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Abstract 
The analysis of nanofluids in the solar thermal system is very fascinating ow-
ing to its important engineering applications (i.e., solar collectors). Aside 
from these the non-Newtonian boundary layer fluid flow has experienced 
considerable attention due to uprising engineering applications in the solar 
thermal field. This work investigates the analysis of chemically reactive hy-
dromagnetic Maxwell fluid conveying tiny particles due to Navier partial slip. 
The governing equations that model the transport phenomena were trans-
formed using suitable similarity variables. The boundary value problem of the 
corresponding coupled nonlinear ordinary differential equations was solved 
numerically using the shooting technique together with the fourth-order 
Runge-Kutta integration scheme and in-built bvp4c package of MATLAB. 
The effects of various controlling parameters on velocity, temperature, and 
concentration distributions were presented graphically and studied theoreti-
cally. Furthermore, the study reveals that the Navier slip parameter (δ ) in-
creases as the velocity distribution decreases, while it enhances both the tem-
perature and concentration distributions, increase in the radiation parameter 
(Nr) enhances the temperature distribution, and the chemical reaction ( γ ) 
increment leads to decrease in concentration distribution. 
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1. Introduction 

James Clerk Maxwell coined the concept of Maxwell fluid in 1867. The fluid is 
described as a viscoelastic fluid that consists of elasticity and viscosity which are 
characterized by solely elastic spring and solely viscous damper in series connec-
tion [1]. In the time after, the plethora of research has been executed on Maxwell 
fluid flow; see Refs. [2]-[11]. Imran et al. [12] experimented with the Maxwell 
boundary layer fluid flow generalization on an accelerated infinite vertical plane 
accompanied by Newtonian heating and slip at the wall. Ramesh et al. [13] [14] 
studied the behavior of Maxwell nanoparticles fluid flow beyond a Riga surface 
involving chemical reaction and radiation. Omowaye and Animasaun [15] worked 
on upper convected Maxwell fluid with variability in physical composition past a 
melting surface with thermal stratification. It was discovered that the thermal 
stratification affected both the longitudinal and transverse velocities. Also, the 
thermal stratification retards the velocity as a result of free stream temperature. 
Koriko et al. [16] analyzed the boundary layer of generalized fluid flow via a 
melting thermally stratified plate with thermo-physical properties. Shehzad et al. 
[17] presented the hydromagnetic flow of Maxwell fluid across a bi-directional 
stretchable sheet involving prescribed surface heat flux and temperature. Salah et 
al. [18] worked on the Rapid flow of Maxwell fluid in a rotating frame and por-
ous medium. 

Fluid conveying tiny particles is simply referred to as nanofluid. Fluid con-
veying tiny particles are blends of a handful of tiny particles like metal oxide 
particles (Al2O3, TiO, CuO, etc.) with a base fluid-like ethylene-glycol or H2O, 
with the dimension ranging from 1 - 100 nm, possessing high thermal conduc-
tivities. This phenomenon was christened by Choi and Eastman [19]. Series of 
research has been conducted on the latter recently; see Rashidi et al. [20] studied 
the effects of buoyancy and thermal radiation on hydromagnetic flow of fluid 
conveying tiny particles past a stretching mechanism. It was observed that the 
reduction and escalation of the temperature and the velocity of the fluid con-
veying tiny particles respectively are down to the uprise of the buoyancy para-
meter. Rout and Mishra [21] presented a comparative study on hydromagnetic 
fluid conveying tiny particles via a stretching surface with thermal energy trans-
port. It was reported that the fluid flow was conveying tiny particles retards ow-
ing to the proliferation of heat generation parameter but the rate of mass trans-
port experienced enhancement due to chemical reaction being healthy qualita-
tively. Ho [22] examined the quantum particles in a state of fluid via the Dirac 
equation. Shoaib et al. [23] carried out a numerical investigation on hydrody-
namic hybrid fluid conveying tiny particles swirling flow beyond a stretching 
surface in the presence of thermal radiation. It was reported that greater values 
of magnetic parameter lead to higher frictional forces which boils down to dete-
rioration and proliferation in velocity and temperature fields, respectively. Zain-
al and Pop [24] deliberated on hydromagnetic fluid conveying tiny particles 
beyond a permeable moving force with radiation. Animasaun et al. [25] ex-
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plored Eyring-Powell non-Newtonian fluid conveying tiny gold particles caused 
by buoyancy and surface slip velocity. 

Navier partial slip for viscous fluids is more or less an assumption, which de-
picts the experiences of velocity at the solid wall to be zero relative to that boun-
dary [26]. Suneetha et al. [27] presented the Soret effect on time-dependent fluid 
conveying tiny particles involving radiation and Navier slip condition. It was 
reported that the Soret number increment around the boundary layer was due to 
an escalation in concentration. More so, velocity slip increment leads to retarda-
tion in the velocity field while the temperature field experienced the reversal effect 
of velocity slip. The moving contact line issue of characterized limits for the no-slip 
condition was discussed by Ren et al. [28]. Fernandes et al. [29] implemented the 
partial slip condition for open-source computational archive finite-volume-based. 
Venkatesan and Ganesan [30] computed droplets impinged substances via 
Navier partial slip condition. Navier partial slip condition involving a squeeze 
flow problem was examined by Fang et al. [31]. Bolanos and Vernescu [32] dis-
cussed the Navier partial slip and slip length derivation for viscous flows past a 
rough boundary. 

The analysis of chemically reactive hydromagnetic Maxwell fluid conveying 
tiny particles via Navier partial slip has been ignored in several works of litera-
ture reviewed. This has brought about the motivation to carry out this research. 

Therefore, this study shall be devoted to the undermentioned research ques-
tions: 
• What is the significance of thermal radiation on chemically reactive hydro-

magnetic Maxwell fluid conveying tiny particles? 
• How influential are thermophoresis and Brownian motion to chemically 

reactive hydromagnetic Maxwell fluid conveying tiny particles? 
• What is Navier partial slip effect on chemically reactive hydromagnetic 

Maxwell fluid conveying tiny particles? 
• Is there any variable suitable to boost the local skin friction coefficient during 

the flow of this fluid? 

2. Research Methodology 

Consider steady 2-D flow of an incompressible Maxwell fluid conveying tiny 
particles due to Navier partial slip. As illustrated in Figure 1, the sheet is syn-
chronizing with the coordinate 0y = , with the flow being interned to 0y > . 
The flow is catalyzed by the stretching of the sheet, caused by the simultaneity of 
two equal and opposite forces on x-coordinate. Retaining the origin at (0, 0), the 
sheet experienced stretch input with variation of speed directly proportional to 
the distance from the slit. Uniform magnetic field strength 0B  is utilized in 
y-coordinate. The magnetic Reynolds number is pint-size and so the induced 
magnetic field is negligible. The plate temperature wT  and plate concentration 

wC  are uniform at the surface and these values are assumed to be greater than 
the free stream temperature and concentration, T∞  and C∞ , respectively. Both  
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Figure 1. Physical configuration and coordinate system. 

 
the fluid and nanoparticles are in the thermal equilibrium state. Nanofluid 
thermo-physical properties are constant though assumed. Based on Buongiorno 
[33] and boundary layer approximation, the governing equation was formulated 
from Ramesh et al. [13] and modified into: 
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The boundary conditions are: 
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where ( )wU x cx=  is the stretching velocity and 0c >  this is known as stret-
ching rate. 

By Rosseland approximation, the radiative heat flux is given by: 
* 4

*

4
3r

Tq
yk

σ ∂
= −

∂
                        (7) 

It is assumed that the variations in temperature within the flow are pint-size 
for 4T  to be expressed linearly after the implementation of Taylor series in 
other to expand 4T  about the temperature away from the wall T∞  and ignor-
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ing the higher order terms, leads to: 
4 3 44 3T T T T∞ ∞≅ −                         (8) 

In order to avoid truncation of higher order terms used in Equation (8), the 
radiative heat flux in Equation (7) was modified by adopting implicit differentia-
tion and gives: 

*
3
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4 4
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yk
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= −

∂
                       (9) 

Substituting (9) into (3) leads to 
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Similarity transformations are: 
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The fundamental equations of the boundary layer (2), (4) and (10) are trans-
formed as: 
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partial slip parameter and Pr ν
α

=  Prandtl number. 

Engineering Physical Quantities of Interest 

The physical quantities of interest in the present study are non-dimensional local 
skin friction coefficient fxC , local Nusselt number xNu , and local Sherwood 
number xSh  given by: 

( ) ( )
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where wτ , wq , mq , and xRe  are the skin friction at the wall, heat flux at the 
wall, mass flux at the wall, and local Reynolds number. 

Expressing Equation (17) in dimensionless form leads to: 
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3. Numerical Solution 
Implementation of Shooting Technique 

First step: Reduction of Equations (12)-(14) alongside the boundary conditions 
(15) and (16) into the system of first-order ordinary differential equations 
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Second step: Involves employing fourth order Runge-Kutta together with 
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MATLAB package (bvp4c) to compute (19). 
Solving the boundary value problem on an infinite interval basis is unrealiza-

ble, and therefore it is non-practical to solve for a considerable finite interval. In 
this study, the step size and convergence criterion were chosen to be 0.001 and 
10−4, respectively. The far-field boundary conditions were applied for the simi-
larity variables at a finite value denoted here by maxη , thus 

max 10η = , ( )10 0f ′ = , ( )10 0θ = , ( )10 0φ =  

The preference of max 10η =  ensured that the entire numerical solutions at-
tain the asymptotic estimates accurately. 

4. Results and Discussion 

In given a comprehensive and detailed report of our findings, values have been 
assigned to the governing parameters as 0.2β = , 0.5M = , 2.0Nr = , 

1.0Le = , 3.0Pr = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . The ac-
curacy of the computed solution is certified by comparing the present result with 
Ramesh et al. [13] in Table 1. 

Table 2 and Table 3 show that both the Deborah number and Magnetic 
number increases the local skin friction coefficient at an estimated rate of 0.1094 
and 0.3713, respectively. It is worthy of remark that the observed effects of De-
borah number and Magnetic number on local skin friction coefficient (Table 2 
and Table 3) are in tandem with that of Ramesh et al. [13]. Table 4 show the 
impact of Brownian motion parameter (Nb) on local Nusselt and Sherwood 
numbers. It is evident that the Nb increases in local Nusselt at the rate of 0.6703 
and reduces the Sherwood numbers at the rate of -0.4517. It is important to re-
mark that the outcome of Table 4 is in tandem with that of Khan and pop [34]. 
Table 5 indicates that the thermophoresis parameter (Nt) experienced an expo-
nential growth in both local Nusselt and Sherwood numbers in the fluid flow 
near the wall at the rate of 0.4393 and 0.3276, respectively. As a result of this, it is 
worthy of remark that the outcome of Table 5 is in tandem with Khan and pop 
[34] and Ramesh et al. [13]. Table 6 reveals the impact of Lewis number on local 
skin friction coefficient, Nusselt and Sherwood numbers in the fluid flow at the  

 
Table 1. Results that Compare the present study with that of Ramesh et al. [13] when 

0β γ= = , 0M Nr= =  and 10Pr = , 1.0Le = , 0.3A = , 1.0δ = . 

Nt Nb 
Ramesh et al. [13] Present study 

( )0θ−  ( )0φ−  ( )0θ−  ( )0φ−  

0.1 0.1 0.9523 2.1293 0.9524 2.1294 

0.3 0.1 0.5200 2.5286 0.5201 2.5287 

0.5 0.1 0.3210 3.0350 0.3211 3.0351 

0.1 0.1 0.9523 2.1293 0.9524 2.1294 

0.1 0.3 0.2520 2.4100 0.2521 2.4101 

0.1 0.5 0.0541 2.3835 0.0542 2.3836 
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Table 2. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Deborah number ( β ) when 0.5M = , 2.0Nr = , 1.0Le = , 

3.0Pr = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . 

β  ( )0f ′′  ( )0θ ′−  ( )0φ′−  

0.0 1.2247 0.9310 0.8602 

0.2 1.2490 0.9261 0.8598 

0.5 1.2797 0.9237 0.8582 

lpS  0.1094 0.01408 0.00411 

 
Table 3. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Magnetic parameter (M) when 0.2β = , 2.0Nr = , 1.0Le = , 

3.0Pr = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . 

M ( )0f ′′  ( )0θ ′−  ( )0φ′−  

0.1 1.0617 0.9934 0.8525 

0.5 1.2490 0.9261 0.8598 

2.0 1.7797 0.7635 0.8769 

lpS  0.3713 0.1176 -0.0125 

 
Table 4. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Brownian motion parameter (Nb) when 0.2β = , 0.5M = , 

2.0Nr = , 1.0Le = , 3.0Pr = , 0.1Nt = , 0.2γ = , 0.3A = , 1.0δ = . 

Nb ( )0f ′′  ( )0θ ′−  ( )0φ′−  

0.1 1.2490 0.9261 0.8598 

0.3 1.2490 0.7354 1.2458 

1.0 1.2490 0.3051 1.3587 

lpS  0 0.6703 -0.4517 

 
Table 5. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with thermophoresis parameter (Nt) when 0.2β = , 0.5M = , 

2.0Nr = , 1.0Le = , 3.0Pr = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . 

Nt ( )0f ′′  ( )0θ ′−  ( )0φ′−  

0.1 1.2490 0.9261 0.8598 

0.3 1.2490 0.8108 0.7386 

1.0 1.2490 0.5222 0.5476 

lpS  0 0.4393 0.3276 

 
wall. It is evident that the Le experienced significant reduction in local Sherwood 
number at the rate of -0.6468, which is in tandem with the result of Ramesh et al. 
[8] and Suneetha et al. [27]. The results presented as Table 7 show that local 
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Nusselt and Sherwood numbers are decreasing functions of Prandtl number Pr 
with the lpS  been -0.1262 and -0.1656, respectively.  It is worthy of remark 
that results presented in Table 7 is in tandem with that of Baoku [10] and Kan-
dasamy et al. [35]. Table 8 unravels the influence of radiation parameter (Nr) on 
local skin friction, Nusselt and Sherwood numbers. It is evident that the local 
Nusselt and Sherwood numbers are increasing function of Nr with respect to the 

lpS  been 0.0127 and 0.00525, accordingly. It is worthy of remark that the ob-
served effect of radiation parameter on the local Nusselt number contradicts that 
of Gireesha et al. [36]. Table 9 reveals the impact of chemical reaction parameter 
on local skin friction coefficient, Nusselt, and Sherwood numbers. It is evident 
that the local skin friction coefficient has no effect on the chemical reaction pa-
rameter. However, the local Sherwood number regressed the fluid flow at the  

 
Table 6. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Lewis number (Le) when 0.2β = , 0.5M = , 2.0Nr = , 

3.0Pr = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . 

Le ( )0f ′′  ( )0θ ′−  ( )0φ′−  

1.0 1.2490 0.9261 0.8598 

2.0 1.2490 0.9041 1.6033 

3.0 1.2490 0.8938 2.1534 

lpS  0 0.0162 −0.6468 

 
Table 7. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Prandtl number (Pr) when 0.2β = , 0.5M = , 2.0Nr = , 

1.0Le = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . 

Pr ( )0f ′′  ( )0θ ′−  ( )0φ′−  

2.0 1.2490 0.7176 0.6835 

3.0 1.2490 0.9261 0.8598 

7.0 1.2490 1.3762 1.5151 

lpS  0 −0.1262 −0.1656 

 
Table 8. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Radiation parameter (Nr) when 0.2β = , 0.5M = , 1.0Le = , 

3.0Pr = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = , 1.0δ = . 

Nr ( )0f ′′  ( )0θ ′−  ( )0φ′−  

0.0 1.2490 0.8477 0.9998 

2.0 1.2490 0.9261 0.8598 

7.0 1.2490 0.7845 0.9307 

lpS  0 0.0127 0.00525 
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Table 9. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sherwood 

number ( )0φ′−  with Chemical reaction parameter ( γ ) when 0.2β = , 0.5M = , 

2.0Nr = , 1.0Le = , 3.0Pr = , 0.1Nt = , 0.1Nb = , 0.3A = , 1.0δ = . 

γ  ( )0f ′′  ( )0θ ′−  ( )0φ′−  

0.0 1.2490 0.9373 0.5001 

0.2 1.2490 0.9261 0.8598 

0.5 1.2490 0.9161 1.2558 

lpS  0 0.0417 −1.4963 

 
Table 10. Variation in local skin friction ( )0f ′′ , Nusselt number ( )0θ′− , and Sher-

wood number ( )0φ′−  with Navier slip parameter ( δ ) when 0.2β = , 0.5M = , 

2.0Nr = , 1.0Le = , 3.0Pr = , 0.1Nt = , 0.1Nb = , 0.2γ = , 0.3A = . 

δ  ( )0f ′′  ( )0θ ′−  ( )0φ′−  

1.0 0.5027 0.5908 0.8260 

2.0 0.3252 0.4709 0.8170 

3.0 0.2422 0.4033 0.8121 

lpS  -0.1303 0.0938 0.00695 

 
wall at an estimated rate of −1.4963, which is in good agreement with the result 
of Ibrahim and Negera [11] and Ramesh et al. [13]. Table 10 show that the 
Navier slip parameter (δ ) is a suitable factor to increase local Nusselt and 
Sherwood numbers. However, Table 10 indicates that both the local nusselt an-
dlocal Sherwood number are increasing function of δ  with respect to the 

lpS

been 0.0938 and 0.00695, respectively. Also, it shows that the local skin friction 
coefficient reduces at the rate of -0.1303. It is important to remark that the re-
sults illustrated in Table 10 do not corroborate with that of Rashidi et al. [20] 
and Seth et al. [37].  

Figure 2(a) describes the Deborah number β  impact on the velocity plot. It 
can be observed that the velocity Profile and boundary layer thickness retards 
with an increase in Deborah number β . Deborah number β  depicts the ratio 
of the relaxation time 0k  of the upper convected Maxwell fluid to observation 
time; see Table 2. Figure 2(b) shows the impact of Magnetic parameter (M) on 
the velocity distribution. This distribution retards owing to the magnetic field 
inducement of a drag force called Lorentz force that opposes and slows down the 
motion of the fluid in the boundary layer. 

The Brownian motion parameter (Nb) influence on temperature and concen-
tration plots are given in Figure 2(c) and Figure 2(d). The temperature plot 
( )θ η  increases with Nb within the region 0 4η≤ ≤  and the elevation is esti-

mated as 0.1500 at the wall. Although, temperature plot ( )θ η  increases slightly 
at an estimated rate of 0.0087 till the free stream. The rise in temperature is due 
to the effect of the heat capacity of the nanoparticles, while the concentration  
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Figure 2. Variations of different parameters on velocity, temperature, and concentration distributions. (a) ( )f η′  vs η  for dif-

ferent β ; (b) ( )f η′  vs η  for different M; (c) ( )θ η  vs η  for various Nb; (d) ( )φ η  vs η  for various Nb. 
 

retards as the Brownian motion parameter (Nb) increases within the region 
0 4η≤ ≤  at an estimated rate of 0.08670 and slightly retards at an estimated 
rate of −0.01610 till free stream. 

Figure 3(a) and Figure 3(b), show that temperature and concentration gra-
dients are elevating functions of thermophoresis parameter (Nt). The tempera-
ture gradient ( )θ η  grows with Nt within the region 0 6η≤ ≤  at an estimated 
rate of 0.0932 and at 6η > , it increases slightly at an estimated rate of 0.0093. 
The rise in temperature is owing to the fact that the nanoparticles move from a 
hot to cold region as a result of acquiring higher kinetic energy under the influ-
ence of temperature gradient. Also, the concentration gradient ( )φ η  increases 
with Nt within the region 0 5.7η≤ ≤  at an estimated rate of 0.3585 and at 

5.7η > , it proliferates slightly at an estimated rate of 0.0162. The rise in concen-
tration is a result of larger species exhibiting positive thermophoretic behaviour. 
Figure 3(c) exhibits the effect of Lewis number (Le) on the concentration plot. 
Obviously, the fluid concentration diminishes as Le proliferates, this happens as  
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Figure 3. Variations of different parameters on temperature, and concentration plots. (a) ( )θ η  vs η  for different Nt; (b) 

( )φ η  vs η  for different Nt; (c) ( )φ η  vs η  for different Le; (d) ( )θ η  vs η  for various Pr. 

 
a result of the rate of mass transfer in the fluid. 

Figure 3(d) and Figure 4(a), depicts the Prandtl number (Pr) action on the 
temperature and concentration curves. Fluids with higher Pr have relatively low 
thermal conductivity, which retards conduction and thereby the thermal boun-
dary layer thickness, as a result, temperature and concentration plots decrease. 
The graphical plot of temperature and concentration distribution for Radiation 
parameter (Nr) is displayed in Figure 4(b) and Figure 4(c). It is observed that 
the temperature plot of the fluid is influenced considerably and rises as the (Nr) 
escalates. This is due to the influence of thermal radiation on heat transfer rate 
of the fluid because it involves the conversion of thermal energy into energy in 
the form of electromagnetic radiation. Also, the concentration distribution re-
tards within the region 0 2η≤ ≤  and then increases at 2η >  as Radiation 
parameter (Nr) rises. Figure 4(d) describes the Chemical reaction parameter γ  
impact on concentration plot. The Chemical reaction parameter ( γ ) retards the 
concentration of species during suction, thereby leading to deterioration in the  
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Figure 4. Variations of different parameters on temperature, and concentration plots. (a) ( )φ η  vs η  for various Pr; (b) ( )θ η  

vs η  for various Nr; (c) ( )φ η  vs η  for various Nr; (d) ( )φ η  vs η  for different γ . 

 
concentration plot. 

Navier slip parameter (δ ) impact on velocity, temperature, and concentra-
tion distributions was presented in Figure 5(a) to Figure 5(c). Figure 5(a) in-
dicates that the velocity distribution is an increasing function of Navier slip pa-
rameter (δ ). It is evident from the graph that δ  influences the flow of fluid 
beyond the moving plate and the amount of slip ( )1 0f ′−  drastically decrease 
with δ  from partial slip situation 1δ =  and towards full slip δ → ∞ , whe-
reas Figure 5(b) and Figure 5(c) show that temperature and concentration dis-
tributions rises as the Navier slip parameter (δ ) intensifies. 

5. Conclusions 

The effects of various governing parameters on fluid flow, heat and mass transfer 
characteristics on chemically reactive hydromagnetic Maxwell fluid conveying 
tiny particles due to Navier partial slip had been investigated. The numerical re-
sults are presented in tables and plots. The following conclusions were deduced  
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Figure 5. Navier partial slip parameter impact on velocity, temperature, and concentration plots. (a) ( )f η′  vs η  for different 

δ ; (b) ( )θ η  vs η  for different δ ; (c) ( )φ η  vs η  for different δ . 

 
from our findings: 
• The intensity in the Deborah number ( β ) leads to a slight reduction in the 

velocity graph. Moreover, the effect of Hartmann number (M) leads to an 
obvious decline in the velocity profile. 

• The rise in Brownian motion parameter (Nb) proliferates the temperature 
gradient. 

• Thermal boundary layer thickness rises and heat transfer rate retards when 
the thermophoretic effect intensifies. 

• Thermal radiation influenced the heat transfer rate in the thermal boundary 
layer thickness. Furthermore, the temperature distribution is influenced con-
siderably and rises as the Radiation parameter (Nr) escalates. 

• Navier partial slip parameter (δ ) escalates as the velocity field deteriorates at 
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the boundary layer thickness. Meanwhile, the temperature and concentration 
fields rise as the Navier partial slip parameter (δ ) proliferates. 

• The concentration boundary layer thickness retards with an increase in 
Thermophoresis parameter (Nt), but intensifies with a decrease in Brownian 
motion parameter (Nb), Lewis number (Le), Prandtl number (Pr), and 
Chemical reaction parameter ( γ ). Also, the concentration distribution re-
tards within the region 0 2η≤ ≤  and then increases at 2η >  as the Radi-
ation parameter (Nr) rises. 
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Nomenclature 

u    Velocity component along x coordinate [ms−1] 
v   Velocity component along y coordinate [ms−1] 

,x y    Cartesian coordinates [−] 
T∞    Temperature of the fluid far away from the wall [K] 
T   Temperature of the fluid [K] 
Tw   Plate temperature [K] 
k0   Upper Convected Maxwell fluid relaxation time [s] 
f   Dimensionless velocity [−] 
B0   Magnetic flux density [kgs−2∙A−1] 
DB   Brownian diffusion coefficient [m2∙s−1] 
DT   Thermophoresis diffusion coefficient [m2∙s−1] 
N   Navier Slip coefficient [m] 

*k    Absorption coefficient [−] 
R   Chemical reaction rate [mol∙m−1∙s−1] 
k    Thermal conductivity [kg∙ms−3∙K−1] 
C    Nanoparticle volume fraction [K] 

C∆    Nanoparticle volume fraction change rate [K] 
C∞    Concentration of the fluid far away from the wall [K] 

lpS    Slope of linear regression [−] 

wC    Plate concentration [K] 

pc    Specific heat due to constant pressure [J∙kg−1K] 

Greek Symbols 

α    Thermal diffusivity [kg∙ms−3∙K−1] 
ν    Kinematic viscosity [m2∙s−1] 
ρ    Density of the fluid [kg∙m−3] 

*σ   Stefan-Boltzman constant [kg∙s−3∙K−1] 
σ    Electrical conductivity [Ω−1∙m−1] 
τ    Ratio of the heat capacity of the nanoparticle material to the heat ca-

pacity of the base fluid [−] 
η    Similarity variable [−] 
θ    Dimensionless temperature [−] 

wθ    Temperature ratio parameter [−] 
φ    Dimensionless concentration [−] 

wφ    Concentration ratio parameter [−] 
ψ    Stream function [−] 

Subscripts 

f Base fluid 
p Base particle 
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