / a$, which again has been excluded. These properties justify the name of bi-Möbius we have given to $f\left(z_{1}, z_{2}\right)$.

Couples of bi-Möbius transformations generate mappings $M: \overline{\mathbb{C}}^{2} \rightarrow \overline{\mathbb{C}}^{2}$ of the form $M\left(z_{1}, z_{2}\right)=\left(f_{1}\left(z_{1}, z_{2}\right), f_{2}\left(z_{1}, z_{2}\right)\right)$, where $f_{k}\left(z_{1}, z_{2}\right)=\frac{\omega_{k} z_{1} z_{2}-z_{1}-z_{2}+1}{z_{1} z_{2}-z_{1}-z_{2}+\omega_{k}}$, and $\omega_{k}=a_{k}+1 / a_{k}-1, k=1,2$. The Proposition $1, \mathrm{f})$ shows that such a mapping has a set E of four fixed points, namely $\left(a_{1}, a_{2}\right),\left(1 / a_{1}, a_{2}\right),\left(a_{1}, 1 / a_{2}\right)$ and $\left(1 / a_{1}, 1 / a_{2}\right)$. When restricting M to $\overline{\mathbb{C}}^{2} \backslash E$ its components are bijective mappings in each one of the variables. Indeed, if $z_{1} \in \overline{\mathbb{C}} \backslash\left\{a_{k}, 1 / a_{k}\right\}, k=1,2$, then $f_{k}\left(z_{1}, z_{2}\right)$ is a Möbius transformation in z_{2}, hence it is a bijective mapping of $\overline{\mathbb{C}}$ and since $f_{k}\left(z_{1}, a_{k}\right)=a_{k}$ and $f_{k}\left(z_{1}, 1 / a_{k}\right)=1 / a_{k}$, it is a bijective mapping of $\overline{\mathbb{C}} \backslash\left\{a_{k}, 1 / a_{k}\right\}$ onto itself. Similarly, if $z_{2} \in \overline{\mathbb{C}} \backslash\left\{a_{k}, 1 / a_{k}\right\}, k=1,2$, then $f_{k}\left(z_{1}, z_{2}\right)$ is Möbius in z_{1}, hence it is a bijective mapping of $\overline{\mathbb{C}} \backslash\left\{a_{k}, 1 / a_{k}\right\}$ onto itself. Since $f_{k}\left(z_{1}, z_{2}\right)=f_{k}\left(z_{2}, z_{1}\right)$ we have $M\left(z_{1}, z_{2}\right)=M\left(z_{2}, z_{1}\right)$ hence M is not injective. However, by factorizing $\overline{\mathbb{C}}^{2}$ with the two elements group $\langle\sigma\rangle$ generated by the symmetry $\sigma\left(z_{1}, z_{2}\right)=\left(z_{2}, z_{1}\right), M$ induces a bijective mapping of \tilde{M} of $\overline{\mathbb{C}}^{2} /\langle\sigma\rangle$ onto $\overline{\mathbb{C}}^{2}$. Indeed, an easy computation shows that for fixed ω_{1} and ω_{2} the equations $f_{1}\left(z_{1}, z_{2}\right)=b_{1}$ and $f_{2}\left(z_{1}, z_{2}\right)=b_{2}$ determine uniquily $z_{1}+z_{2}$ and $z_{1} z_{2}$ belonging to $\overline{\mathbb{C}}^{2} /\langle\sigma\rangle$. We can call this mapping Möbius transformation of $\overline{\mathbb{C}}^{2} /\langle\sigma\rangle$. This is a new concept. We are expecting Möbius transformations of $\overline{\mathbb{C}}^{2} /\langle\sigma\rangle$ to have similar properties with those of Möbius transformations of $\overline{\mathbb{C}}$, as well as lot of applications. Any such Möbius transformation depends on two complex parameters: ω_{1} and ω_{2}. A composition law in the set of these trans-
formations can be defined in the following way. Let:

$$
\begin{aligned}
& w_{1}=\frac{\left(\omega_{1} z_{2}-1\right) z_{1}-z_{2}+1}{\left(z_{2}-1\right) z_{1}-z_{2}+\omega_{1}}, w_{2}=\frac{\left(\omega_{2} z_{2}-1\right) z_{1}-z_{2}+1}{\left(z_{2}-1\right) z_{1}-z_{2}+\omega_{2}} \\
& \zeta_{1}=\frac{\left(\omega_{3} w_{2}-1\right) w_{1}-w_{2}+1}{\left(w_{2}-1\right) w_{1}-w_{2}+\omega_{3}}, \zeta_{2}=\frac{\left(\omega_{4} w_{2}-1\right) w_{1}-w_{2}+1}{\left(w_{2}-1\right) w_{1}-w_{2}+\omega_{4}}
\end{aligned}
$$

Let us notice that since ζ_{1} is a Möbius transformation in w_{1} for every $w_{2} \in \overline{\mathbb{C}} \backslash\left\{a_{3}, 1 / a_{3}\right\}$ and w_{1} is a Möbius transformation in z_{1} for every $z_{2} \in \overline{\mathbb{C}} \backslash\left\{a_{1}, 1 / a_{1}\right\}$, then ζ_{1} is a Möbius transformation in z_{1} for every $w_{2} \in \overline{\mathbb{C}} \backslash\left\{a_{3}, 1 / a_{3}\right\}$ and $z_{2} \in \overline{\mathbb{C}} \backslash\left\{a_{1}, 1 / a_{1}\right\}$. Analogously it can be shown that ζ_{1} is a Möbius transformation in z_{2} and that ζ_{2} is a Möbius transformation in z_{1} and in z_{2} when excluding some points, in other words $\left(\zeta_{1}, \zeta_{2}\right)=\left(\varphi_{1}\left(z_{1}, z_{2}\right), \varphi_{2}\left(z_{1}, z_{2}\right)\right)$, where $\varphi_{k}\left(z_{1}, z_{2}\right)$ are Möbius transformations in z_{1} when some values of z_{2} are omitted and they are Möbius transformation in z_{2} when some values of z_{1} are omitted. Their expressions appear to be more complicated than those of $f_{k}\left(z_{1}, z_{2}\right)$. However, they induce Möbius transformation of $\overline{\mathbb{C}}^{2} /\langle\sigma\rangle$.

The study of these mappings is worthwhile, yet it exceeds the purpose of this note.

2. Multi-Möbius Transformations

The properties e) and f) from Proposition 1 show that $f\left(z_{1}, f\left(z_{2}, z_{3}\right)\right)$ is a Möbius transformation in each one of the variables as long as the other variables belong to $\overline{\mathbb{C}} \backslash\{a, 1 / a\}$.

To simplify the writing, let us denote $\omega=a+1 / a-1, s_{2}^{(2)}=z_{1} z_{2}$ and $s_{1}^{(2)}=z_{1}+z_{2}, \quad s_{3}^{(3)}=z_{1} z_{2} z_{3}, \quad s_{2}^{(3)}=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}, \quad s_{1}^{(3)}=z_{1}+z_{2}+z_{3}, \quad \cdots$, $s_{n}^{(n)}=z_{1} z_{2} \cdots z_{n}, \cdots, s_{1}^{(n)}=z_{1}+z_{2}+\cdots+z_{n}$. When no confusion is possible we can get rid of the upper subscript. Then, after a little calculation, we get:

$$
\begin{gathered}
f_{2}\left(z_{1}, z_{2}\right)=f\left(z_{1}, z_{2}\right)=\frac{\omega s_{2}-s_{1}+1}{s_{2}-s_{1}+\omega} \\
f_{3}\left(z_{1}, z_{2}, z_{3}\right)=f\left(f_{2}\left(z_{1}, z_{2}\right), z_{3}\right)=\frac{(1+\omega) s_{3}-s_{2}+1}{s_{3}-s_{1}+(1+\omega)} \\
f_{4}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=f\left(f_{3}\left(z_{1}, z_{2}, z_{3}\right), z_{4}\right)=\frac{\left(\omega^{2}+\omega-1\right) s_{4}-\omega s_{3}+s_{2}-s_{1}+\omega}{\omega s_{4}-s_{3}+s_{2}-\omega s_{1}+\left(\omega^{2}+\omega-1\right)}
\end{gathered}
$$

A pattern appears regarding the coefficients of s_{k} in these expressions, namely in every f_{m} the coefficient of s_{k} at the numerator is the same as the coefficient of s_{m-k} at the denominator. It is reasonable to believe that this happens due to the properties a), d) and e) listed above. Indeed, we can prove:

Theorem 2. If $f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right)=\frac{a_{0} s_{n}+a_{1} s_{n-1}+\cdots+a_{m}}{b_{0} s_{n}+b_{1} s_{n-1}+\cdots+b_{m}}$, then for every $k=1,2, \cdots, m$ we have $b_{k}=a_{m-k}$.

The function $f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right)$ is a m-Möbius transformation, i.e. for every
$k=1,2, \cdots, m$ the function f_{m} is a Möbius transformation in z_{k} for any value of the other variables different of a and $1 / a$.
Proof: Let us denote $\sigma_{k}=\frac{1}{z_{1} z_{2} \cdots z_{k}}+\cdots+\frac{1}{z_{m-k+1} z_{m-k+2} \cdots z_{m}}$ for every $k=1,2$, \cdots, m and suppose that $f_{m-1}\left(z_{1}, z_{2}, \cdots, z_{m-1}\right)=1 / f_{m-1}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m-1}\right)$, which is obvious for $m=3,4,5$. We have:

$$
\begin{aligned}
f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right) & =\frac{\left(\omega z_{m}-1\right) f_{m-1}\left(z_{1}, z_{2}, \cdots, z_{m-1}\right)+\left(1-z_{m}\right)}{\left(z_{m}-1\right) f_{m-1}\left(z_{1}, z_{2}, \cdots, z_{m-1}\right)+\left(\omega-z_{m}\right)} \\
& =\frac{\left(\omega-1 / z_{m}\right)\left[1 / f_{m-1}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m-1}\right)\right]+\left(1 / z_{m}-1\right)}{\left(1-1 / z_{m}\right)\left[1 / f_{m-1}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m-1}\right)\right]+\left(\omega / z_{m}-1\right)} \\
& =\frac{\left(1 / z_{m}-1\right) f_{m-1}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m-1}\right)+\left(\omega-1 / z_{m}\right)}{\left(\omega / z_{m}-1\right) f_{m-1}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m-1}\right)+\left(1-1 / z_{m}\right)} \\
& =1 / f_{m}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m}\right)
\end{aligned}
$$

If $f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right)=\frac{a_{0} s_{n}+a_{1} s_{n-1}+\cdots+a_{m}}{b_{0} s_{n}+b_{1} s_{n-1}+\cdots+b_{m}}$, then

$$
\begin{aligned}
f_{m}\left(1 / z_{1}, 1 / z_{2}, \cdots, 1 / z_{m}\right) & =\frac{a_{0} \sigma_{m}+a_{1} \sigma_{m-1}+\cdots+a_{m}}{b_{0} \sigma_{m}+b_{1} \sigma_{m-1}+\cdots+b_{m}}=\frac{a_{m} s_{n}+\cdots+a_{1} s_{1}+a_{0}}{b_{m} s_{m}+\cdots+b_{1} s_{1}+b_{0}} \\
& =1 / f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right)=\frac{b_{0} s_{m}+b_{1} s_{m-1}+\cdots+b_{m}}{a_{0} s_{m}+a_{1} s_{m-1}+\cdots+a_{m}}
\end{aligned}
$$

These last equalities are possible if and only if $b_{k}=a_{m-k}$. Simplifications may occur, as in the case of f_{5} below, yet they do not alter the symmetry of the coefficients.

On the other hand, if we write

$$
f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right)=f\left(f_{m-1}\left(z_{1}, z_{2}, \cdots, z_{k-1}, z_{k+1}, \cdots, z_{m-1}\right), z_{k}\right)
$$

it is obvious that f_{m} is a Möbius transformation in z_{k} as long as the other variables do not take the values a and $1 / a$.

We notice that in order to find exactly what the coefficients of s_{m} are for a given m, we need to iteratively compute $f_{j}\left(z_{1}, z_{2}, \cdots, z_{j}\right)$ for all the values of j from 2 to m. The expressions of these coefficients as functions of ω become more and more complicated. To illustrate this affirmation as well as the Theorem 1 , let us notice that an elementary computation gives:

$$
\begin{aligned}
& f_{5}\left(z_{1}, z_{2}, \cdots, z_{5}\right)=\frac{\omega(\omega+2) s_{5}-(\omega+1) s_{4}+s_{3}-s_{1}+(\omega+1)}{(\omega+1) s_{5}-s_{4}+s_{2}-(\omega+1) s_{1}+\omega(\omega+2)} \\
& f_{6}\left(z_{1}, z_{2}, \cdots, z_{6}\right) \\
& =\frac{\left(\omega^{3}+2 \omega^{2}-\omega-1\right) s_{6}-\left(\omega^{2}+\omega-1\right) s_{5}+\omega s_{4}-s_{3}+s_{2}-\omega s_{1}+\left(\omega^{2}+\omega-1\right)}{\left(\omega^{2}+\omega-1\right) s_{6}-\omega s_{5}+s_{4}-s_{3}+\omega s_{2}-\left(\omega^{2}+\omega-1\right) s_{1}+\left(\omega^{3}+2 \omega^{2}-\omega-1\right)} \\
& f_{7}\left(z_{1}, z_{2}, \cdots, z_{7}\right) \\
& =\frac{\left(\omega^{3}+3 \omega^{2}+\omega-1\right) s_{7}-\omega(\omega+2) s_{6}+(\omega+1) s_{5}-s_{4}+s_{2}-(\omega+1) s_{1}+\omega(\omega+2)}{\omega(\omega+2) s_{7}-(\omega+1) s_{6}+s_{5}-s_{3}+(\omega+1) s_{2}-\omega(\omega+2) s_{1}+\left(\omega^{3}+3 \omega^{2}+\omega-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& f_{8}\left(z_{1}, z_{2}, \cdots, z_{8}\right) \\
& =\frac{\omega\left(\omega^{3}+3 \omega^{2}-3\right) s_{8}-\left(\omega^{3}+2 \omega^{2}-\omega-1\right) s_{7}+\left(\omega^{2}+\omega-1\right) s_{6}-\omega s_{5}+s_{4}-s_{3}+\omega s_{2}-\left(\omega^{2}+\omega-1\right) s_{1}+\left(\omega^{3}+2 \omega^{2}-\omega-1\right)}{\left(\omega^{3}+2 \omega^{2}-\omega-1\right) s_{8}-\left(\omega^{2}+\omega-1\right) s_{7}+\omega s_{6}-s_{5}+s_{4}-\omega s_{3}+\left(\omega^{2}+\omega-1\right) s_{2}-\left(\omega^{3}+2 \omega^{2}-\omega-1\right) s_{1}+\omega\left(\omega^{3}+3 \omega^{2}-3\right)}
\end{aligned}
$$

3. Lie Groups of \boldsymbol{m}-Möbius Transformations in $\overline{\mathbb{C}}$

For arbitrary $z, \quad z_{k} \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}, \quad k=1,2, \cdots, m$, let us denote $g_{z}=f_{2}\left(z, f_{m}\left(z_{1}, z_{2}, \cdots, z_{m}\right)\right)$, which is a set G_{m} of m-Möbius transformations.
By Proposition 1 (see also [3]), $\overline{\mathbb{C}} \backslash\{a, 1 / a\}$ endowed with the composition law $z \circ w=f_{2}(z, w)$ is an Abelian group with the unit element 1 and for which the inverse element of z is z^{-1}. Moreover, an analytic atlas can be defined on $\overline{\mathbb{C}} \backslash\{a, 1 / a\}$ making it a differentiable manifold on which the group operations are conformal mappings and therefore this is a Lie group \mathbf{G}_{a}. Basic knowledge about Lie groups can be found in [4]. A composition law in \mathbf{G}_{m} can be defined by $g_{z} \times g_{w}=g_{z o w}$. Then, for every $z, z_{k} \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}, k=1,2, \cdots, m$ we have $g_{z} \times g_{1}=g_{z o 1}=g_{z}$ and $g_{z} \times g_{z^{-1}}=g_{z o z^{-1}}=g_{1}$, hence g_{1} is the unit element of this law and the inverse of g_{z} is $g_{z^{-1}}$. Moreover, $g_{z} \times g_{w}=g_{w} \times g_{z}$.

Theorem 3. The set of m-Möbius transformations $\mathbf{G}_{m}=\left\{g_{z}, z \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}\right\}$ with the composition law $g_{z} \times g_{w}=g_{z o w}$ is a Lie group.

Proof: Indeed, the properties we listed above show that \mathbf{G}_{m} is an Abelian group. It is isomorphic with \mathbf{G}_{a} under the mapping $\chi(z)=g_{z}$ since $\chi(z \circ w)=g_{z \circ w}=g_{z} \times g_{w}$ and $\chi(1)=g_{1}$. A topology on G_{m} can be defined as the image by χ of the natural topology on $\overline{\mathbb{C}} \backslash\{a, 1 / a\}$. This makes \mathbf{G}_{m} a differentiable manifold on which the composition law $g_{z} \times g_{w}=g_{z o w}$ defines a structure of Lie group. Different complex numbers a define different Lie groups of m-Möbius transformations, yet all of these groups are obviously isomorphic, and therefore there is no need to specify the numbers a, or ω when indicating such a group.

Let $\zeta \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}$ be arbitrary and for every $k \in \mathbb{Z}$ let us denote $\zeta^{(k+1)}=\zeta \circ \zeta^{(k)}$, where $\zeta^{(0)}=1$. It is obvious that for every $k, l \in \mathbb{Z}$ we have $\zeta^{(k)} \circ \zeta^{(l)}=\zeta^{(k+l)}$ and then $g_{\zeta^{(k)}} \times g_{\zeta^{(l)}}=g_{\zeta^{(k+l)}}$. In particular, $g_{\zeta^{(k)}} \times g_{\zeta^{(-k)}}$ $=g_{\zeta^{(0)}}=g_{1}$, hence the group $\left\langle\underline{g_{\zeta}}\right\rangle$ generated by g_{ζ} is a subgroup of \mathbf{G}_{m}.

Theorem 4. For every $\zeta \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}$ the group $\left\langle g_{\zeta}\right\rangle$ is a discrete subgroup of \mathbf{G}_{m}.

Proof: Indeed, if $\zeta=1$ then $\zeta^{(k)}=1$ for every $k \in \mathbb{Z}$. If $\zeta \neq 1$ then we have that $\zeta^{(k+1)}=\zeta^{(k)} \circ \zeta \neq \zeta^{(k)}$. By using the expressions we have found for different f_{n} we can easily check that there are values of $z \neq 1$ for which $f_{n}(z, z, \cdots, z)=1$. For example, if $n=3, z^{(3)}=f_{3}(z, z, z)=1$ for every root of the equation $\omega z^{2}+(\omega-3) z+\omega=0$. Also, if $n=4$, then $z^{(4)}=1$ for every root of the equation $(\omega+1) z^{4}-4 z^{3}+4 z-(\omega+1)=0$ etc. It is obvious that for such values $\zeta=z$ the group $\langle\zeta\rangle$ is a cyclic one and so is the group $\left\langle g_{\zeta}\right\rangle$, hence it is a discrete subgroup of \mathbf{G}_{n}.

If $\zeta^{(k)} \neq 1$ for every $k \neq 0$, then $\langle\zeta\rangle$ is not cyclic and $\zeta^{(k+1)}=\zeta^{(k)} \circ \zeta \neq \zeta$
for every $k \neq 0$. Moreover, if $k \neq j$, then $\zeta^{(k-j)}=\zeta^{(k)} \circ \zeta^{(-j)} \neq 1$, hence $\zeta^{(k)} \neq \zeta^{(j)}$. Suppose that there is a subsequence $\left(\zeta^{\left(n_{k}\right)}\right)$ of distinct elements such that $\lim _{n_{k} \rightarrow \infty} \zeta^{\left(n_{k}\right)}=\zeta_{0}$. Let us split the sequence $\left(n_{k}\right)$ into two infinite subsequences $\left(n_{k_{1}}\right)$ and $\left(n_{k_{2}}\right)$ where $n_{k_{1}}+n_{k_{2}}=n_{k}$. Then $\zeta^{\left(n_{k}\right)}=\zeta^{\left(n_{k_{1}}\right)} \circ \zeta^{\left(n_{k_{2}}\right)}$ and $\zeta_{0}=\lim _{n_{k} \rightarrow \infty} \zeta^{\left(n_{k}\right)}=\lim _{n_{k_{1} \rightarrow \infty} \rightarrow \infty} \zeta^{\left(n_{k_{1}}\right)} \circ \lim _{n_{k_{2}} \rightarrow \infty} \zeta^{\left(n_{k_{2}}\right)}=\zeta_{0} \circ \zeta_{0}$, which is possible if and only if $\zeta_{0}=1$, therefore $\lim _{n_{k} \rightarrow \infty} \zeta^{\left(n_{k}\right)}=1$. For every $j \in \mathbb{Z},\left(\zeta^{\left(n_{k}+j\right)}\right)$ is a subsequence of $\left(\zeta^{(k)}\right)$ and $\lim _{n_{k} \rightarrow \infty} \zeta^{\left(n_{k}+j\right)}=\zeta^{(j)}$, which again is possible only if $\zeta^{(j)}=1$. Yet $\zeta^{(j)} \neq 1$ if $j \neq 0$ and this shows that there is no convergent subsequence $\left(\zeta^{\left(n_{k}\right)}\right.$) of distinct elements. Hence the subgroup $\langle\zeta\rangle$ is discrete and so is $\left\langle g_{\zeta}\right\rangle$.

Corollary 1. For every $\zeta \in \overline{\mathbb{C}} \backslash\{a, 1 / a\}$ the subgroup $\left\langle g_{\zeta}\right\rangle$ generated by ζ acts freely and properly discontinuously on G_{m} by left and right translations.

4. Vector Valued m-Möbius Transformations

We can extend the concept of m-Möbius transformation to $\overline{\mathbb{C}}^{n}$ in the following way. For $a_{k} \in \overline{\mathbb{C}} \backslash\{0,1\}$, let $\omega_{k}=a_{k}+1 / a_{k}-1, k=1,2, \cdots, n$, and let us build the m-Möbius transformations $f_{m, k}\left(z_{1}, z_{2}, \cdots, z_{m}\right)$ as in Section 2 by using ω_{k} instead of ω. We will study the function $\mathbf{f}: \overline{\mathbb{C}}^{m} \rightarrow \overline{\mathbb{C}}^{n}$ defined by

$$
\mathbf{f}(\mathbf{z})=\left(f_{m, 1}(\mathbf{z}), f_{m, 2}(\mathbf{z}), \cdots, f_{m, n}(\mathbf{z})\right), \text { where } \mathbf{z}=\left(z_{1}, z_{2}, \cdots, z_{m}\right)
$$

Every $f_{m, k}$ is a m-Möbius transformation of the form
$f_{m, k}\left(z_{1}, z_{2}, \cdots, z_{m}\right)=\frac{a_{0}\left(\omega_{k}\right) s_{m}+a_{1}\left(\omega_{k}\right) s_{m-1}+\cdots+a_{m}\left(\omega_{k}\right)}{a_{m}\left(\omega_{k}\right) s_{m}+a_{m-1}\left(\omega_{k}\right) s_{m-1}+\cdots+a_{0}\left(\omega_{k}\right)}$, where s_{j} are the symmetric functions defined in Section 2, hence \mathbf{f} is a vector valued function whose every component is a m-Möbius transformation. For $w \in \Omega=\overline{\mathbb{C}} \backslash\left\{a_{k}, 1 / a_{k} \mid k=1,2, \cdots, n\right\}$ let $g_{w}^{(k)}(\mathbf{z})=f_{2}\left(w, f_{m, k}(\mathbf{z})\right)=\frac{\omega_{k} w f_{m, k}(\mathbf{z})-w-f_{m, k}(\mathbf{z})+1}{w f_{m, k}(\mathbf{z})-w-f_{m, k}(\mathbf{z})+\omega_{k}}, \quad k=1,2, \cdots, n$. Then $\Gamma_{\Omega}=\left\{\mathbf{g}_{w}(\mathbf{z})=\left(g_{w}^{(1)}(\mathbf{z}), g_{w}^{(2)}(\mathbf{z}), \cdots, g_{w}^{(n)}(\mathbf{z})\right)\right\}$ is a set of vector valued functions whose components are all m-Möbius transformations.

Theorem 5. The composition law $\mathbf{g}_{z} \cdot \mathbf{g}_{w}=g_{z o w}$ induces a structure of Ab elian group on Γ_{Ω} having the unit element \mathbf{g}_{1} and such that the inverse element of \mathbf{g}_{z} is $\mathbf{g}_{z^{-1}}$.

Proof: Indeed, $\mathbf{g}_{z} \cdot \mathbf{g}_{w}=\mathbf{g}_{z \circ w}=\mathbf{g}_{w \circ z}=\mathbf{g}_{w} \cdot \mathbf{g}_{z}$, for every $z, w \in \Omega$, $\mathbf{g}_{z} \cdot \mathbf{g}_{1}=\mathbf{g}_{z o 1}=\mathbf{g}_{z}$ for every $z \in \Omega$ and $\mathbf{g}_{z} \cdot \mathbf{g}_{z^{-1}}=\mathbf{g}_{z \circ z^{-1}}=\mathbf{g}_{1}$ for every $z \in \Omega$, since the same is true for every $g_{z}^{(k)}$ for every k, by Theorem 3, hence $\mathbf{g}_{z^{-1}}=\mathbf{g}_{z}^{-1}$.

Theorem 6. The mapping $\mathbf{c}: \Omega \rightarrow \Gamma_{\Omega}$ defined by $\mathbf{c}(z)=\mathbf{g}_{z}$ endows Γ_{Ω} with a Lie group structure.

Proof: The set Γ_{Ω} with the image topology induced by \mathbf{c} is a differentiable manifold and \mathbf{c} is a diffeomorphism. On the other hand, the group operations are conformal mappings and therefore of class C^{∞}. Therefore the mapping \mathbf{c} is a Lie group isomorphism.

Let us notice that
$f_{m, k}(\mathbf{1})=f_{m, k}(1,1, \cdots, 1)=\frac{a_{0}\left(\omega_{k}\right) C_{m}^{m}+a_{1}\left(\omega_{k}\right) C_{m}^{m-1}+\cdots+a_{m}\left(\omega_{k}\right) C_{m}^{0}}{a_{m}\left(\omega_{k}\right) C_{m}^{m}+a_{m-1}\left(\omega_{k}\right) C_{m}^{m-1}+\cdots+a_{0}\left(\omega_{k}\right) C_{m}^{0}}=1$,
hence $g_{1}^{(k)}(\mathbf{1})=f_{2}\left(1, f_{m, k}(\mathbf{1})\right)=1, k=1,2, \cdots, n$, hence $\mathbf{g}_{1}(\mathbf{1})=\mathbf{1}$.
When $m=n$ the function \mathbf{f} is a mapping of $\overline{\mathbb{C}}^{m}$ onto itself. It has a set E of 2^{m} fixed points. Indeed, every point $\left(z_{1}, z_{2}, \cdots, z_{m}\right)$ where z_{k} is either a_{k} or $1 / a_{k}$ is a fixed point of \mathbf{f}.

The components of \mathbf{f} are m-Möbius transformations of $\overline{\mathbb{C}}$ in every variable z_{j} if the other variables belong to Ω.

Since, for fixed ω_{k}, every $f_{m, k}$ depends only on the symmetric sums s_{j}, the values of $f_{m, k}\left(z_{1}, z_{2}, \cdots, z_{m}\right)$ remain the same when making a permutation of the variables $z_{1}, z_{2}, \cdots, z_{m}$. Therefore \mathbf{f} is not an injective function. Let \wp_{m} be the group of permutations of $z_{1}, z_{2}, \cdots, z_{m}$ and let $\overline{\mathbb{C}}^{m} / \wp_{m}$ be the factor space of $\overline{\mathbb{C}}^{m}$ with respect to this group. The function \mathbf{f} induces a bijective mapping $\tilde{\mathbf{f}}$ of $\overline{\mathbb{C}}^{m} / \wp_{m}$ onto $\overline{\mathbb{C}}^{m}$. We can call it Möbius transformation of $\overline{\mathbb{C}}^{m} / \wp_{m}$. A lot of questions remain to be answered about these transformations.

5. Conclusions

To emphasize the importance of the topic we dealt with in this paper, let us present a citation from [5]: "Although more than 150 years have passed since August Ferdinand Möbius first studied the transformations that now bear his name, it is fair to say that the rich vein of knowledge which he hereby exposed is still far from being exhausted".

The Möbius transformations are a chapter in any book of complex analysis. They have remarkable geometric properties and a lot of applications. The whole theory of automorphic functions is based on these transformations and they have surprising connections with the relativity theory. The concept of mul-ti-Möbius transformation appears for the first time here and is related to the theory of Lie groups, which has itself deep connections with the Physics.

Acknowledgements

We thank Aneta Costin for her support with technical matters.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Barza, I. and Ghisa, D. (1997) Lie Groups Actions on the Möbius Strip, Topics in Complex Analysis. In: Dimiev, S. and Sekigawa, K., Eds., Differential Geometry and Physics, World Sci, Singapore, 62-72.
[2] Barza I. and Ghisa, D. (2020) Lie Groups Actions on Non Orientable Klein Surfaces. In: Dobrev, V., Ed., Lie Theory and Its Applications in Physics, Springer, Singapore, Vol. 335, 421-428. https://doi.org/10.1007/978-981-15-7775-8_33
[3] Cao-Huu, T. and Ghisa, D. (2021) Lie Groups Actions on Non Orientable n-Dimensional Complex Manifolds. Advances in Pure Mathematics, 11, 604-610. https://doi.org/10.4236/apm.2021.116039
[4] Warner, F.W. (1983) Foundations of Differential Geometry and Lie Groups. In: Graduate Texts in Mathematics, Springer-Verlag, New York, Vol. 94. https://doi.org/10.1007/978-1-4757-1799-0
[5] Needham, T. (1997) Visual Complex Analysis. Clarendon Press, Oxford.

