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Abstract 
Recently we proposed the linguistic Copenhagen interpretation (or, quantum 
language, measurement theory), which has a great power to describe both 
classical and quantum systems. Thus we think that quantum language can be 
viewed as the language of science. Further, we showed that certain logic (called 
quantum fuzzy logic) works in quantum language. In general, it is said that 
logic and time do not go well together. Then, the purpose of this paper is to 
show that quantum fuzzy logic works well with time. That is, quantum fuzzy 
logic has the advantage of being able to clearly distinguish between implica-
tion and causality. In fact, we will show the contraposition of the proposition 
“If no one is scolded, no one will study” (or the negation of “John is always 
hungry”) can be written in quantum fuzzy logic. However, “time” in everyday 
language has various aspects (e.g., tense, subjective time). Therefore, it is not 
possible to understand all of the “time” of everyday language by the “time” of 
quantum language. 
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1. Introduction 

Recently, in refs. [1]-[6], we proposed the linguistic Copenhagen interpretation 
(or, quantum language, measurement theory), which has a great linguistic power 
to describe both classical and quantum systems. Thus we think that quantum 
language can be viewed as the language of science. As seen in Figure 1 below, 
roughly speaking, QL has the following four aspects, that is,  

(A1) ⑦: the linguistic turn of quantum mechanics (cf. refs. [7] [8] [9] [10]);  
(A2) ⑧: the dualistic turn of statistics (cf. refs. [11]-[16]);  
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Figure 1. The history of the world-descriptions. 

 
(A3) ⑩: the scientific turn of Descartes = Kant philosophy (cf. refs. [17] [18] 

[19]);  
(A4) ⑬: the logical aspect (cf. refs. [20] [21] [22]).  
Thus the location of QL in the history of the world-descriptions is as in Fig-

ure 1 (cf. ref. [17] [22] [23]):  
The purpose of this paper is to study the logical aspect [⑬ + ⑭] of QL. Al-

though it is generally said that logic and time do not go well together, many re-
searchers have attempted to incorporate time into logic (e.g. ref. [24]). In partic-
ular, Pnueli’s work (cf. [25]) is highly regarded in the field of computing, and he 
was awarded the 1997 Turing Award for this achievement. It is natural to con-
sider that mechanics and time series go hand in hand. Therefore, we can expect 
that quantum fuzzy logic (in [⑬ + ⑭]) and time series are also compatible. In 
fact, this paper shows that quantum fuzzy logic is as closely related to time as it 
is to quantum mechanics. However, “time” in everyday language has various as-
pects (e.g., tense, subjective time). Therefore, it is not possible to understand all 
of the “time” of everyday language by the “time” of quantum language. 

2. Elementary Review of Classical QL  

In this section, we shall review quantum language (i.e., the linguistic Copenha-
gen interpretation of quantum mechanics, or measurement theory), which has 
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the following form:  

(B) ( )

( )

( ) ( )
( )
( )

quantum mechanical worldview

measurement theory

causality measurement how to use Axioms 1 and 2

Quantum language

Axiom 2 Axiom 1 linguistic Copenhagen interpretation

=

= + +

 

QL is classified as follows  

(C) 

( )
( )

( )
( )

1

2

C : quantum QL for quantum system,

which is essentially the same as quantum mechanics

C : classical QL for classical system,

which may be viewed as statistics with a measurement concept









  

It is usual to discuss the above two simultaneously (cf. refs. [5] [6] [8]). However, 
in this paper, we will devote ourselves to only classical QL. That is because we 
think that classical QL is easy to understand for readers who are not familiar 
with quantum theory. We do not want the difficulty of the mathematics (cf. refs. 
[26] [27] [28]) to hinder the spread of QL. 

Let Ω  be a state space, i.e., compact space. An element ω  in Ω  is called a 
state. And let ( )C Ω  be the commutative C∗ -algebra, i.e., the space of all com-
plex-valued continuous functions on Ω . 

Definition 1. [Observable, Image observable] According to the noted idea (cf. 
refs. [29] [30]), an observable ( )( )O , ,X X G=   in ( )C Ω  is defined as fol-
lows:  

1) X is a finite set, ( )X  ( 2X= , the power set of X).  
2) G is a mapping from ( )X  to ( )C Ω  satisfying: a): for every ( )XΞ∈ , 
( )G Ξ  is a non-negative element in ( )C Ω  such that ( )0 G I≤ Ξ ≤ , b):  
( ) 0G ∅ =  and ( )G X I= , where 0 and I are the 0-element and the identity in 
( )C Ω  respectively. c): [additivity]  

( ) ( ) ( )1 2 1 2G G GΞ + Ξ = Ξ Ξ∪                  (1) 

for all ( )1 2, XΞ Ξ ∈  such that 1 2Ξ Ξ = ∅∩ .  
If ( ) ( )2G GΞ = Ξ  ( )( )X∀Ξ∈ , then ( )( )O , ,X X G=   in ( )C Ω  is a 

projective observable (or, crisp observable). Also, ( )( )O , ,X X G=   in ( )C Ω  
is also called an X-valued observable. We will devote ourselves to binary (i.e., 
{ },T F -valued) observables in most of the cases in this paper. Let Y be a finite 
set, and let : X YΘ →  be a map. Then, ( ) ( )( )( )1O , ,Y G −Θ = Θ ⋅  in ( )C Ω  
is also observable in ( )C Ω  (which is called an image observable).  

With any classical system S, a commutative *C -algebra ( )C Ω  can be asso-
ciated in which the measurement theory (B) of that system can be formulated. A 
state of the system S is represented by an element ( )ω ∈Ω  and an observable is 
represented by an observable ( )( )O , ,X X G=   in ( )C Ω . Also, the mea-
surement of the observable O for the system S with the state 0ω  is denoted by 

( ) ( )( ) [ ]( )0
M O , , ,C X X G S ωΩ =  . An observer can obtain a measured value 
( )x X∈  by the measurement [ ]( )0

M O, S ω .  
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The Axiom 1 presented below is a kind of mathematical generalization of 
Born’s probabilistic interpretation of quantum mechanics. And thus, it is a 
statement without reality. 

Axiom 1. [Measurement]. The probability that a measured value ( )x X∈  
obtained by the measurement ( ) ( )( ) [ ]( )0

M O , , ,C X X G S ωΩ =   is given by 
{ }( ) ( )0G x ω   .  

Next, we explain Axiom 2 in (B). 
Let { }( )0 1, , , ,nt t t≡ ≤�  be a (finite) tree-like semi-ordered set with the root 

0t . Let { }0: \ tΠ →   is the parent map, that is, ( )t t′Π =  is defined such 
that  

 , , implies thatt t t t t t t t′ ′ ′′ ′′ ′≤ ≠ ≤ ≤“ ”                (2) 

This { }( )0 1, , , ,nt t t≡ ≤�  is also written by { } { }( )0 1 0, , , , : \nt t t t≡ Π →�   .  
For example see Figure 2 below, in which we see the root 0t , the parent map: 
( ) ( )3 4 2t t tΠ = Π = , ( ) ( )2 5 1t t tΠ = Π = , ( ) ( ) ( )1 6 7 0t t t tΠ = Π = Π = .  
Let { } { }( )0 1 0, , , , : \nt t t t≡ Π →�    be a tree-like semi-ordered set with 

the root 0t . For each { }0\t T t∈ , define the homomorphism.  

( ) ( ) ( )( ), : tt t tC CΠ ΠΦ Ω → Ω  (see, for example, Figure 3), which is characterized 
as a continuous map ( ) ( ), : tt t tΠ ΠΩ →ΩΦ  such that  

( ) ( ) ( ) ( )( ) ( ) ( )( )2 1 2 1 2 1, , ,tt t t t tf f f Cω φ ω ωΠ Π Π
 Φ = ∀ ∈ Ω ∀ ∈Ω        (3) 

 

 

Figure 2. Tree: { } { }( )0 1 7 0, , , , : \T t t t T t T= Π →� . 

 

 

Figure 3. Homomorphism ( ) ( ) ( )( ), : tt t tC CΠ ΠΦ Ω → Ω .  
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Now we can propose Axiom 2 (i.e., causality). (For details, see ref. [6].)  
Axiom 2. [Causality]; Let { }( )0 1, , , ,nt t t≡ ≤�  be a (finite) tree-like semi- 

ordered set with the root 0t . Causality is represented by  

( ) ( ) ( )( ) { }{ }0,homomorphi m : \s : tt t tC C t tΠ ΠΦ Ω → Ω ∈ . 
Remark 2. [The linguistic Copenhagen interpretation] Since the linguistic 

Copenhagen interpretation is the manual to use Axioms 1 and 2, it consists of 
many rules (cf. refs. [6] [22] [23]). However, for the purposes of this paper, it is 
sufficient to focus only on the following.  

(D1) Only one measurement is permitted, and thus, the state after a measure-
ment is non-sense. Thus, we proposed the new formulation of projection post-
ulate (i.e., wavefunction collapse) (cf. ref. [9]).  

(D2) Time should be represented by a tree-like semi-ordered set  
{ }( )0 1, , , ,nt t t≡ ≤�  in Axiom 2.  

(D3) The Heisenberg picture ( ) 0 10 0
, 1M O ,

t
t tC S

ωΩ  
 

 Φ 
 

 is used and the 

Schrödinger picture ( ) ( ), 00 11
1M O ,

t ttC
S

φ ω Ω  

  
 

 is not.  

(D4) The subjective time (i.e., observer’s time, tense) does not exist. (cf. Leib-
niz = Clarke correspondence in ref. [19].)  

(D5) The measurer cannot measure himself. Thus, the assertions: “I think”, “I 
am”, etc. are not scientific. Therefore, “I think, therefore I am” is not a scientific 
proposition.  

We need the following definition for the above (D1).  
Definition 3. [(i): Quasi-product observable, quasi-product measurement]: 

Let ( )( )O , ,i i i iX X G=   ( )1,2, ,i N= �  be commutative observables in 
( )C Ω . Define the quasi-product observable  

( )( )1,2, , 1 1 1,2, ,O , ,qp n n qp
i n i i i i i i n iX X G= = = =× = × × ×� �  such that  

 
( ) ( )

( )( )
1 2 1 1=1,2, ,

, 1, 2, ,

qp

i j j j n j ji n

j j

G X X X X X G

X j n

− +
 × × × × ×Ξ × × × = Ξ  

∀Ξ ∈ =

�
� �

�
   (4) 

Also, ( ) ( )( ) [ ]( )01,2, , 1 1 1,2, ,M O , , ,qp n n qp
i n i i i i i i n iC X X G S ω= = = =Ω × = × × ×� �  is called the qu-

asi-product measurement of ( ) ( )( ) [ ]( )0
M O , , ,i i i iC X X G S ωΩ =   ( )1,2, ,i n= � .  

[(ii): Tensor *C -algebra, tensor product observable, tensor quasi-product 
measurement]: Let ( )( )O , ,i i i iX X G=   be observables in ( )iC Ω ,  
( )1,2, ,i n= � . Define a tensor product observable  

( )( )1,2, , 1 1 1,2, ,O , ,n n
i n i i i i i i n iX X G= = = =⊗ = × × ⊗� �  in the tensor *C -algebra  

( )1
n
i iC=⊗ Ω  ( )( )1

n
i iC == × Ω . such that  

 ( ) ( )( )
11 1

, 1, 2, ,
n n n

i j i i i iii i
G G X i n

== =

   ⊗ × Ξ = ⊗ Ξ ∀Ξ ∈ =     
�        (5) 

Also, ( ) ( )( ) ( )( )1 21
1,2, , 1 1 1,2, , , , ,M O , , ,n

ni i

n n
i n i i i i i i n iC

X X G S ω ω ω=
= = = =  ⊗ Ω  

⊗ = × × ⊗� � �  is 

called a tensor product measurement of ( ) ( )( ) [ ]( )M O , , ,
i ii i i iC X X G S ωΩ =    
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( )1,2, ,i n= � .  

3. Quantum Fuzzy Logic in Classical QL  

In the previous section, we introduced classical QL, which is the mathematical 
representation of the quantum mechanical worldview. In this section, we intro-
duce the quantum fuzzy logic in the quantum mechanical worldview. We believe 
that Wittgenstein’s purpose of TLP (in ref. [31]) is to propose the definition of 
“proposition” (i.e., to define “what we can speak about”). And thus, in ref. [22] 
(particularly Theorem 16 in ref. [22] is the fundamental theorem in quantum 
fuzzy logic), we asserted that “quantum fuzzy logic” realized Wittgenstein’s dream. 

Let’s start with the following definition. 
Definition 4. [(TF)-measurement (=Fuzzy proposition), Fuzzy set (= Mem-

bership function)] Let { } { }( )( )O , , , ,T F T F G=   be a binary observable (or, 
(TF)-observable, { },T F -valued observable) in a commutative *C -algebra 
( )C Ω . A measurement ( ) [ ]( )0

M O,C S ωΩ  is called a (TF)-measurement, which is 
also called a fuzzy proposition. Since Axiom 1 says that the probability that a 
measured value T is obtained by (TF)-measurement ( ) [ ]( )0

M O,C S ωΩ  is given 
by { }( ) ( )0G T ω   , we say that  

(E1) a (TF)-measurement ( ) [ ]( )0
M O,C S ωΩ  is true with probability  

{ }( ) ( )0G T ω   .  
Or,  
(E2) ( ) [ ]( ) { } { }( ) ( )

0 0Prob M O, ;C S T G Tω ωΩ
   =      

Also, { }( ) ( )( )G T C∈ Ω  is called the membership function of O.  
Definition 5. [Quantum fuzzy logic symbols (¬ , ∧ , ∨ , → ))] Let  

{ } { }( )( )O , , , ,i iT F T F G=   be binary observables (or, { },T F -valued observable) 
in a commutative *C -algebra ( )C Ω , ( 1,2i = ). Fix the quasi-product observa-
ble { } { }( )( )2 2

1 2 1 2O O , , , ,qp qpT F T F G G× = × . Consider (TF)-measurement 

( ) { } { }( )( ) [ ]( )0
M O , , , , ,i iC T F T F G S ωΩ =   (which is abbreviated as iP ) in a 

*C -algebra ( )C Ω . Put ( ) { }( ) ( )0i G Tµ ω Ξ =    { }( ), , 0,1, 2T F iΞ∈ = , and 

( )( ) ( )( ) ( )1,2 1 2 1 2 1 2 0
qp qp
i i G Gµ ω=

 × Ξ ×Ξ = × Ξ ×Ξ   { }( )1 2, 2 ,T FΞ Ξ ∈ .  
(i; Negation): Put 1,2i = . Remembering the image observable in Definition 1, 

let’s define ( ) [ ]( )0
M O ,iC S ωΩ¬  such that  

( ) [ ]( ) ( ) [ ]( )0 0
M O , M O ,i iC CS Sω ωπ ¬

Ω Ω¬ =                   (6) 

where the map { } { }, ,T F T Fπ ¬ →  is defined by ( )T Fπ ¬ = , ( )F Tπ ¬ = . 
Clearly, it holds that ( ) [ ]( ) { } { }( ) ( ) { }( )

0 0Prob M O , ;i i iC S T G F Fω ω µΩ
   ¬ = =   .  

(ii; And): Define ( ) [ ]( ) ( ) [ ]( )0 01 2M O , M O ,C CS Sω ωΩ Ω∧  such that  

( ) [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( )0 0 01 2 1 2M O , M O , M O O ,qp
C C CS S Sω ω ωπ ∧

Ω Ω Ω∧ = ×     (7) 

where { } { }2: , ,T F T Fπ ∧ →  is defined by ( ),T T Tπ ∧ = ,  
( ) ( ) ( ), , ,T F F T T F Fπ π π∧ ∧ ∧= = = .  

It holds that 
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( ) [ ]( ) ( ) [ ]( ) { }

( ) ( ) { }( )( ) ( ) ( ) ( ){ }( )
0 01 2

1

1 2 0 1 2

Prob M O , M O , ;

,

C C

qp qp

S S T

G G T T T

ω ω

π ω µ µ

Ω Ω

−∧

 ∧ 
 = × = ×  

.  

(iii; Or): Define ( ) [ ]( ) ( ) [ ]( )0 01 2M O , M O ,C CS Sω ωΩ Ω∨  such that  

( ) [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( )0 0 01 2 1 2M O , M O , M O O ,qp
C C CS S Sω ω ωπ ∨

Ω Ω Ω∨ = ×    (8) 

where { } { }2: , ,T F T Fπ ∨ →  is defined by ( ) ( ) ( ), , ,T T T F F T Tπ π π∨ ∨ ∨= = = , 
( ),F F Fπ ∨ = .  

It holds that  

( ) [ ]( ) ( ) [ ]( ) { }

( ) ( ) { }( )( ) ( ) ( ) ( ) ( ) ( ){ }( )
0 01 2

1

1 2 0 1 2

Prob M O , M O , ;

, , , , ,

C C

qp qp

S S T

G G T T T T F F T

ω ω

π ω µ µ

Ω Ω

−∨

 ∨ 
 = × = ×  

.  

(iv; Implication): Define ( ) [ ]( ) ( ) [ ]( )0 01 2M O , M O ,C CS Sω ωΩ Ω→  such that  

( ) [ ]( ) ( ) [ ]( ) ( ) ( ) [ ]( )0 0 01 2 1 2M O , M O , M O O ,qp
C C CS S Sω ω ωπ →

Ω Ω Ω→ = ×     (9) 

where { } { }2: , ,T F T Fπ→ →  is defined by  
( ) ( ) ( ), , , 1T T F T F Fπ π π→ → →= = = , ( ),T F Fπ→ = .  

It holds that  

( ) [ ]( ) ( ) [ ]( ) { }

( ) ( ) { }( )( ) ( ) ( ) ( ) ( ) ( ){ }( )
0 01 2

1

1 2 0 1 2

Prob M O , M O , ;

, , , , ,

C C

qp qp

S S T

G G T T T F F F T

ω ω

π ω µ µ

Ω Ω

−→

 → 
 = × = ×  

.  

Example 6. As with mathematical logic, truth tables are useful in quantum 
fuzzy logic. Concerning ( ) [ ]( )01M O ,C S ωΩ  and ( ) [ ]( )02M O ,C S ωΩ , we get the 
following QL version of the truth table (i.e., Table 1).  

For example, we see that  

 [ ] { }1 2 12 12 1 2Prob ;P P T p p p → = + +                (10) 

4. Time in Quantum Fuzzy Logic  
4.1. Parallel Times Series; John Is Always Hungry  

Let ( )1 2Ω = Ω = Ω  be a compact state space, each element of which is assumed  
 

Table 1. Probabilistic truth table (Elementary propositions ( ) [ ]( )( )
01 1M O ,C S PωΩ = , ( ) [ ]( )( )

02 2M O ,C S PωΩ = ). 

( ) [ ]( )01M O ,C S ωΩ  

( )1P=  

( ) [ ]( )02M O ,C S ωΩ  

( )2P=  

probability: 

1,2
qp
i ip µ== ×  [ ]1 2P P→  [ ]2 1P P¬ →¬  

T T ( ){ }( )12 1,2 ,qp
i ip T Tµ== ×  T T 

T F ( ){ }( )1,212 ,qp
i ip T Fµ== ×  F F 

F T ( ){ }( )1,212 ,qp
i ip F Tµ== ×  T T 

F F ( ){ }( )1,21 2 ,qp
i ip F Fµ== ×  T T 
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to represent the state of the human mind. Consider the membership function 
[ ]: 0,1h Ω→  such that  

( ) is the state of human mind with intensity hunger of Degreeh ω θ ω θ= ⇔  

which is usually interpreted as follows. That is, [ ]: 0,1h ω →  is defined by the 
following:  

(F) When asked, “Does the person with state ω  feel hungry?”, ( )100h ω  
percent said “yes”.  

This is essentially the same as the probabilistic interpretation of membership 
functions (cf. refs. [20] [23]). 

Define the observables { } { }( )( )O , , , ,T F T F H=   be a binary observable 
(or, (TF)-observable, { },T F -valued observable) in a commutative *C -algebra 
( )C Ω  such that  

 { }( ) { }( ), 1H T h H F h= = −                   (11) 

Let ( )0ω ∈Ω  be John’s mind state. We have the (TF)-measurement (i.e., 

( ) { } { }( )( ) 0M O , , , , ,C T F T F H S
ωΩ  
 

 = 
 

 , which can be identified with the fol-

lowing proposition:  
(G) John is hungry.  
That is, we see  

(H1) a (TF)-measurement ( ) 0M O,C S
ωΩ  
 

 
 
 

 is true with probability  

{ }( )( ) ( )0G T ω 
  .  

Or,  
(H2) ( ) [ ]( ) { } { }( )( ) ( )0

0Prob M O, ;C S T G Tω ωΩ
   =      

Next, we will study “John is always hungry”. For this, we must consider 

( ) { } { }( )( ) 0M O , , , , ,
i

C T F T F H S
ωΩ  
 

 = 
 

  ( )1,2, ,i n= � . 
Define the tree-like semi-ordered set { } { }( )0 1 0, , , , : \nt t t t≡ Π →�    such 

that ( ) ( )0 1, 2, ,jt t j n= Π ∀ = � . Assume that for each { }( )0\t t∈ , a ( )C Ω  is 
associated (i.e., ( ) ( )tC CΩ = Ω ), and ( ) ( ) ( )0 1 i

n n
t i tC C C=Ω = ⊗ Ω = Ω . And, for 

any ( )1,2, ,i n= � , define a homomorphism ( ) ( )0 , :
i

n
t t C CΦ Ω → Ω  such that 

0 , :
i

n
t tφ Ω →Ω  satisfies that  

 ( ) ( )( )0 , 1 2 1 2, , , , , , , , , ,
i

n
t t i n i i nφ ω ω ω ω ω ω ω ω ω= ∀ ∈Ω� � � �     (12) 

(See, for example Figure 4) 
According to (D2) in Remark 2 (The linguistic Copenhagen interpretation), 

we regard the above tree-like semi-ordered set { }( )0 1, , , ,nt t t≡ ≤�  as time. 
Let ( )0

iω ∈Ω  be John’s mind state at time it  ( )1,2, ,i n= � . Thus, note 
that, for each 1,2, ,i n= � , the (TF)-measurement (i.e.,  

( ) { } { }( )( ) 0M O , , , , ,
i

C T F T F H S
ωΩ  
 

 = 
 

  can be identified with the following 

proposition:  
(I) John is hungry at time it .  
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Figure 4. Homomorphism ( ) ( ) ( )( ) ( ) ( )( ), : : 0 1,2,3,4tt t tC C t tΠ ΠΦ Ω → Ω Π = ∀ = . 

 
Define the tensor product observables { } { }( )( )1 1O , , , ,n nn n

i iT F T F H= =⊗ = ⊗  
in ( ) ( )( )1

n n
i C C=⊗ Ω = Ω  and consider the measurement  

( ) ( )0 0 0
1 2

1 , , ,
M O,n

n

n
iC

S
ω ω ω

π ∧
=  Ω   

 
⊗ 

 �
. Define the map { } { }: , ,nT F T Fπ ∧ →  such 

that  

 ( ) ( )
( )

1 2
1 2

if
, , ,

otherwise
n

n

T x x x T
x x x

F
π ∧  = = = == 



�
�              (13) 

Thus, we get the (TF)-measurement ( ) ( )0 0 0
1 2

1 , , ,
M O,n

n

n
iC

S
ω ω ω

π ∧
=  Ω   

 
⊗ 

 �
, which 

implies that  
(J) John is always hungry.  
That is, we see  
(K1) a (TF)-measurement the ( )TF -measurement  

( ) ( )0 0 0
1 2

1 , , ,
M O,n

n

n
iC

S
ω ω ω

π ∧
=  Ω   

 
⊗ 

 �
  

Or,  

(K2) ( ) ( )0 0 0
1 2

1 , , ,
Prob M O,n

n

n
iC

S
ω ω ω

π ∧
=  Ω   

  
⊗  

  �
 is true with probability  

{ }( )( ) ( )0
1

n
i iH T ω=
 ×     

Remark 7 (i): For example, consider the following sentence:  
(L) John was hungry yesterday and the day before yesterday.  
This sentence (L) has to do with tense. Thus, as seen in Remark 2 (The lin-

guistic Copenhagen interpretation), this is not a meaningful proposition within 
QL.  

(ii): The above parallel time in Figure 4 does not match our daily senses, and 
the reader may feel uncomfortable. However, this time plays an essential role in 
the understanding of Hume’s problem of induction (cf. ref. [20]). It is rather in-
teresting that there is a gap between our everyday sensory understanding and 
our scientific understanding. This gap is the reason why Hume’s problem of in-
duction has remained unresolved for so long.  
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4.2. If No One Is Scolded, No One Study  

Here let us consider the following proposition:  
(M) If no one is scolded, no one will study.  
Our present purpose is to rewrite this proposition in quantum fuzzy logic. Let 
( )1 2Ω = Ω = Ω  be a compact state space, each element of which represents the 

mind of human being. Consider the membership function [ ]1 : 0,1g Ω→  such 
that  

( )

( )

1 1

1 1

is the state of mind of a person who is scolded
with at the strength of Degree 0 1 .

g ω θ
ω

θ θ

=

⇔

≤ ≤

 

which is usually interpreted as follows.  
(N) When asked, “Does the person feel scolded?”, ( )1100g ω  out of 100 re-

spond “yes”.  
This is essentially the same as the probabilistic interpretation of membership 

functions (cf. refs. [20] [23]).  
Further consider the membership function [ ]2 : 0,1g Ω→  such that  

( )

( )

2 2

2 2

is the state of mind of a person who wants to
study at the strength of Degree 0 1 .

g ω θ
ω

θ θ

=

⇔

≤ ≤

 

Also, consider the time evolution  
( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 2 1; is the root :t t t t t C C C CΦ < Ω = Ω → Ω = Ω , which is cha-

racterized by the continuous map ( ) ( )
1 2, 1 2:t tφ Ω = Ω →Ω = Ω  such that  

 ( )( ) ( )( ) ( )( )1 2 1 22 1 2 , 1 2 2 1 1,t t t tf f f Cω φ ω ωΦ = ∀ ∈ Ω ∀ ∈Ω      (14) 

which is illustrated in Figure 5 below.  
Define the observables { } { }( )( )O , , , ,i iT F T F G=   be a binary observable 

(or, (TF)-observable, { },T F -valued observable) in a commutative *C -algebra 
( )C Ω  ( 1,2i = ) such that  

 { }( ) { }( ), ) 1i i i iG T g G F g= = −                (15) 

Let ( )0 1ω ∈Ω = Ω  be a state of the system S. 
Here consider two (TF)-measurements (i.e., fuzzy propositions)  

( ) [ ]( )01M O ,C S ωΩ  and ( ) [ ]( )1 2 0, 2M O ,t tC S ωΩ Φ  (which is respectively abbreviated as 

iP ). Here, it should be noted that the Heisenberg picture ( ) [ ]( )1 2 0, 2M O ,t tC S ωΩ Φ  

is used and the Schrödinger picture ( ) ( )( ), 01 2
2M O ,

t tC S
φ ωΩ  
 

 is not. 

Fix the quasi-product observable  
{ } { }( )( )1 2 1 2

2 2
1 , 2 1 , 2O O , , , ,qp qp

t t t tT F T F G G× Φ = × Φ  in ( )C Ω . And consider 
quasi-product measurement ( ) [ ]( )1 2 01 , 2M O O ,qp

t tC S ωΩ × Φ . Put  
( ) ( ) ( )1 1 0Gµ ωΞ = Ξ    { }( ),T FΞ ⊆ , ( ) ( ) ( )

1 22 , 2 0t t Gµ ω Ξ = Φ Ξ    
{ }( ),T FΞ ⊆ , and ( )( ) ( )( ) ( )

1 21,2 1 2 1 , 2 1 2 0
qp qp
i i t tG Gµ ω=

 × Ξ ×Ξ = × Φ Ξ ×Ξ    
{ }( )1 2, ,T FΞ Ξ ⊆  (see Table 2). 
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Figure 5. Homomorphism ( ) ( )1 2 2 1, :t t t tC CΦ Ω → Ω . 

 
Table 2. Probabilistic truth table (Elementary propositions ( ) [ ]( )( )

01 1M O ,C S PωΩ = , ( ) [ ]( )( )
1 2 0, 2 2M O ,t tC S PωΩ Φ = ). 

( ) [ ]( )01M O ,C S ωΩ  

( )1P=  

( ) [ ]( )1 2 0, 2M O ,t tC S ωΩ Φ  

( )2P=  

probability: 

1,2
qp
i ip µ== ×  [ ]1 2P P¬ →¬  [ ]2 1P P→  

T T ( ){ }( )12 1,2 ,qp
i ip T Tµ== ×  T T 

T F ( ){ }( )1,212 ,qp
i ip T Fµ== ×  F F 

F T ( ){ }( )1,212 ,qp
i ip F Tµ== ×  T T 

F F ( ){ }( )1,21 2 ,qp
i ip F Fµ== ×  T T 

 
Therefore we see, by Table 2, that if  

“ ( ){ }( ) ( ) { } { }( ) ( )( )1 21,2 1 , 2 012 , 0qp qp
i i t tp T F G G T Fµ ω=

 = × = × Φ × =  ”, then it holds 
that  

[ ] ( )1 2 1 2is true If no one is scolded at time , then no one study at timeP P t t¬ →¬ ≈“ ”  

[ ] ( )( )2 1 2 1is true If someone is studying at time , then he was scolded at timeP P t t⇔ → ≈“ ”  

Remark 8. As seen in Section 3, quantum fuzzy logic (e.g., implication) is pro-
duced by measurement (i.e., Axiom 1). On the other hand, causality (and time) 
arises from Axiom 2. For example, we can see both “implication” and “causality” 
in the above quasi-product measurement ( ) [ ]( )1 21 01 , 2M O O ,qp

t tC S ωΩ × Φ . We 
think the difference between “implication” and “causality” is now clear in quan-
tum language.  

Remark 9. Bertrand Russell said in ref. [32] “The Analysis of Mind”, p. 223.  
• We cannot deny the hypothesis that the world began five minutes ago.  
which is true since this is a consequence of the linguistic Copenhagen interpreta-
tion (D4) (cf. ref. [19]). Therefore, the sentence “the world began five minutes 
ago” is not a proposition in QL.  

5. Conclusions 

It is usual that “logic” is constructed in mathematics (e.g., see ref. [33]). On the 
other hand, our logic (i.e., quantum fuzzy logic in ref. [22]) is constructed in the 
quantum language (which has been proposed as the “language of science”). And 
thus, we can expect that quantum fuzzy logic plays an important role in science. 
This is the motivation for us to write this paper.  

It is generally said that mathematical logic and time are not compatible. We 
believe this is certain. However, our logic is not mathematical logic, but quan-
tum fuzzy logic and quantum fuzzy logic is a logic born from quantum mechan-
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ics. It is natural to think that mechanics and time are compatible, so there is a 
reason to expect quantum fuzzy logic and time to be compatible. As this paper 
shows, it can be said that this expectation was correct to some extent. In fact, in 
Section 4, we showed the denial of the proposition of “John is always hungry” 
and the contraposition of the proposition of “If no one is scolded, no one study” 
in quantum fuzzy logic. 

In everyday language, we are free to use tense and subjective time, but in the 
quantum language (or science), the use of tense and subjective time is forbidden. 
Quantum language is a scientific language, so it is natural that we cannot use the 
word “time” unscientifically (cf. Remark 9: Russell’s “the world began five mi-
nutes ago”). On the other hand, although the parallel time is scientific time, it is 
interesting that this time has a gap with the nuances of everyday language (cf. 
Remark 7: Related to Hume’s problem of induction). 

As a discussion about logic and time within the framework of science, we be-
lieve that our proposal is the best. We hope that our proposal will be examined 
from various points of view. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Ishikawa, S. (1997) Fuzzy Inferences by Algebraic Method. Fuzzy Sets and Systems, 

87, 181-200. https://doi.org/10.1016/S0165-0114(96)00035-8  
http://www.sciencedirect.com/science/article/pii/S0165011496000358  

[2] Ishikawa, S. (1997) A Quantum Mechanical Approach to Fuzzy Theory. Fuzzy Sets 
and Systems, 90, 277-306. https://doi.org/10.1016/S0165-0114(96)00114-5  
https://www.sciencedirect.com/science/article/abs/pii/S0165011496001145  

[3] Ishikawa, S. (1998) Fuzzy Logic in Measurements. Fuzzy Sets and Systems, 100, 
291-300. https://doi.org/10.1016/S0165-0114(97)00154-1  
https://www.sciencedirect.com/science/article/abs/pii/S0165011497001541  

[4] Ishikawa, S. (2000) Statistics in Measurements. Fuzzy Sets and Systems, 116, 141-154.  
https://doi.org/10.1016/S0165-0114(98)00280-2   
http://www.sciencedirect.com/science/article/pii/S0165011498002802  

[5] Ishikawa, S. (2006) Mathematical Foundations of Measurement Theory. Keio Uni-
versity Press Inc., Tokyo, 335 p. http://www.keio-up.co.jp/kup/mfomt/  

[6] Ishikawa, S. (2019) Linguistic Copenhagen Interpretation of Quantum Mechanics; 
Quantum Language [Ver. 5]. Research Report, KSTS/RR-19/003, Department of 
Mathematics, Keio University, Yokohama, 473 p.  
http://www.math.keio.ac.jp/en/academic/research.html   

[7] Ishikawa, S. (1991) Uncertainty Relation in Simultaneous Measurements for Arbi-
trary Observables. Reports on Mathematical Physics, 29, 257-273.  
https://doi.org/10.1016/0034-4877(91)90046-P  
https://www.sciencedirect.com/science/article/abs/pii/003448779190046P  

[8] Ishikawa, S. (2011) A New Interpretation of Quantum Mechanics. Journal of Quan-
tum Information Science, 1, 35-42. https://doi.org/10.4236/jqis.2011.12005  

https://doi.org/10.4236/jamp.2021.911168
https://doi.org/10.1016/S0165-0114(96)00035-8
http://www.sciencedirect.com/science/article/pii/S0165011496000358
https://doi.org/10.1016/S0165-0114(96)00114-5
https://www.sciencedirect.com/science/article/abs/pii/S0165011496001145
https://doi.org/10.1016/S0165-0114(97)00154-1
https://www.sciencedirect.com/science/article/abs/pii/S0165011497001541
https://doi.org/10.1016/S0165-0114(98)00280-2
http://www.sciencedirect.com/science/article/pii/S0165011498002802
http://www.keio-up.co.jp/kup/mfomt/
http://www.math.keio.ac.jp/en/academic/research.html
https://doi.org/10.1016/0034-4877(91)90046-P
https://www.sciencedirect.com/science/article/abs/pii/003448779190046P
https://doi.org/10.4236/jqis.2011.12005


S. Ishikawa, K. Kikuchi 
 

 

DOI: 10.4236/jamp.2021.911168 2621 Journal of Applied Mathematics and Physics 
 

http://www.scirp.org/journal/PaperInformation.aspx?paperID=7610  

[9] Ishikawa, S. (2015) Linguistic Interpretation of Quantum Mechanics; Projection 
Postulate. Journal of Quantum Information Science, 5, 150-155.  
https://doi.org/10.4236/jqis.2015.54017  
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62464  

[10] Ishikawa, S. (2017) Bell’s Inequality Should Be Reconsidered in Quantum Language. 
Journal of Quantum Information Science, 7, 140-154.  
https://doi.org/10.4236/jqis.2017.74011  
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=80813  

[11] Ishikawa, S. (2008) Dynamical Systems, Measurements, Quantitative Language and 
Zeno’s Paradoxes. Far East Journal of Dynamical Systems, 10, 277-292.  
http://www.pphmj.com/abstract/3595.htm  

[12] Ishikawa, S. (2012) A Measurement Theoretical Foundation of Statistics. Applied 
Mathematics, 3, 283-292. https://doi.org/10.4236/am.2012.33044  
http://www.scirp.org/journal/PaperInformation.aspx?paperID=18109&  

[13] Ishikawa, S. (2012) Monty Hall Problem and the Principle of Equal Probability in 
Measurement Theory. Applied Mathematics, 3, 788-794.  
https://doi.org/10.4236/am.2012.37117  
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19884  

[14] Ishikawa, S. (2012) Ergodic Hypothesis and Equilibrium Statistical Mechanics in the 
Quantum Mechanical World View. World Journal of Mechanics, 2, 125-130.  
https://doi.org/10.4236/wjm.2012.22014  
https://www.scirp.org/journal/paperinformation.aspx?paperid=18861  

[15] Kikuchi, K. and Ishikawa, S. (2010) Psychological Tests in Measurement Theory. 
Far East Journal of Theoretical Statistics, 32, 81-99.  
http://www.pphmj.com/abstract/5006.htm  

[16] Kikuchi, K. (2011) An Axiomatic Approach to Fisher’s Maximum Likelihood Me-
thod. Nonlinear Studies, 2, 255-262.  

[17] Ishikawa, S. (2012) Quantum Mechanics and the Philosophy of Language: Reconsi-
deration of Traditional Philosophies. Journal of Quantum Information Science, 2, 
2-9. https://doi.org/10.4236/jqis.2012.21002   
http://www.scirp.org/journal/PaperInformation.aspx?paperID=18194  

[18] Ishikawa, S. (2017) A Final Solution to Mind-Body Problem by Quantum Language, 
Journal of Quantum Information Science, 7, 48-56.  
https://doi.org/10.4236/jqis.2017.72005  
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=76391  

[19] Ishikawa, S. (2018) Leibniz-Clarke Correspondence, Brain in a Vat, Five-Minute 
Hypothesis, McTaggart’s Paradox, etc. Are Clarified in Quantum Language. Open 
Journal of Philosophy, 8, 466-480. https://doi.org/10.4236/ojpp.2018.85032  
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862  

[20] Ishikawa, S. (2019) Philosophy of Science for Scientists; The Probabilistic Interpre-
tation of Science. Journal of Quantum Information Science, 9, 123-154.  
https://doi.org/10.4236/jqis.2019.93007 
https://www.scirp.org/Journal/paperinformation.aspx?paperid=95447  

[21] Ishikawa, S. (2020) Wittgenstein’s Picture Theory in the Quantum Mechanical 
Worldview. Journal of Quantum Information Science, 10, 104-125,  
https://doi.org/10.4236/jqis.2020.104007  
https://www.scirp.org/journal/paperinformation.aspx?paperid=106233  

[22] Ishikawa, S. (2021) Fuzzy Logic in the Quantum Mechanical Worldview; Related to 

https://doi.org/10.4236/jamp.2021.911168
http://www.scirp.org/journal/PaperInformation.aspx?paperID=7610
https://doi.org/10.4236/jqis.2015.54017
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62464
https://doi.org/10.4236/jqis.2017.74011
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=80813
http://www.pphmj.com/abstract/3595.htm
https://doi.org/10.4236/am.2012.33044
http://www.scirp.org/journal/PaperInformation.aspx?paperID=18109&
https://doi.org/10.4236/am.2012.37117
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19884
https://doi.org/10.4236/wjm.2012.22014
https://www.scirp.org/journal/paperinformation.aspx?paperid=18861
http://www.pphmj.com/abstract/5006.htm
https://doi.org/10.4236/jqis.2012.21002
http://www.scirp.org/journal/PaperInformation.aspx?paperID=18194
https://doi.org/10.4236/jqis.2017.72005
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=76391
https://doi.org/10.4236/ojpp.2018.85032
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862
https://doi.org/10.4236/jqis.2019.93007
https://www.scirp.org/Journal/paperinformation.aspx?paperid=95447
https://doi.org/10.4236/jqis.2020.104007
https://www.scirp.org/journal/paperinformation.aspx?paperid=106233


S. Ishikawa, K. Kikuchi 
 

 

DOI: 10.4236/jamp.2021.911168 2622 Journal of Applied Mathematics and Physics 
 

Zadeh, Wittgenstein, Moore, Saussure, Quine, Lewis Carroll, etc. Journal of Applied 
Mathematics and Physics, 9, 1583-1610. https://doi.org/10.4236/jamp.2021.97108  
https://www.scirp.org/journal/paperinformation.aspx?paperid=110830  

[23] Ishikawa, S. (2021) History of Western Philosophy from the Quantum Theoretical 
Point of View, Research Report [Ver.4]. KSTS-RR-21/001, Department of Mathe-
matics, Keio University, Yokohama, 306 p.  
http://www.math.keio.ac.jp/en/academic/research.html  

[24] Prior, N. (1968) Papers on Time and Tense. Oxford University Press, Oxford. 

[25] Pnueli, A. (1977) The Temporal Logic of Programs. Proceedings of the 18th IEEE 
Symposium on Foundations of Computer Science, Providence, 31 October-2 No-
vemver 1977, 46-67 https://doi.org/10.1109/SFCS.1977.32  

[26] von Neumann, J. (1932) Mathematical Foundations of Quantum Mechanics. Sprin-
ger Verlag, Berlin.  

[27] Sakai, S. (1971) *C -Algebras and *W -Algebras, Ergebnisse der Mathematik und 
ihrer Grenzgebiete (Band 60). Springer-Verlag, Berlin, Heidelberg, New York. 

[28] Yosida, K. (1980) Functional Analysis. 6th Edition, Springer-Verlag, Heidelberg.  

[29] Davies, E.B. (1976) Quantum Theory of Open Systems. Academic Press, Cambridge. 

[30] Holevo, A.S. (1982) Probabilistic and Statistical Aspects of Quantum Theory. North- 
Holland Publishing Company, Amsterdam.  

[31] Wittgenstein, L. (1921) Tractatus Logico Philosophicus. Routledge and Kegan Paul, 
Oxford. 

[32] Russell, B. (1921) The Analysis of Mind. George Allen and Unwin, London.  

[33] Lewis, C.L. (1918) A Survey of Symbolic Logic. University of California, Oakland. 
 
 

https://doi.org/10.4236/jamp.2021.911168
https://doi.org/10.4236/jamp.2021.97108
https://www.scirp.org/journal/paperinformation.aspx?paperid=110830
http://www.math.keio.ac.jp/en/academic/research.html
https://doi.org/10.1109/SFCS.1977.32

	Quantum Fuzzy Logic and Time
	Abstract
	Keywords
	1. Introduction
	2. Elementary Review of Classical QL 
	3. Quantum Fuzzy Logic in Classical QL 
	4. Time in Quantum Fuzzy Logic 
	4.1. Parallel Times Series; John Is Always Hungry 
	4.2. If No One Is Scolded, No One Study 

	5. Conclusions
	Conflicts of Interest
	References

