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Abstract 
In this paper, we investigate an integrable high order nonlocal coupled Ablo-
witz-Kaup-Newell-Segur (AKNS) system for the first time. With the aid of 
Lax pair of this nonlocal system, Darboux transformation (DT) and new soli-
ton-like solutions are obtained. Different from local equations, Darboux trans-
formation of nonlocal systems needs to meet certain conditions. In this article, 
under the condition of symmetry reduction, the components of Darboux trans-
formation need to satisfy [ ] ( ) [ ] ( )21 12, ,k kb x t b x t= − − − , [ ] ( ) [ ] ( )23 14, ,k kb x t b x t= − − − . 

In order to study the dynamic information of the solutions, the images of the 
solutions are given. 
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1. Introduction 

In the past decades, a number of researches involved in applied mathematics and 
theoretical physics are concerned with integrable systems. The KdV, the nonli-
near Schrödinger, the mKdV, the sine-Gordon equations, etc. are well-known 
integrable equations, and they can all be derived from the AKNS system. Many 
scholars have studied these equations from different fields and got many excel-
lent results. An important research topic is to find the exact solutions of these 
systems, especially their soliton solutions or soliton-like solutions. So far, many 
effective methods have been developed, such as, inverse scattering method [1] [2] 
[3], Classical and nonclassical lie group method [1] [2] [3], Darboux transfor-
mation method [4] [5] [6] [7] [8], bilinear method [9] [10] [11] [12], etc. 

It is well known that symmetry is one of the important characteristics of in-
tegrable systems. By using Lie group method, the system can be reduced and 
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solved, the conservation law of the system can also be constructed at the same 
time. Lie symmetry is also called continuous symmetry because its variables are 
transformed in the following form, *x x εξ= + , *t t ετ= + , *u u εψ= + , 
where ε  is infinitesimal. However, many facts show that two or more events 
occur at different places and times but are closely related to each other. For ex-
ample, the reduction of Arctic sea ice in the summer of 2007 is considered to be 
the reason for the heavy winter freezing rain in southern China in 2008. To ex-
plain these events, nonlocal models are proposed, such as nonlocal nonlinear 
Schrödinger equation [13],  

 ( ) ( ) ( ) ( )2 *, , 2 , , 0,t xxiq x t q x t q x t q x t+ + − =                (1.1) 

was proposed by Ablowitz, where ∗  represents complex conjugation. One can 
see from Equation (1.1) that q is not only a function of x but also a function of −x, 
that is to say, the solution ( ),q x t  evaluated at x requires information from −x 
via the term ( )* ,q x t− . For system (1.1), the exact solution and the conservation 
law are studied by the inverse scattering method. Before long, the nonlocal mod-
ified KdV systems, the discrete nonlocal NLS system, nonlocal sine-Gordon eq-
uation and the nonlocal Davey-Stewartson systems were also proposed. In gen-
eral, nonlocal equations fall into three categories: 1) full PT symmetry; 2) partial 
PT symmetry; 3) partial reverse space-time symmetry. For this new type of sys-
tem, many scholars have studied the integrability, exact solution [14] [15], con-
servation law and other aspects of the system, and got a lot of excellent results. 
Because nonlocal systems play an important role in mathematics and physics, 
more and more experts are attracted to study this kind of equations [15] [16] [17] 
[18] [19]. 

Constructing the exact solutions of these nonlinear nonlocal equations can 
help to verify the numerical solutions and help to analyze the stability of the so-
lutions. However, it is very difficult to solve them because of their high nonli-
nearity. Over the past few decades, significant progress has been made in many 
methods. The Darboux transform based on Lax pair has been proved to be one 
of the most effective algorithms for solving explicit solutions of nonlinear evolu-
tion equations. By using Darboux transformation method, soliton solutions, ro-
gue-wave solutions of those nonlocal integrable equations are given [20]-[25]. 

This paper is arranged as follows: In Section 2, the high order nonlocal 
coupled AKNS system is constructed by using the linear spectral problem. In 
Section 3, the process of Darboux transformations is introduced in detail. Exact 
1-fold and N-fold solutions are obtained. In Section 4, using the trivial seed so-
lutions, the exact solutions of the high order nonlocal coupled AKNS system are 
constructed. In order to study the properties of the solution, the appropriate pa-
rameters are selected and the corresponding images are made. Finally, some 
conclusions and discussions are given in Section 5. 

2. High Order Nonlocal Coupled AKNS System 

In this section, we will construct the high order nonlocal coupled AKNS system. 
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In fact, the starting point is the AKNS scattering problem [26],  

 
,
,

x

t

U
V

φ φ
φ φ

=

=
                            (2.1) 

( ) ( ) ( ) ( )( )T
1 2 3 4, , , , , , ,x t x t x t x tφ φ φ φ φ= , and the matrices ,U V  have the fol-

lowing form matrixes,  

 , ,
0 0 0 0
0 0 0 0

P R A B E F
Q S C A G E

U V
P A B

Q C A

λ λ
λ λ

λ
λ

− −   
   − −   = =
   −
   

−   

          (2.2) 

which was first introduced by Ma et al., , , , , ,A B C E F G  have the following 
form,  

3

2 2

2 2

3

1 1 1 ,
4 4 2

1 1 1 ,
2 4 2
1 1 1 ,
2 4 2

3 3 1 1 1 1
2 2 4 4 4 4 4 4

1 1 1 ,
4 4 2

x x

x xx

x xx

x x x x x x

x x

A pq qp pq

B p p p p q

C q q q pq

ps qrE pq pq qp ps qr rq sp

pq qp pq

α λ λ

α λ λ

α λ λ

α λ

β λ λ

 = − + − 
 
 = − + − + 
 
 = − − − + 
 
  = − − + − − + − +  

  
 + − + − 
 

 

( )

( )

2 2 2

2 2

2 2 2

2 2

1 3 1 3 1
2 4 4 2 2

1 1 1 ,
2 4 2

1 3 1 3 1
2 4 4 2 2

1 1 1 ,
2 4 2

x x xx xx

x xx

x x xx xx

x xx

F p r p r p r p q p s pqr

p p p p q

G q s q s q s pq q r pqs

q q q pq

α λ λ

β λ λ

α λ λ

β λ λ

  = − − − + − − + +  
  

 + − + − + 
 

  = − − − + − − + +  
  

 + − + − + 
 

  (2.3) 

where , , ,p q r s  are four potentials, α  is arbitrary constant and λ  is the 
spectral parameter. 

The compatibility condition of the system (2.1) yields the zero curvature re-
presentation [ ], 0t xU V U V− + = , using this formula, one can obtain the fol-
lowing evolution equations,  

3 1 ,
2 4
3 1 ,
2 4
3 1 1 3 9
4 4 4 2 2

3 3 3 ,
2 2 2

t x xxx

t x xxx

t xxx xxx xxx x x

x x x

p pqp p

q pqq q

r p r p pqp pqp

pqr psp qrp

α α

α α

α α β β α

α α α

= −

= −

= − − + −

+ + +
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3 1 1 3 9
4 4 4 2 2

3 3 3 ,
2 2 2

t xxx xxx xxx x x

x x x

s q s q pqq pqq

pqs qrq psq

α α β β α

α α α

= − − + −

+ + +
         (2.4) 

system (2.4) is coupled mixed nonlinear Schrödinger equation, it possesses infi-
nitely many symmetries, which constitute some infinite-dimensional Lie algebra. 

In this section, we set a symmetry reduction to (2.4),  

 
( ) ( )
( ) ( )

, , ,

, , ,

q x t p x t

s x t r x t

= − −

= − −
                        (2.5) 

the high order nonlocal coupled AKNS systemn can be obtained,  

 

( )

( ) ( )( ( )

( )) ( )( )

3 1, ,
2 4

1 33 , 3 ,
4 2

3, , ,
2

t x xxx

t xxx xxx xxx x

x

p pp p x t p

r p r p pp p x t p x t

r x t p x t pr

α α

α α β β α

α α

= − − −

= − − + − − − − −

+ − − + − −

   (2.6) 

The integrable high order nonlocal coupled AKNS system is constructed by 
using the symmetry reduction method. The following work is to construct the 
exact solution of the system (2.6). It is well known that the Darboux transform is 
an important method for solving the exact solution of integrable nonlinear sys-
tems. It is proved that this method is not only suitable for solving local equations, 
but also for solving nonlocal equations. In the next section, we will construct the 
Darboux transform and exact solution of the nonlocal integrable system (2.6). 

3. Darboux Transformation for High Order Nonlocal  
Coupled AKNS System 

In this section, we will construct the Darboux transformation (DT) by means of 
the lax pair of high order nonlocal coupled AKNS system. The idea of the DT is 
to construct a transformation such that the form of the lax pair remains un-
changed. Similarly to classical DT, we take the following gauge transformation,  

[ ] [ ]1 1 .Tφ φ=                             (3.1) 

Assume that the new lax pair has the following form under the gauge trans-
formation (4.1),  

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 1

1 1 1

,

,
x

t

U

V

φ φ

φ φ

=

=
                           (3.2) 

where  

[ ] [ ] [ ]( ) [ ]( )
[ ] [ ] [ ]( ) [ ]( )

11 1 1 1

11 1 1 1

,

,

x

t

U T T U T

V T T V T

−

−

= +

= +
                    (3.3) 

the next work is to find a matrix [ ]1T  such that [ ] [ ]1 1,U V  have the same forms 
as ,U V , and , , ,p q r s  are mapped into new potentials [ ] [ ] [ ] [ ]1 1 1 1, , ,p q r s , i.e.  
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 [ ]

[ ] [ ]

[ ] [ ]

[ ]

[ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

1 1 1 1 1 1

1 1 1 1 1
1 1

1 1 1

1 1 1

,    ,
0 0 0 0

0 0 0 0

p r A B E F

q s A G E
U V

p A B

q C A

λ λ

λ λ

λ

λ

   − −
   
   − −

= =   
−   

      −   

  (3.4) 

where [ ] [ ] [ ] [ ] [ ] [ ]1 1 1 1 1 1, , , , ,A B C E F G  have the same forms as , , , , ,A B C E F G  (2.3), 
just like the forms of [ ]1U . 

In order to construct the form of the gauge matrix T, we suppose,  

 [ ]1 0 1

0

,
0
T T

T
T

 
=  
 

                        (3.5) 

where 0T  and 1T  have the following forms,  
[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )

1 1
11 12

0 1 1
21 22

1 1
13 14

1 1 1
23 24

, ,
,

, ,

, ,
,

, ,

b x t b x t
T

b x t b x t

b x t b x t
T

b x t b x t

λ

λ

λ

λ

 +
 =
 + 
 +
 =
 + 

 

[ ]1 , 1, 2; 1,2,3,4ijb i j= =  are undetermined functions of x and t. 
By substituting (3.5) into (3.3), we obtain the transformations between 
, , ,p q r s  and [ ] [ ] [ ] [ ]1 1 1 1, , ,p q r s  by balancing the order of λ ,  

 

[ ] ( ) ( ) [ ] ( )
[ ] ( ) ( ) [ ] ( )
[ ] ( ) ( ) [ ] ( )
[ ] ( ) ( ) [ ] ( )

1 1
12

1 1
21

1 1
14

1 1
23

, , 2 , ,

, , 2 , ,

, , 2 , ,

, , 2 , ,

p x t p x t b x t

q x t q x t b x t

r x t r x t b x t

s x t s x t b x t

= +

= −

= +

= −

                 (3.6) 

and  

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

1 1
11 21 12 12 22 11

1 1
13 23 1 21 12 14 14 24 1 22 11 13

1 1
21 11 22 22 12 21

1 1
23 13 1 11 22 24 24 14 1 12 21

,    ,

,    ,

,    ,

,    

b p b b q b p b b p
x x

b p b r b b s b q b p b r b b r b p
x x

b q b b q b q b b p
x x

b q b s b b s b q b q b s b b r b
x x

∂ ∂
= − = −

∂ ∂
∂ ∂

= + − − = + − −
∂ ∂
∂ ∂

= − = −
∂ ∂
∂ ∂

= + − − = + − −
∂ ∂ 23 ,p

 (3.7) 

because [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )1 1 1 1, , , , , , ,q x t p x t r x t s x t  are still solutions to the Equation 
(2.4), so we assume that these four new potentials satisfy the symmetry reduc-
tion condition [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )1 1 1 1, , , , ,q x t p x t s x t r x t= − − = − − . Using this condi-
tion, one can get,  

 
[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )

1 1
21 12

1 1
23 14

, , ,

, , ,

b x t b x t

b x t b x t

= − − −

= − − −
                    (3.8) 

so the N-fold Darboux transformation for nonlocal couplings of AKNS equa-
tions (2.6) can be constructed,  
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 [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )1 1 ,n n n k
nT T T T Tλ λ λ λ λ−Φ = Φ = Φ� �       (3.9) 

the gauge transformation [ ] ( )kT λ  has a similar form to (2.4). Different from 
the Darboux transformation of local equations, the Darboux transformation of 
nonlocal equations needs to meet the following constraints,  

 
[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )
21 12

23 14

, , ,

, , ,  1, 2, ,

k k

k k

b x t b x t

b x t b x t k N

= − − −

= − − − = �
             (3.10) 

The relationship between new and old potentials is as follows,  

 
[ ] [ ] ( )
[ ] [ ] ( )

12

14

2 , ,

2 , .

k k

k k

p p b x t

r r b x t

= + − −

= + − −
                    (3.11) 

Proposition 1. Under the action of transformation [ ]1T  (3.5), the matrix 
[ ]1U  determined by Equation (3.2) has the same form as U, that is,  

[ ]

[ ] [ ]

[ ] [ ]

[ ]

[ ]

1 1

1 1
1

1

1

,
0 0

0 0

p r

q s
U

p

q

λ λ

λ λ

λ

λ

 − −
 
 

=  
− 

  
 

 

the transformations between , , ,p q r s  and [ ] [ ] [ ] [ ]1 1 1 1, , ,p q r s  are given by Equa-
tion (3.6). 

Proof: For convenience, we will write [ ]1T  as T, according to formulas 
( ) 11 *detT T T−− = , and  

 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

11 12 13 14

21 22 23 24*

33 34

43 44

0 0
0 0

x

f f f f
f f f f

T TU T
f f
f f

λ λ λ λ
λ λ λ λ

λ λ
λ λ

 
 
 + =  
  
 

      (3.12) 

It can be known by calculation that ( )ijf λ  are four or five times polynomials 
about λ , and it can be proved that , 1, 2j jλ =  are the roots of ( )ijf λ . 

Because ( )1,2j jλ =  are the roots of detT , we can rewrite (3.12) as  

 ( ) ( ) ( )* det ,xT TU T T P λ+ =                  (3.13) 

with  

 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

5 4 5 4

11 12 13 14
0 0 0 0

4 5 4 5

21 22 23 24
0 0 0 0

5 4

33 34
0 0

4 5

43 44
0 0

,
0 0

0 0

i i i ii i i i

i i i i

i i i ii i i i

i i i i

i ii i

i i

i ii i

i i

p p p p

p p p p
P

p p

p p

λ λ λ λ

λ λ λ λ
λ

λ λ

λ λ

= = = =

= = = =

= =

= =

 
 
 
 
 
 =
 
 
 
 
 
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

      (3.14) 

where undetermined ( )k
ijP  are not functions of λ . Because ( ) 11 * detT T T −− = ⋅ , 

so Equation (3.13) can be rewritten as,  
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 ( ) .xT TU P Tλ+ =                        (3.15) 

Substitute Equation (3.5) and Equation (3.14) into Equation (3.15), by com-
paring the coefficients of the same power of λ  on both sides of Equation (3.15), 
the following system of equations can be obtained, 

6 5 5 5 5 5 5
11 13 22 24 33 44: 0, 0, 0, 0, 0, 0,p p p p p pλ = = = = = =  

5 4 4 4 4 4 4 4
11 12 13 21 22 34 43
4 4 4 4 4
13 44 14 23 24

: 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,

p p p p p p p

p p p p p

λ = = = = = = =

= = = = =
 

4 3 3 3 3 3 3 3
11 12 21 22 33 34 44
3 3 3 3 3
43 13 14 23 24

: 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,

p p p p p p p

p p p p p

λ = = = = = = =

= = = = =
 

3 2 2 2 2 2 2 2
11 12 21 22 33 34 43
2 2 2 2 2
44 13 14 23 24

: 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,

p p p p p p p

p p p p p

λ = = = = = = =

= = = = =
 

2 1 1 1 1 1 1 1
12 21 34 43 14 23 11
1 1 1 1 1
33 13 22 44 24

: 0, 0, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1,

p p p p p p p

p p p p p

λ = = = = = = = −

= − = − = = =
 

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 11 0 0 0
12 12 34 12 21 21

1 1 10 0 0
43 21 14 14 23 23
0 0 0 0 0 0
22 11 33 44 13 24

: 2 , 2 , 2 ,

2 , 2 , 2 ,

0, 0, 0, 0, 0, 0,

p p b p p p b p p q b q

p q b q p r b r p s b s

p p p p p p

λ = + = = + = = − =

= − = = + = = − =

= = = = = =

 

and the coefficients of 0λ  satisfies Equation (3.7). By substituting the above 
results into Equation (3.14), we can get,  

( )

[ ] [ ]

[ ] [ ]

[ ]

[ ]

1 1

1 1

1

1

,
0 0

0 0

p r

q s
P

p

q

λ λ

λ λ
λ

λ

λ

 − −
 
 

=  
− 

  
 

 

then from Equation (3.3), we can get [ ] ( )1U P λ= . 
Using the same process, we can prove that [ ]1V  has the same form as V un-

der the transformation. 
Proposition 2. Under the action of transformation [ ]1T  (3.5), the matrix 
[ ]1V  determined by Equation (3.2) has the same form as V, that is,  

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

1 1 1 1

1 1 1 1
1

1 1

1 1

0 0

0 0

A B E F

C A G E
V

A B

C A

 
 
 − −

=  
 
  − 

 

where [ ] [ ] [ ] [ ] [ ] [ ]1 1 1 1 1 1, , , , ,A B C E F G  have the form (3.4), and the transformations 
between , , ,p q r s  and [ ] [ ] [ ] [ ]1 1 1 1, , ,p q r s  are given by Equation (3.6). 

Proof: According to formulas ( ) 11 *detT T T−− = , and  

 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

11 12 13 14

21 22 23 24*

33 34

43 44

0 0
0 0

t

g g g g
g g g g

T TV T
g g
g g

λ λ λ λ
λ λ λ λ

λ λ
λ λ

 
 
 + =  
  
 

       (3.16) 
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where ( )ijg λ  are six or seven times polynomials about λ , and , 1, 2j jλ =  
are the roots of ( )ijg λ . So we can rewrite (3.16) as  

 ( ) ( ) ( )* det ,tT TU T T K λ+ =                    (3.17) 

with  

 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

7 6 7 6

11 12 13 14
0 0 0 0

6 7 6 7

21 22 23 24
0 0 0 0

7 6

33 34
0 0

6 7

43 44
0 0

,
0 0

0 0

i i i ii i i i

i i i i

i i i ii i i i

i i i i

i ii i

i i

i ii i

i i

k k k k

k k k k
K

k k

k k

λ λ λ λ

λ λ λ λ
λ

λ λ

λ λ

= = = =

= = = =

= =

= =

 
 
 
 
 
 =
 
 
 
 
 
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

        (3.18) 

where undetermined ( )k
ijk  are not functions of λ . The Equation (3.17) can be 

rewritten as,  

 ( ) .tT TU K Tλ+ =                       (3.19) 

Substitute Equation (3.5) and Equation (3.18) into Equation (3.19). By com-
paring the coefficients of the same power of λ  on both sides of Equation (3.19) 
we can get Proposition 2. Because the results are very complex, we do not give 
them here. 

In this section, we construct the Darboux transform of the high order nonloc-
al coupled AKNS system and establish the relationship between the new and old 
potentials. In the next section we will construct the exact solution of (2.6) using 
the results of this Section. 

4. Exact Solution of High Order Nonlocal Coupled AKNS  
System 

According to the classical Darboux transformation, firstly, four basic solutions 
of lax pairs (2.1) are given,  

 ( ) ( ) ( ) ( )( )
1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

.j j j j

φ ψ
φ ψ

φ λ ψ λ λ λ
φ ψ
φ ψ

Φ Ψ 
 Φ Ψ ∆ = Φ Ψ =
 Φ Ψ
 

Φ Ψ 

   (4.1) 

We know that by the Darboux transformation, 

[ ] [ ]

11 12 13 14 1 1 1 1

1 1 21 22 23 24 2 2 2 2

31 23 33 34 3 3 3 3

41 42 43 44 4 4 4 4

,

T T T T
T T T T

T
T T T T
T T T T

φ ψ
φ ψ

ϕ ϕ
φ ψ
φ ψ

Φ Ψ  
  Φ Ψ  = =
  Φ Ψ
  

Φ Ψ  

     (4.2) 

when jλ λ= , the 4 columns of [ ]1ϕ  are linear correlation. In other words, 
there are different constants ( ) ( ) ( )1 2 3, ,j j jγ γ γ  that satisfy the following relation-
ship,  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

4 4 4 4
1 2 3

1 1 1 1
1 1 1 1

4 4 4 4
1 2 3

2 2 2 2
1 1 1 1

4 4 4 4
1 2 3

3 3 3 3
1 1 1 1

4 4 4
1 2

4 4 4
1 1 1

0

0

0

j j j j j j j j j j j
j j j j

j j j j j j j j j j j
j j j j

j j j j j j j j j j j
j j j j

j j j j j j j j
j j j

T T T T

T T T T

T T T T

T T T

φ γ ψ γ γ

φ γ ψ γ γ

φ γ ψ γ γ

φ γ ψ γ

= = = =

= = = =

= = = =

= = =

+ + Φ + Ψ =

+ + Φ + Ψ =

+ + Φ + Ψ =

+ + Φ

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ( )
4

3
4

1
0j j j

j
Tγ

=











 + Ψ =

∑

        (4.3) 

Substitute (3.5) into (4.3), we get,  

 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )( )
[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) ( )( )
( ) [ ] ( ) [ ] ( )

( ) [ ] [ ] ( )

1 1 1 11 2 3 2
11 12 13 14

1 1 1 11 2 3 1 3
21 22 23 24

1 12 3 2
11 12

1 12 3(3)
21 22

1j j j j j

j j j j j j

j j j j

j j j j

b b b b

b b b b

b b

b b

α α α λ α

α α α λ α α

α α λ α

α α λ α

+ + + = − +

+ + + = − +

+ = −

+ = −

            (4.4) 

where 

( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3
2 2 2 2 3 3 3 31 2

1 2 3 1 2 3
1 1 1 1 1 1 1 1

1 2 3
4 4 4 43

1 2 3
1 1 1 1

,    ,

,    1, 2.

j j j j j j
j j

j j j j j j

j j j
j

j j j

j

γ ψ γ γ φ γ ψ γ γ φ
α α

γ ψ γ γ φ γ ψ γ γ φ

γ ψ γ γ φ
α

γ ψ γ γ φ

+ Φ + Ψ + + Φ + Ψ +
= =

+ Φ + Ψ + + Φ + Ψ +

+ Φ + Ψ +
= =

+ Φ + Ψ +

 (4.5) 

Expression (4.4) can be written as a product of determinants,  

 T T ,AX b=                            (4.6) 

where 
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1 2 3
1 1 1

1 2 3
1 1 1

2 3
1 1

2 3
1 1

1 2 3
2 2 3

1 2 3
2 2 2

2 3
2 2

2 3
2 3

1 0 0 0 0

0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0
,

1 0 0 0 0

0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

A

α α α

α α α

α α

α α

α α α

α α α

α α

α α

 
 
 
 
 
 
 =  
 
 
 
 
 
 
 

 

and 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 1 1 1 1 1 1 1

11 12 13 14 21 22 23 24

2 1 3 2 3 2 1 3 2 3
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

,

1 1 .

X b b b b b b b b

b λ α λ α α λα λα λ α λ α α λ α λ α

=

= − + − + − − − + − + − −
 

To get [ ] [ ]1 1
1 2, , 1, 2,3, 4i ib b i = , we need to solve the system (4.6), but, we need to 

give the basic solutions for Lax pair firstly, 

( ) ( ) ( ) ( )( )3 3 T
1 12 e ,0, e ,0 ,j j j jt x t x

j j j j jc t x cαλ λ αλ λφ λ λ βλ − −= −  
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( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

3 3

3

3

T
2 22

T
3

T
4

0, e ,0, e ,

e ,0,0,0 ,

0, e ,0,0,0 ,

j j j j

j j

j j

x t x t
j j j j j

t x
j j

x t
j j

c t x c

c

c

λ αλ λ αλ

αλ λ

λ αλ

ψ λ λ βλ

λ

λ

− −

−

−

= − −

Φ =

Ψ =

      (4.7) 

with ( ) ( )1,2; 1,2,3,4k
jc j k= =  are arbitrary constants. 

By solving system of linear Equation (4.6) and using Equations (4.5), (4.7), we 
can get the expression of [ ] ( ) [ ] ( )1 1

12 21, , ,b x t b x t  and [ ] ( ) [ ] ( )1 1
14 23, , ,b x t b x t  since only 

these four variables are included in the Darboux transformation.  

[ ] ( )
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

[ ] ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 2
1 2 1 2 1 2

1 2 2 2 21 1 2 1 22 1 2 1 2 1 2

2 2
1 2 1 2 1 2

2
2 1 1 2

1 2
1 1 1 2 1

12
1 2 2 1 1

1 2 2 1 2 1

1 2 1 1
1 2 2 1 2 2 1

21
1 2 1

1 2 2

e
, ,

e e

e
,

e

t t t x

t t t x t t t x

t t t x

t

c c
b x t

c c c c

c c
b x t

c c

λ λ αλ αλ αλ λ

λ λ αλ αλ αλ λ λ λ αλ αλ αλ λ

λ λ αλ αλ αλ λ

λ λ αλ αλ

λ λ

γ γ

γ γ λ λ

γ

+ + − −

 − + + −  − + + − 

− + + − −

− +

−
=

−

−
= − ( ) ( ) ( ) ( ) ( )( )

[ ] ( )
( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ] ( )

2 2 2
1 2 1 2 1 2 1 2

2 2
2 2 1 1

2 2 2 2
2 1 1 2 1 2 1 2 1 2 1 2

2
2 2

2 1 1
1 2 1

2 2
1 1 2

14 2 22 21 2 2 2 1 1 2 1 1 2 2 1
1 2 1 1 2 1 1 1 1 2 1 2

2
1 3

23

,
e

e e
, ,

e e 2

e
,

t t x t t t x

t x t x

t t t x t t t x

c c

b x t
c c c c c c c c

b x t

αλ λ λ λ αλ αλ αλ λ

λ αλ λ αλ

λ λ αλ αλ αλ λ λ λ αλ αλ αλ λ

λ αλ

γ

γ γ γ γ

+ − − + + −

− −

− + + − − − + + −

−

−

∆ + ∆
=

+ −

∆
= −

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2
1 1

2 2 2 2
2 1 1 2 1 2 1 2 1 2 1 2

2
4

2
1 2 2 1 1(2)

1 2 1 1 2 1

e
,

e e

t x t x

t t t x t t t x
c c c c

λ αλ

λ λ αλ αλ αλ λ λ λ αλ αλ αλ λ
γ γ

− − −

− + + − − − + + −

+ ∆

 − 
 

(4.8) 

where  

( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

21 2 2 2 3
1 1 2 1 1 1 2 1 1

2 2 2 2 2 2 2 2
1 2 2 3 1 3 1 4

22 1 1 1 3
2 1 2 1 1 1 2 2 2

1 1 1 1 1 1 1 1
1 2 2 3 1 3 1 4

2

,

2

,

c c c t x

c c c c c

c c c t x

c c c c c

λ λ γ βλ λ

γ γ γ

λ λ γ βλ λ

γ γ γ

∆ = − −
+ + − 

∆ = − − −
+ + − 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

21 1 2 2 2 3
3 2 1 2 1 1 1 2 1 1

2 2 2 2 2 2 2 2
1 2 2 3 1 3 1 4

22 2 1 1 1 3
4 1 1 2 1 1 1 2 2 2

1 1 1 1 1 1 1 1
1 2 2 3 1 3 1 4

2

,

2

.

c c c t x

c c c c c

c c c t x

c c c c c

γ λ λ γ βλ λ

γ γ γ

γ λ λ γ βλ λ

γ γ γ

∆ = − −
+ − − 

∆ = − − −
+ − − 

 

Using the symmetry reduction condition (3.8), we can get  

 ( )
( )

( )
( )

( ) ( )

( )
( )

( )

( )
( )

( ) ( )

( )

2 2 1 12 1
2 2 1 13 2 3 21 1

1 3 1 32 2 1 1
2 4 2 4

, , , ,
c cc ci i i i

c c c c
γ γ

γ γ γ γ= = = − = −      (4.9) 

where 2 1i = − . In this case, we obtain the new solution,  

 
[ ] [ ] ( )
[ ] [ ] ( )

1 1
12

1 1
14

2 , ,

2 , ,

p b x t

r b x t

=

=
                     (4.10) 
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with ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2 1 2
1 2 1 1 2 3 2 3 4 4, , , , , , , , ,c c c c c c c cλ λ  are arbitrary constants,  

( ) ( ) ( ) ( )2 2 1 1
1 3 1 3, , ,γ γ γ γ  conditions satisfied (4.9). 
Through verification, we can know that solutions (4.10) are exact solutions of 

high order nonlocal coupled AKNS system (2.6). It can be seen from the expres-
sion (4.8) that the solutions of the system are in the form of exponential function, 
and the soliton solutions of the nonlocal system can be constructed by selecting 
appropriate parameters. In order to study the characteristics of the solutions, the 
graphs of module p and r are illustrated in Figure 1 and Figure 2 by selecting 
the appropriate parameters. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 1. (a) The modulus of [ ]1P  in expression (4.10) with the parameters 1 1 iλ = − , 

1 2iλ = , 2 1α = − . (b) 2D graph of expression (4.10) with 0x = . (c) 2D graph of expres-
sion (4.10) with 0t = . (d) Density graph of expression (4.10). 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2. (a) The modulus of [ ]1r  in expression (4.10) with the parameters 1 1 iλ = − , 

1 2iλ = , 2 1α = − , 0.1β = − . (b) 2D graph of expression (4.10) with 0x = . (c) 2D graph 
of expression (4.10) with 0t = . (d) Density graph of expression (4.10). 
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We know that if this solution is taken further as a new solution, we can per-
form the Darboux transformation again to produce another new solution. This 
process can be carried out continuously and a series of soliton solutions for high 
order nonlocal coupled AKNS system (2.6) can be theoretically obtained. 

5. Summary and Discussion 

In this paper, considering the practical importance of nonlocal equations, a 
high-order nonlocal coupled AKNS system is constructed and studied by using 
the symmetric reduction method for the first time. With the help of lax pairs, the 
gauge transformation of the system is constructed, and the Darboux transforma-
tion of the system is obtained. In this paper, a new exact solution of the system is 
constructed by using the trivial seed solution and Darboux transformation, and 
the soliton solution of the system is obtained by selecting appropriate parame-
ters. In order to study the properties of soliton solution, the corresponding im-
ages are given. 

It is very meaningful to study the coupled nonlocal integrable model. Howev-
er, much remains to be done. For example, the construction of Lie symmetry, 
symmetry reduction and similar solutions of nonlocal equations should be stu-
died. In addition, the rogue wave solution of nonlocal equations is one of the re-
search hotspots in recent years. Therefore, it is very meaningful to construct the 
rogue wave solution of nonlocal equations with variable coefficients by using the 
Darboux transform method. The above topics will be discussed in a series of fu-
ture research works. 
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