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Abstract 
We propose a reformulation of Newton’s second law of motion for charged 
particles and possible applications of the reformulation to quantum dynam-
ics. We show that the negative energy states arising from the Dirac equation 
in relativistic quantum mechanics can be verified using the reformulating 
framework. We also discuss possible hidden dynamics underlying the concept 
of quantum jumps in quantum mechanics as outlined in Schrödinger’s article: 
ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dy-
namics of quantum jumps are also determined by the Coulomb interaction 
between charged particles. 
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1. Introduction 

The development of physical theories has been based mainly on the results of 
experimental measurements of physical processes, and the experimental results 
themselves depend not only on the quality of the instruments that are available 
at the time but also on the concepts and perceptions of physical objects. Conse-
quently, physical theories have been changed and reformulated to explain new 
physical phenomena that cannot be explained by the previous theories. However, 
even with the highly developed modern theories of quantum mechanics, with 
attempts to explain physical phenomena that seem to contradict with classical 
theories, basically the foundation of quantum physical theories still remains, 
which is Newton’s second law of motion in which the concept of inertial mass 
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plays the fundamental role in the determination of the dynamics of a particle 
under the influence of a force caused by a physical field [1] [2]. At the time when 
Newton formulated the classical dynamics, scientists were mainly studying the 
dynamics of macroscopic objects related to their weight, therefore it was rea-
sonable for those scientists to suggest the physical object that plays the funda-
mental role in dynamical equations of motion is the inertial mass. However, we 
may ask why the inertial mass alone should play such a fundamental role in de-
termining the dynamics of physical objects under the influence of forces caused 
by other physical fields, such as the electromagnetic field. At the microscopic 
quantum scale, it is obvious that the mass and the charge of an elementary par-
ticle are closely related, hence they should be treated equally fundamentally in 
physical theories to deal with quantum physical phenomena. For example, in re-
lativistic quantum mechanics, Dirac equation predicts the existence of a positron 
on the same footing as that of an electron but the subsequent description of the 
existence for the positron is completely different from that of the electron, such 
as in terms of Dirac Sea or moving backward in time, even though the instru-
ments used to detect the positron are almost identical to that for the electron. A 
distinct problem associated with Dirac equation is the existence of negative 
energy states that should not exist according to the definition of kinetic energy 
within the current formulation of classical dynamics based on Newton’s second 
law of motion. This is in fact one of the main topics discussed in this work that 
led to the need to reformulate Newton’s second law so that a new definition of 
kinetic energy would allow assigning both positive and negative values to it. 
Another interesting topic that we will discuss using the reformulated Newton’s 
second law of motion is related to the concept of quantum jumps in quantum 
mechanics. In quantum mechanics, a quantum jump is a discontinuous transi-
tion from one quantum state to another. Such a process of transition is pro-
foundly different from the continuous transition between states in physical sys-
tems described in classical physics. Schrödinger, one of the founders of quantum 
mechanics, asked the question: ARE THERE QUANTUM JUMPS? And he ex-
pressed his view: “There have been ingenious constructs of the human mind that 
gave an exceedingly accurate description of observed facts and have yet lost all 
interest except to historians. I am thinking of the theory of epicycles. I confess to 
the heretical view that their modern counterpart in physical theory are the 
quantum jumps” [3]. It is clear from such view of the founder of wave mechan-
ics that we would need a radical change in the classical formulation of physics 
that would allow a description of quantum jumps in terms of classical dynamics. 
And a hidden dynamics underlying the quantum jumps should also be deter-
mined by interactions between physical objects associated with elementary par-
ticles. 

2. Reformulation of Newton’s Second Law of Motion 

We now reformulate Newton’s second law of motion, m=F a , in which the 
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inertial mass m of a charged particle will be replaced by the ratio of inertial mass 
m to charge q of the particle, M m q= . Let us image that the modern scientific 
investigation of natural phenomena that involve elementary particles started 
with J. J. Thomson experiment, which discovered the electron by determining its 
ratio of mass m to charge q [4]. It was found from the Thomson experiment that 
the quantity M m q= , electric field E , and acceleration a  of the electron 
satisfy the equation 

M =a E                              (1) 

If we consider Equation (1) as a fundamental dynamical equation of motion of 
the electron under the electric field E  then the quantity M should also be con-
sidered as a fundamental physical object that would enter all dynamical equa-
tions resulted from further investigations of the dynamics of the electron when it 
interacts with other elementary particles through physical fields. 

For a particle with an inertial mass m and a charge q moving with velocity 
d dt=v r , we define a reformulated linear momentum p  in terms of the 

physical object M m q=  and the velocity v  as 

M=p v                             (2) 

If the inertial mass m is always positive then the sign of the quantity M de-
pends solely on the sign of the charge q. Also, as in Newtonian mechanics, we 
introduce the concept of force F  exerted on the particle according to the dif-
ferential equation  

2

2

d d d
d d d

M M M
t t t

= = = =
p v rF a                   (3) 

Then, in terms of physical objects 1 1 1M m q=  and 2 2 2M m q= , and the 
force law given in Equation (3), Newton’s universal law of gravitation can be re-
written in the form 

1 2
1 3

M MM g
r

=a r                         (4) 

where the value of the dimensional constant g  is 2g Gq= . And Coulomb’s 
law can also be rewritten in terms of the physical objects 1M  and 2M  as 

2
1 3 3

2

1 1qM K k
Mr r

= =a r r                     (5) 

where 2k Km= .  
In the reformulating framework, we also introduce the fundamental concept 

of work done W by a force F  according to the integral 

( )2d dd d d
d 2 d

MW M t v t
t t

= = ⋅ =∫ ∫ ∫
vF s v              (6) 

The scalar quantity 2 2T Mv=  obtained from Equation (6) will also be iden-
tified as the kinetic energy. With this definition, depending on the sign of the 
charge q, the kinetic energy can take either positive or negative value. For exam-
ple, if the inertial mass of both an electron and a positron is positive then, using 
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the current convention, the electron has a negative kinetic energy, but the kinetic 
energy of the positron is positive. For a conservative force defined in terms of a 
potential V by the relation V= −∇F  we then again have 

d dW V= = − ∇∫ ∫F s s                         (7) 

From Equations (6) and (7), the total energy E can be obtained 

21
2

E T V Mv V= + = +                        (8) 

So far, except for the new dimensions associated with physical entities involved, 
basically the reformulated mathematical formulation of classical mechanics re-
mains the same as that of Newtonian physics. However, as shown below, the re-
formulated Newton’s second law of motion in fact has profound consequences 
that involve the quantum dynamics of elementary particles. 

3. Reformulation of Hamiltonian 

Following the Hamiltonian formulation in classical physics, we define a refor-
mulated Hamiltonian for a conservative system as the total energy expressed in 
terms of the physical object M m q= , reformulated linear momentum p  and 
potential V in the form 

2

2
H V

M
= +

p                            (9) 

From the dimension of the kinetic term given in Equation (9), the physical 
unit of the reformulated Hamiltonian is J/C (Joule per Coulomb). It should be 
emphasised here that, as shown in Equation (5) for Coulomb’s law of two 
charged particles, the potential V depends only on the charge of the particle 
considered to be the source of interaction. For a system of two particles with 
physical objects 1M  and 2M , which interact through a potential ( )2 1V −r r  
depending only on the relative positions of the two particles, the Hamiltonian of 
the system can be written as 

( ) ( )
2 2
1 2

1 2 2 1
1 2

,
2 2
p pH V
M M

= + + −r r r r                 (10) 

It is observed that since the physical objects 1M  and 2M  can take positive 
or negative values therefore if the motion of the two charged particles in the sys-
tem so that the dynamical condition 2 2

2 2 1 1p M p M= −  is satisfied then the 
reformulated Hamiltonian given in Equation (10) reduces to  

( ) ( )1 2 2 1,H V= −r r r r                        (11) 

In this case the dynamics of such system is determined only by the interacting 
potential between the two charged particles. In particular, for the system of a 
particle and its corresponding antiparticle, such as an electron and a positron, 
we have 2 1M M= − . If the dynamics of these two particles is symmetric then we 
can assume further that 2 2

1 2p p= , and the Hamiltonian given in Equation (10) 
also reduces to Equation (11). Hence, the kinetic energies of such two particles 
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cancel each other out and the corresponding Hamiltonian describing the dy-
namics of the system depends only on the potential and, consequently, the iner-
tial mass is no longer associated with the dynamics of such system. The physical 
objects do not manifest dynamically as particles but only in the form of inte-
racting potential depending on the charge. 

Also, following the usual method of canonical quantisation in quantum me-
chanics [5], if we apply a modified quantisation procedure 

,mvp Mv i E i
q q x q t

∂ ∂
= = → − →

∂ ∂
� �                 (12) 

then the Hamiltonian given in Equation (9) takes the quantisation form 
2

2
22

H V
Mq

= − ∇ +
�

                        (13) 

and the quantum formulation of the Hamiltonian given in Equation (10) be-
comes 

( ) ( )
1 2

2 2
2 2

1 2 2 12 2
1 1 2 2

,
2 2

H V
M q M q

= − ∇ − ∇ + −r rr r r r� �
            (14) 

Equation (14) can also be rewritten in terms of the relative position 2 1−=r r r  
and the quantity R  defined as 

1 1 2 2

1 2

M M
M M

+
=

+
r rR                          (15) 

The quantity R  may be identified as the position of the centre of mass of the 
system. In terms of the relative position r  and quantity R , Equation (14) 
converts into the form 

( )
( )

( )

2 2
2 21 2

2 2 2 2 2
1 2 2 1

2
2

2 2
1 1

1 22

2

1

2

,
2

1 1

1 1

2

M MH
q q q q

V
M

M MM

q M q

M

 
= − + ∇ ∇ 


+ − ++  

 
− + ∇ + 

 


R Rr

r

r R

r

� �

�
   (16) 

It should be mentioned here that the description using the centre of mass sys-
tem according to the transformation given in Equation (15) cannot be applied to 
a system consisting of a particle and its corresponding antiparticle, since in this 
case we have 2 1M M= − . 

4. On Negative Energy States Associated with Dirac Equation 

Dirac formulated his relativistic wave equation to describe the dynamics of a free 
electron by using the relativistic relation 2 2 2 2 4E c p m c= +  between the total 
energy E, momentum p, rest mass m, and speed of light in vacuum c. A funda-
mental problem related to using this relativistic relation is that according to the 
formulation of classical physics values of the energy E associated with a free par-
ticle are positive, however the wavefunctions obtained from Dirac equation can 
be associated with negative energy states [6]. We now show that this problem 
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can be avoided within the reformulating framework. The relativistic momentum 
p  and energy E of a moving object in the reformulating framework can be 

found as 

0

2 21

M

v c
=

−

v
p                         (17) 

2
0

2 21

M c
E

v c
=

−
                        (18) 

where 0 0M m q= , with m0 and q are the rest mass and the charge of a particle, 
respectively. From Equations (17) and (18), we obtain the following relation 

2 2 2 2 4
0E c p M c= +                        (19) 

Using the relativistic energy-momentum relation given in Equation (19), a 
reformulated Dirac equation can be derived as 

( ) 0 0i q M cµ
µγ ψ ψ∂ − =�                    (20) 

where the gamma matrices µγ  and the Pauli matrices µσ  are given as follows 

00 1 0
,

0 0 1
kk

k

σ
γ γ

σ
   

= =   − −  
               (21) 

1 2 3

0 1 0 1 0
, ,

1 0 0 0 1
i

i
σ σ σ

−     
= = =     −     

           (22) 

In particular, the reformulated Dirac equation for a stationary particle, 0=p , 
takes the form 

2 0
0i M c

q t
γ∂Ψ

= Ψ
∂

�                      (23) 

It is observed that using the definition 0 0M m q= , Equation (23) can be re-
duced to the original Dirac equation 2 0

0i t m c γ∂Ψ ∂ = Ψ�  for a stationary par-
ticle. However, using this original Dirac equation will lead to the problem of 
negative energy states associated with the negative rest energy 2

0E m c= − . On 
the other hand, from Equation (23) with the reformulated rest energy 2

0E M c=  
we obtain two solutions, which can be written in the form 

( ) ( )2 2
0 0

1 2,

1 0
0 1

e e
0 0
0 0

iM c t q iM c t q− −

   
   
   Ψ = Ψ =
   
   
   

� �            (24) 

Again, using Equation (23) with 2
0E M c= −  we also obtain two solutions, 

which can be written in the form 

( ) ( )2 2
0 0

3 4,

0 0
0 0

e e
1 0
0 1

iM c t q iM c t q

   
   
   Ψ = Ψ =
   
   
   

� �            (25) 

Since in the reformulation of Newton’s second law of motion the reformu-
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lated rest energy 2
0E M c=  can take positive or negative values depending on 

the sign of the charge of a particle, therefore there should be no question re-
garding the negative energy states. 

5. Hidden Dynamics of Quantum Jumps in a Hydrogen Atom 

In this section we analyse two possible dynamics associated with a hydrogen 
atom, one of which may be identified with hidden dynamics of quantum jumps. 
The first dynamics is the usual dynamics of the physical system consisting of an 
electron and a proton. The second dynamics of the system whose Hamiltonian, 
on the other hand, depends only on the Coulomb potential shown in Equation 
(11).  

5.1. Schrödinger Dynamics of a Hydrogen Atom 

For a hydrogen atom consisting of a proton with physical object 1 pM m q=  
and an electron with physical object ( )2 eM m q= − , the Hamiltonian given in 
Equation (16) reduces to 

( ) ( ) ( )
2 2

2 21 1,
22 p ep e

H V
q m mq m m

 
= − ∇ − − ∇ +  −  

R rr R r� �        (26) 

where the reduced Coulomb potential V Kq r=  depending only on the charge 
of the proton, as shown in Equation (5). Working in the centre of mass system, 
the Schrödinger equation for the dynamics of the electron with charge −q takes 
the form 

2
21 1

2 p e

qi K
q t q m m r

 ∂Ψ
= − − ∇ Ψ + Ψ  − ∂  

� �
              (27) 

Equation (27) can be rewritten as in the original form of the time-dependent 
Schrödinger equation for a hydrogen atom [7] 

2 2
2

2 r

qi K
t rµ

∂Ψ
= − ∇ Ψ − Ψ

∂
�

�                     (28) 

However, in Equation (28) the reduced mass is defined as  

( )r p e p em m m mµ = − . In general, the reformulated reduced mass rµ  is very 
different from the usual reduced mass defined by ( )r p e p em m m mµ += . 
Though, as shown below for the case of the hydrogen atom, since p em m� , the 
values of the energy levels obtained from Schrödinger equation are almost iden-
tical when evaluated using either of these two types of reduced mass. The 
Schrödinger equation given in Equation (28) admits stationary state solutions 

( )exp iEtψΨ = − �                         (29) 

where E is the expectation value of the total energy. The wavefunction ψ  then 
satisfies the time-independent Schrödinger equation  

2 2
2

2 r

qK E
r

ψ ψ ψ
µ

− ∇ − =
�

                     (30) 
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Solutions to Equation (30) in spherical polar coordinates can be found in terms 
of spherical harmonics and radial functions ( ) ( ) ( ), , ,Elm nl lmr R r Yψ θ φ θ φ= . The 
functions ( )nlR r  and ( ),lmY θ φ  are given as 

( ) ( ) ( )( )
( ) ( )

1 2
2 1 !

, 1 cos e
4 !

m m im
lm l

l l m
Y P

l m
φθ φ θ

 + −
= −   π + 

        (31) 

( ) ( )
( )( )

( )
2

2

13
2 1

3
0

1 !2 e
2 !

l l
nl n l

n l
R r L

na n n l
ρ ρ ρ− +

+

 − −  = −   +  
        (32) 

where ( )02 rnaρ = , and 2 2
0 04 ra qε µ= π � . The energy levels nE  associated 

with the stationary states of the electron are found as 
2

0
2

2

2

1
2 4

r
n n

qE µ
επ

 
= −  

 �
                    (33) 

Using the recommended values of the fundamental physical constants [8], the 
values of the energy levels with the reformulated reduced mass  

( )r p e p em m m mµ = −  can be found as 213.61 eVnE n= − . On the other hand, 
for the reduced mass ( )r p e p em m m mµ = + , the energy levels are  

213.60 eVnE n= − . 

5.2. Potential Hidden Dynamics in a Hydrogen Atom 

To Schrödinger, even though their physical nature still remains a mystery, the 
wavefunctions representing the states of the electron of a hydrogen atom should 
behave according to the laws of classical physics. There should be a hidden dy-
namics that may be used to describe quantum jumps as continuous transitions 
between states of a quantum dynamical system. With this perception about the 
nature of the wavefunctions, Schrödinger attempted to explain classically the 
dynamics of quantum jumps after inventing his own theory of wave mechanics. 
Once again, we quote the explanation using his own words as follows [3]: 

“The achievement of wave mechanics was, that it found a general model pic-
ture in which the ‘stationary’ states of Bohr’s theory take the role of proper vi-
brations, and their discrete ‘energy levels’ the role of the proper frequencies of 
these proper vibrations; and all this follows from the new theory, once it is ac-
cepted, as simply and neatly as in the theory of elastic bodies, which we men-
tioned as a simile. Moreover, the radiated frequencies, observed in the line spec-
tra, are in the new model, equal to the differences of the proper frequencies; and 
this is easily understood, when two of them are acting simultaneously, on simple 
assumptions about the nature of the vibrating ‘something’. 

But to me the following point has always seemed the most relevant, and it is 
the one I wish to stress here, because it has been almost obliterated - if words 
mean something, and if certain words now in general use are taken to mean 
what they say. The principle of superposition not only bridges the gaps between 
the ‘stationary’ states, and allows, nay compels us, to admit intermediate states 
without removing the discreteness of the ‘energy levels’ (because they have be-
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come proper frequencies); but it completely does away with the prerogative of 
the stationary states. The epithet stationary has become obsolete. Nobody who 
would get acquainted with wave mechanics without knowing its predecessor (the 
Planck-Einstein-Bohr-theory) would be inclined to think that a wave-mechanical 
system has a predilection for being affected by only one of its proper modes at a 
time. Yet this is implied by the continued use of the words ‘energy levels’, ‘tran-
sitions’, ‘transition probabilities’. 

The perseverance in this way of thinking is understandable, because the great 
and genuine successes of the idea of energy parcels have made it an ingrained 
habit to regard the product of Planck’s constant h and a frequency as a bundle of 
energy, lost by one system and gained by another. How else should one under-
stand the exact dove-tailing in the great ‘double-entry’ book-keeping in nature? I 
maintain that it can in all cases be understood as a resonance phenomenon.”  

From Schrödinger’s arguments about the nature of the wavefunctions, it is 
reasonable to suggest, intuitively, that when specifying the proper modes of vi-
bration for physical system of an atom, Schrödinger equation establishes a me-
chanism to determine a spatial structure of the atom with definite energy levels 
to deal with the electromagnetic field. The stationary states are part of a me-
chanism that controls the process of radiation of photons, which is a resonance 
set up between two stationary states. Therefore, from the view of classical dy-
namics, there must be internal dynamics that allow such resonance to be estab-
lished in the process of radiation and such dynamics may be identified as hidden 
dynamics of quantum jumps. For the situation when a hydrogen atom absorbs 
the energy of an electromagnetic field from outside, besides the dynamics de-
scribed by the Schrödinger equation as discussed above, we suggest that the ab-
sorbed energy may cause internal dynamics to the system of the electron and the 
proton, which could be in the form of an oscillation so that these internal dy-
namics satisfy the dynamical condition 

2 2
2 1

2 1

or pe

p e

mvp p
M M v m

= − =                     (34) 

In this case, the Hamiltonian given in Equation (10) reduces to the Hamilto-
nian given in Equation (11), and the Schrödinger equation for the internal dy-
namics of the electron now takes the form 

qi K
q t r
∂Ψ

= Ψ
− ∂
�                         (35) 

Let ( )2Kq rν = �  then we obtain the solution 

( )0 ei tνΨ = Ψ r                          (36) 

where ( )0Ψ r  is an arbitrary function, and the potential determines the fre-
quency of a standing wave, resulted from “something” vibrating as stated by 
Schrödinger in the above quotation, which provides a medium for resonances to 
occur between stationary states to produce photons. In general, any system con-
sisting of two charged particles of opposite signs may set up a standing wave 
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whose frequency at a position in space is determined by the value of the Cou-
lomb potential at that position. Therefore, without specifying what is really vi-
brating, we may suggest that these particles can turn space into a dynamical sys-
tem and space itself oscillates from the result of superposition of standing waves. 
Space therefore can be endowed with a geometric, and topological, structure 
which manifests in the form of a potential of a physical field [9] [10] [11] [12]. 
For the case of a physical system whose dynamics is determined by Schrödinger 
equation, solutions given in Equation (36) can be identified as the hidden dy-
namics of quantum jumps between stationary states. Overall, atoms are provided 
with this mechanism to absorb the electromagnetic energy to create photons, or 
to absorb photons and then release them. The electromagnetic energy may be 
continuous, but energies carried by photons are discrete. Epistemologically, sta-
tionary states with their corresponding energy levels may be thought of as being 
designed so that particular amounts of energy can be created. 

6. Conclusion 

In this work, we reformulated Newton’s second law of motion for charged par-
ticles in which not only the inertial mass, as in the original formulation of New-
ton’s second law but also the charge of a particle plays the fundamental role in 
inertial reaction to motion. We discussed possible applications of the reformula-
tion to quantum dynamics, such as verifying the negative energy states arising 
from Dirac equation in relativistic quantum mechanics by using a reformulated 
relativistic energy-momentum relation, or showing possible underlying dynamics 
related to the concept of quantum jumps in quantum mechanics as outlined in 
Schrödinger’s article: ARE THERE QUANTUM JUMPS? For the case of quan-
tum jumps, we showed that hidden dynamics of quantum jumps could simply be 
a result of Coulomb interaction in which charged particles do not manifest dy-
namically as particles but only in the form of interacting potential. 
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