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Abstract 
Let ( ),G V E=  be a graph. A function { }: 1,1f V → −  is said to be a Signed 

Dominating Function (SDF) if [ ] [ ] ( ) 1v N uf v f v
∈

= ≥∑  holds for all u V∈ . 

The signed domination number ( ) ( ){ }is an SDF mi fn | os v VG f v f Gγ
∈

= ∑ . 

In this paper, we determine the exact value of the Signed Domination Num-
ber of graphs k

nC  and k
nP  for 1k ≥ , which is generalized the known results, 

respectively, where k
nC  and k

nP  are denotes the k-th power graphs of cycle 

nC  and path nP . 
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1. Introduction 

The graphs considered in this paper are finite, undirected, and simple (no loops 
or multiple edges). For notation and graph theory terminology, please refer to 
the reference [1]. Let G be a simple undirected graph. The vertex set and the 
edge set of G are denoted by ( )V G  and ( )E G , respectively. For a vertex 

( )v V G∈ , the neighbor set ( )GN v  is the set of vertices adjacent to v, the de-
gree of v is the number of adjacent vertices of v and denoted by ( )Gd v .  
( ) ( ) ( ){ }min :GG d v v V Gδ = ∈  and ( ) ( ) ( ){ }a :m x GG d v v V G∆ = ∈  is the mi- 

nimum degree and maximum degree of G. When no confusion can occur, we 
shall write ( ) [ ], , ,N v N v δ∆ , instead of ( ) [ ] ( ) ( ), , ,G GN v N v G Gδ∆ . For a sub-
set ( )U V G⊆ , the subgraph induced by U is denoted by [ ]G U , which is the 
graph on U whose edges are precisely the edges of G with both ends in U. 
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For ( )u V G∈  and ( )U V G⊆ , the distance between u and U, denoted by 
( ),Gd u U , is the length of a shortest path from u to a vertex in U. When U con-

sists of a single vertex v, we write ( ),Gd u v , instead of { }( ),Gd u v . For a posi-
tive integer k, the k-th power kG  of a graph G is the graph kG  whose vertex 
set is ( )V G , two distinct vertices being adjacent in kG  if and only if their dis-
tance in G is at most k. If 1k = , 1G G= . In particular, the graph 2G  and the 
graph 3G  are as the square of G and the cube of G. A cycle on ( )3n n ≥  ver-
tices is a graph whose vertices can be arranged in a cyclic sequence in such a way 
that two vertices are adjacent if they are consecutive in the sequence, and are 
nonadjacent otherwise, denoted by nC . A path nP  is a simple graph whose ver-
tices can be arranged in a linear sequence in such a way that two vertices are ad-
jacent if they are consecutive in the sequence, and are nonadjacent otherwise. 

In recent years, several kinds of signed domination problems in graphs have 
been investigated [2] [3] [4] [5]. Most of those belong to the vertex domination 
(or edge domination) of graphs, such as signed (edge) domination [6] [7], minus 
domination [8], cycle domination [9], signed roman (total) domination [10], weak 
roman domination [11], inverse signed total domination [12], etc. The signed 
domination number of cycles nC , paths nP , the square 2

nC  of nC  and the 
square 2

nP  of nP  were given in [13] [14] [15], respectively. In the present paper, 
we compute the exact values of signed domination number of k

nC  and k
nP  for 

1k ≥ . 
Let ( ),G V E=  be a graph and   be a real set. For a real function :f V R→  

and a nonempty subset ( )S V G⊆ , we may assume that ( ) ( )v Sf S f v
∈

= ∑ . In 
the following, for the sake of simplicity, simply write [ ]( )f N v  as [ ]f v , de-
notes ( ) ( )( )f V f V G= . In addition, x    and x    denotes the smallest in-
teger not less than x and the largest integer not greater than x. 

2. Preliminaries 

Definition 1. [4] Let ( ),G V E=  be a graph, a function { }: 1,1f V → −  is said 
to be a Signed Dominating Function (SDF) if [ ] [ ] ( ) 1v N uf v f v

∈
= ≥∑  holds for 

all u V∈ , the signed domination number: 
( ) ( ){ }min    |s v VG f v f is an SED of Gγ

∈
= ∑ .  

By Definition 1, it is easy to see the following a conclusion. 
Lemma 1. For any vertex ( )v V G∈  and an SED f of G, if ( )Gd v  is even, 

then [ ] 1f v ≥ . If ( )Gd v  is odd, then [ ] 2f v ≥ . 
For some vertex iv , it is called a optimal if [ ]if v  is reach it’s lower bound.  

Lemma 2. [8] Let nP  be a path. For 2n ≥ , we have ( ) 22
3s n

nP nγ − = −   
.  

Lemma 3. [13] Let nC  be a cycle. For 3n ≥ , we have ( ) 22
3s n

nC nγ − = −   
.  

Lemma 4. [13] If nK  is a complete graph, then: 

( ) ( )
( )

1, 1 2
2, 0 2s n

n mod
K

n mod
γ

 ≡=  ≡
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Lemma 5. [14] If 2
nC  is a square of nC , then: 

 ( )
( )

( )
2

, 0,1,3 5
5

1, 2,4 5
5

s n

n n mod
C

n n mod
γ

  ≡  = 
  + ≡  

 

Lemma 6. [15] For a square 2
nP  of nP , if 3n = , then ( )2

3 1s Pγ = . If 4n ≥ , 
then: 

( )

( )
( )
( )

( )

2

0.2 12 , 5 3
0.2 4 , 5 1
0.2 6 , 5 4   
0.2 , 5
0.2 8 , 5 2

s n

n n k
n n k

P n n k k N
n n k
n n k

γ

 + = +
 + = += + = + ∈
 =

+ = +

 

Lemma 7. [13] If G is a r-regular graph on n order, then ( )
1s

nG
r

γ ≥
+

.  

In this paper, we give an exact value of signed domination number of k
nC  

and k
nP  for 1k ≥  as follows. 

Theorem 1. Let k
nC  be a k-th power graph of cycle nC . For 3, 1n k≥ ≥ , we 

have:

 : 
( )

( )

( )

, 0,1,3, , 2 1 2 1
2 1

1, 2,4, , 2 2 1
2 1

k
s n

n if n k mod k
k

C
n if n k mod k

k

γ

  ≡ − + + = 
  + ≡ +  + 





 

If 1k =  in Theorem 1, then it is equal to Lemma 3. If 2k =  in theorem 1, 
then it is equal to Lemma 5. 

Theorem 2. Let k
nP  be a k-th power graph of path nP . For 2n ≥ ,  

1 1k n≤ ≤ − , we have the following results. 

If 1 1
2
nk  ≤ ≤ −  

 and k is odd, then: 

( )
( )

( )

2, 0,1, , 2 1 2 1
2 1

1, 2, 4, , 2 2 1
2 1

k
s n

n if n k mod k
k

P
n if n k mod k

k

γ

  + ≡ − + + = 
  + ≡ +  + 





 

If 1 1
2
nk  ≤ ≤ −  

 and k is even, then: 

( )

( )

( )

( )

, 0,1 2 1
2 1

1, 2, 4, , 2 2 1
2 1

2, 3,5, , 2 1 2 1
2 1

k
s n

n if n mod k
k
nP if n k mod k

k
n if n k mod k

k

γ

  ≡ + + 
 = + ≡ + + 
  + ≡ − + + 





 

If ( )1 3, 1
2
n k n n k  ≤ ≤ − ≠ ≠  

, then:  
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( ) ( )
( )

1, 1 2
2, 0 2

k
s n

if n mod
P

if n mod
γ

 ≡=  ≡
 

If 3, 1n k= = , then ( )3 3s Pγ = . 
In fact, if 1k =  in Theorem 2, then it is equal to Lemma 2. If 2k =  in 

theorem 2, then it is equal to Lemma 6. 

3. Proof of Theorems 
3.1. Proof of Theorem 1 

Proof. Let k
nC  be a k-th power graph of cycle nC . By definition of k-th power 

graph, it is easy to see that k
nC  is a 2k-regular graph. By symmetry of cycle, it is  

enough to show that 
2
nk ≤ . It remains to show that it is true for 1

2
nk≤ ≤ . By 

Lemma 1, we have ( ) 2 1
k

s n
nC

k
γ  ≥  + 

. We may assume that G has t vertices  

with −1 label and s vertices with +1 label, then s t n+ = , ( ) 2s G n tγ = − . Let 
( )2 1n k q r= + + , 0 2r k≤ ≤ . 

If 0r = , then ( ) 2 1
k

s n
nC

k
γ  ≥  + 

. 

If 1,3, , 2 1r k= − , then ( ) 2 1
k

s n
nC

k
γ  ≥  + 

. 

If 2,4, , 2r k=  , then ( ) 1
2 1

k
s n

nC q
k

γ  ≥ = + + 
. If n is odd, then q is odd, 

and 1q +  is even. But ( ) 2k
s nC n tγ = −  is odd and therefore: 

( ) 1 2
2 1

k
s n

nC q
k

γ  ≥ + = + + 
. If n is even, then q is even, and 1q +  is odd. But 

( ) 2k
s nC n tγ = −  is even and therefore ( ) 1 2

2 1
k

s n
nC q

k
γ  ≥ + = + + 

. 

In summary, we have: 

( )
( )

( )

, 0,1, , 2 1  2 1
2 1

1, 2,4, , 2  2 1
2 1

k
s n

n n k mod k
k

C
n n k mod k

k

γ

  ≡ − + + ≥ 
  + ≡ +  + 





 

By definition of singed domination number, we only need to give a singed 
domination function f of k

nC . Let nC  be a cycle on n vertices 1 2, , , nv v v . 
If ( )0  2 1n mod k≡ + , then let: 

( ) ( )
( )

1, if 1,3, , 2 1  2 1
1, if 2, 4, , 2  2 1i

i k mod k
f v

n k mod k
+ ≡ + += − ≡ +





 

It is easy to see that k
nC  has a 

2 1
nt k

k
= ⋅

+
 vertices with −1 label and n t−  

vertices with +1 label. It is follows that: 

( ) 2 2
2 1 2 1 2 1

n n nf V n k n k
k k k

   = − ⋅ = − ⋅ =   + + +   
. 
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So, we have ( ) 2 1
k

s n
nC

k
γ  =  + 

. 

If ( )1,3, , 2 1  2 1n k mod k≡ − + , then let: 

 ( ) ( )
( )

1, if 1,3, 4,6, , 2  2 1
1, if 2,5,7, , 2 1  2 1i

i k mod k
f v

n k mod k
+ ≡ += − ≡ + +





 

By the definition of f, for every 2 1k +  consecutive vertices on the k
nC , there  

are k vertices that can be signed as −1, and 
2
r 
  

 of the remaining n r−  ver-

tices can be signed as −1. So, it is easy to see that k
nC  has a  

( )2 1
2 1

2 1 2

nn k
n kt k

k

  − +  +    = ⋅ + +   
  

 vertices with −1 label and n t−  vertices 

with +1 label. It is follows that: 

( )
( )

( )

2 1
2 12

2 1 2

2 2 1 1
2 1 2 1

1
2 1 2 1

nn k
n kf V n k

k

n nn k n k
k k

n n
k k

   − +   +     = − ⋅ +  +   
    

    = − ⋅ − − + −    + +    
   = + =   + +   

. 

So, we have ( ) 2 1
k

s n
nC

k
γ  =  + 

. 

If ( )2,4, , 2  2 1n k mod k≡ + , then let: 

( ) ( )
( )

1, if 1, 2, 4,6, , 2  2 1
1, if 3,5,7, , 2 1  2 1i

i k mod k
f v

n k mod k
+ ≡ += − ≡ + +





 

Same as above, it is easy to see that k
nC  has a  

( )2 1 2
2 1

2 1 2

nn k
n kt k

k

 − + − +   = ⋅ + + 
 vertices with −1 label and n t−  ver-

tices with +1 label. It is follows that: 

( )
( )

( )

2 1 2
2 12

2 1 2

2 2 1 2
2 1 2 1

2 1
2 1 2 1

nn k
n kf V n k

k

n nn k n k
k k

n n
k k

  − + −  +    = − ⋅ + +  
 
 
   = − ⋅ − + + +   + +   

   = + = +   + +   

. 

So, we have ( ) 1
2 1

k
s n

nC
k

γ  = + + 
. 

As mentioned above, we have: 
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( )
( )

( )

, 0,1, , 2 1  2 1
2 1

=
1, 2,4, , 2  2 1

2 1

k
s n

n n k mod k
k

C
n n k mod k

k

γ

  ≡ − + + 

  + ≡ +  + 





           

3.2. Proof of Theorem 2 

Proof. Let k
nP  be a k-th power graph of nP , denoted by G. By definition of k-th 

power graph, we may assume that the vertex set of G are { }1 2, , , nv v v , its edge 
set are { }1 2 1, , , nE E E − , where: 

{ }|1 ,1 1j i i jE v v i n j j n+= ≤ ≤ − ≤ ≤ − .  

It is follows that: 

( ) ( )1 1, 1, ,G j G n jd v d v k j j k− += = + − =   

( ) ( )1 2 .G k G n kd v d v k+ −= = =   

If 2n = , then 1k = . So, ( )2 2s Pγ = . 
If 3n = , then 1k =  (or 2k = ). So, ( )3 3s Pγ =  (or 1). 
It remains to show that it is true for 4n ≥ . 

Case 1. 1
2
n k n  ≤ ≤ −  

. 

We first prove that it is true for the lower bound of signed domination num-

ber of k
nP . If 

2
nk  ≥   

, then 
2

1G nd v n 
  

 
  = −
 
 

. If n is odd, then: 

( ) ( ) ( ) ( )1 2
2

1n nf V f v f v f v f v 
  

 
= + + + = ≥ 

  
 . So, ( ) 1s Gγ ≥ . If n is even, 

then ( ) ( ) ( ) ( )1 2
2

1n nf V f v f v f v f v
 

= + + + = ≥ 
 

 . In such a case, since 

2

1G nd v n
 

= −  
 

 is odd and 
2
nf v

 
 
 

 is even. By Lemma 1, we have ( ) 2f V ≥ . 

So, ( ) 2s Gγ ≥ . 

We only need to give a singed domination function f and prove that it is true 
for the upper bound of signed domination number of k

nP . 
Subcase 1.1. ( )1  4n mod≡ . 

Due to ( )1 2G
nd v kδ  = = ≥   

, [ ]1 1 1
2
nf v k  = + ≥ +  

 and 
2
n 
  

 is even. It fo- 

llows that we are labeled −1 at 
4
nt  =   

 vertices in [ ]1f v  and in [ ]nf v , and 

other vertices is label to +1. Namely, let:  

( ) 1, if 1, , , 1, 2, ,
1, otherwisei

i t n t n t n
f v

− = − + − +
= +

 

 

It is easy to show that 11, 1j n jf v f v − +   ≥ ≥     for 1, ,
2
nj  =   

  and  
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2

1nf v 
  

 
= 

  
. In fact, under this function f, we have:  

( ) ( ) ( ) ( )1 2
2

4 4 1
4nn
nf V f v f v f v f v n t n 

  

    = = + + + = − = − =         
 . So,  

( ) 1s Gγ ≤ . 

In summary, we have ( ) 1s Gγ = . 
Subcase 1.2. ( )2  4n mod≡ . 

Because of ( )1 2G
nd v kδ  = = ≥   

, [ ]1 1 1
2
nf v k  = + ≥ +  

 and 
2
n 
  

 is odd. It 

follows that we are labeled −1 at 
4
nt  =   

 vertices in [ ]1f v  and in [ ]nf v , and 

other vertices is label to +1. Namely, let: 

( ) 1, if 1, , , 1, 2, ,
1, otherwisei

i t n t n t n
f v

− = − + − +
= +

 

 

It is easy to show that 11, 1j n jf v f v − +   ≥ ≥     for 1, , 1
2
nj = −  and  

1
2 2

2n nf v f v
+

   
= =   

   
. In fact, under this function f, we have: 

( ) ( ) ( ) ( )1 2
2

24 4 4 2
4 4

n nf V f v f v f v f v

n nn t n n

 
= = + + + 

 
  −   = − = − = − =        



. So ( ) 2s Gγ ≤ . 

In summary, we have ( ) 2s Gγ = . 
Subcase 1.3. ( )3  4n mod≡ . 

Thanks to ( )1 2G
nd v kδ  = = ≥   

, [ ]1 1 1
2
nf v k  = + ≥ +  

 and 
2
n 
  

 is odd. It 

follows that we are labeled −1 at 1 1
4
nt  = −  

 vertices in [ ]1f v  and labeled −1 

at 2 1
4
nt  = −  

 vertices in [ ]nf v , and other vertices is label to +1. Namely, let: 

( ) 1 2 21, if 1, , , 1, 2, ,
1, otherwisei

i t n t n t n
f v

− = − + − +
= +

 

 

It is easy to show that 11, 1j n jf v f v − +   ≥ ≥     for 1, ,
2
nj  =   

  and  

2

1nf v 
  

 
= 

  
. In fact, under this function f, we have: 

( ) ( ) ( ) ( )

( )

1 2
2

1 2
1 32 2 2 1

4 4 2 2

nnf V f v f v f v f v

n n n nn t t n n

 
  

 
= = + + + 

  
+ −   = − + = − − = − − =      



. So, ( ) 1s Gγ ≤ . 

https://doi.org/10.4236/ojdm.2021.114009


X. Hong et al. 
 

 

DOI: 10.4236/ojdm.2021.114009 121 Open Journal of Discrete Mathematics 
 

In summary, we have ( ) 1s Gγ = . 
Subcase 1.4. ( )0  4n mod≡ . 

Since ( )1 2G
nd v kδ  = = ≥   

, [ ]1 1 1
2
nf v k  = + ≥ +  

 and 
2
n 
  

 is even. It fol-

lows that we are labeled −1 at 1 4
nt =  vertices in [ ]1f v  and labeled −1 at 

2 1
4
nt = −  vertices in [ ]nf v , and other vertices is label to +1. Namely, let: 

( ) 1 2 21, if 1, , , 1, 2, ,
1, otherwisei

i t n t n t n
f v

− = − + − +
= +

 

 

It is easy to show that 11, 1j n jf v f v − +   ≥ ≥     for 1, , 1
2
nj = −  and  

1
2 2

2n nf v f v
+

   
= =   

   
. In fact, under this function f, we have: 

( ) ( ) ( ) ( )

( )

1 2
2

1 22 2 2 1 4 2 2
4 4

n nf V f v f v f v f v

n nn t t n n

 
= = + + + 

 
 = − + = − ⋅ − = − ⋅ + = 
 



. So, ( ) 2s Gγ ≤ . 

In summary, we have ( ) 2s Gγ = . 

Case 2. 1 1
2
nk  ≤ ≤ −  

. 

Subcase 2.1. ( )1  2 1n mod k≡ + . 
We first prove that it is true for the lower bound of signed domination num-

ber of k
nP . 

If k is odd, then [ ]1 1f v k= +  is even. By Lemma 1, we have: 

[ ] ( )1
1 1 2k

iif v f v+

=
= ≥∑ , [ ] ( ) 2n

n ii n kf v f v
= −

= ≥∑ . It is follows that: 

( ) ( )
( )

( ) ( )
( ) ( )

2 2
1 2 1

2 1 11 1

2 2 2 2
2 2 4

2 1 2 1
1 6 3 2

2 1 2 1 2 1

n k
k nk

i ik ii i i n kf V f v f v f v

n k n k
k k

n k n
k k k

− +
+ +

+ += = = −
 = + + 

− + − +
≥ + + = +

+ +
− +  = + = + + + + 

∑ ∑ ∑

. So, we have: 

( ) 2
2 1s

nG
k

γ  ≥ + + 
. 

If k is even, then [ ]1 1f v k= +  is odd. By Lemma 1, we have: 

[ ] ( )1
1 1 1k

iif v f v+

=
= ≥∑ , [ ] ( ) 1n

n ii n kf v f v
= −

= ≥∑ . It is follows that: 

( ) ( )
( )

( ) ( )
( ) ( )

2 2
1 2 1

2 1 11 1

2 2 2 2 11 1 2 1
2 1 2 1 2 1 2 1

n k
k nk

i ik ii i i n kf V f v f v f v

n k n k n n
k k k k

− +
+ +

+ += = = −
 = + + 

− + − + −  ≥ + + = + = + =  + + + + 

∑ ∑ ∑
. So, we have: 

( )
2 1s

nG
k

γ  ≥  + 
. 
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On the other hand, we only need to give a signed domination function f. 
If k is odd, then let: 

( )

( ) ( )

( )

( ) ( )

( ) ( )

1, if 1, , , 2 2 1 , 4 2 1 , ,
2

3 2 1 , 1, ,
2

1, if 1, , 1, 3 2 1 , 5 2 1 , ,
2

3 1 2 1 ,3 2 2 1 , , ,
2

i

ki k q k k q k

kk q k n n
f v

ki k k q k k q k

kk q k k q k n k n

  − = + + + + + +   
  + + − +    = 

 + = + + + + + + + +   


  + + + + + + − −    

 



 



 

where 
( )2 1

0, , 1
2 1

n k
q

k
− +

= −
+

 . It is easy to see that G has a  

( )2 1
2

2 2 1
n kkt k

k
− + = ⋅ + ⋅  + 

 vertices with −1 label and other vertex is label to +1. 

It is follows that 
( ) ( ) ( )2 1

2 2
2 2 1

2 2 22 2 2 2 2
2 1 2 1 2 1

s

n kkG f V n k
k

n k n k nn k k
k k k

γ
− +  ≤ = − ⋅ + ⋅   +  

− − +  = − + − ⋅ = + = + + + + 

. 

So, we have ( ) 2
2 1s

nG
k

γ  = + + 
. 

If k is even, then let: 

( )

( ) ( )

( )

( ) ( )

( )

1, if 1, , , 3 2 1 , 5 2 1 , ,
2

3 1 2 1 , 1, ,
2

1, if 1, , 1, 2 2 1 , 4 2 1 , ,
2

3 2 2 1 , , ,
2

i

ki k q k k q k

kk q k n n
f v

ki k k q k k q k

kk q k n k n

− = + + + + + +

 + + + − +

= 
+ = + + + + + + + +


 + + + − −


 



 



 

where 
( )2 1

0, , 1
2 1

n k
q

k
− +

= −
+

 . It is easy to see that G has a  

( )2 1
2

2 2 1
n kkt k

k
− +

= ⋅ + ⋅
+

 vertices with −1 label and other vertex is label to +1. It 

is follows that 
( ) ( ) ( )2 1

2 2
2 2 1

2 2 22 2
2 1 2 1 2 1

s

n kkG f V n k
k

n k n k nn k k
k k k

γ
− + 

≤ = − ⋅ + ⋅ + 
− − +  = − − ⋅ = =  + + + 

. So, we have: 

( )
2 1s

nG
k

γ  =  + 
. 

Subcase 2.2. ( )0  2 1n mod k≡ + . 
We first prove that it is true for the lower bound of signed domination num-

ber of k
nP . 

If k is odd, then [ ]1 1f v k= +  is even. By Lemma 1, we have: 
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[ ] ( )1
1 1 2k

iif v f v+

=
= ≥∑ , [ ] ( ) 2n

n ii n kf v f v
= −

= ≥∑ , ( )1
2 0n k

ii n k k f v− −

= − −
≥∑  (other-

wise, we have [ ]2 0n kf v − ≤ , this is a contradiction to Definition 1). It is follows 
that 

( ) ( )
( )

( ) ( ) ( )
( )

2 2 2
1 12 1

2 1 11 1 2

2 2 2 4 22 0 2 4 2 2
2 1 2 1 2 1 2 1

n k k
k n k nk

i i ik ii i i n k k i n kf V f v f v f v f v

n k k n k n n
k k k k

− + +
+ − −+

+ += = = − − = −
 = + + + 

− + + − −  ≥ + + + = + = + = + + + + + 

∑ ∑ ∑ ∑
. 

So, we have ( ) 2
2 1s

nG
k

γ  ≥ + + 
. 

If k is even, then [ ]1 1f v k= +  is odd. By Lemma 1, we have  
[ ] ( )1

1 1 1k
iif v f v+

=
= ≥∑ , [ ] ( ) 1n

n ii n kf v f v
= −

= ≥∑ , ( )1
2 0n k

ii n k k f v− −

= − −
≥∑  (other-

wise, we have [ ]2 0n kf v − ≤ , this is a contradiction to Definition 1). It is follows 
that 

( ) ( )
( )

( ) ( ) ( )
( )

2 2 2
1 12 1

2 1 11 1 2

2 2 2 4 21 0 1 2
2 1 2 1 2 1

n k k
k n k nk

i i ik ii i i n k k i n kf V f v f v f v f v

n k k n k n
k k k

− + +
+ − −+

+ += = = − − = −
 = + + + 

− + + − −  ≥ + + + = + =  + + + 

∑ ∑ ∑ ∑
. So, 

we have ( )
2 1s

nG
k

γ  ≥  + 
. 

On the other hand, we only need to give a signed domination function f. 
If k is odd, then let 

( )

( ) ( )

( )

( ) ( )

( ) ( )

1, if 1, , , 2 2 1 , 4 2 1 , ,
2

3 2 1 , 1, ,
2

1, if 1, , 1, 3 2 1 , 5 2 1 , ,
2

3 1 2 1 ,3 2 2 1 , , ,
2

i

ki k q k k q k

kk q k n n
f v

ki k k q k k q k

kk q k k q k n k n

  − = + + + + + +   
  + + − +    = 

 + = + + + + + + + +   


  + + + + + + − −    

 



 



 

where 
( )2 1 2

0, ,
2 1

n k k
q

k
− + −

=
+

 . Specially, if 
( )2 1 2
2 1

n k k
q

k
− + −

=
+

, then  

( ) ( )q n kf v f v −=  and all such vertices are label to +1. Then G has a  

( )2 1 2
2

2 2 1
n k kkt k k

k
− + − = ⋅ + + ⋅  + 

 vertices with −1 label and other vertex is la-

bel to +1. It is follows that: 

( ) ( ) ( )

( )

2 1 2
2 2

2 2 1
4 22 1 2 2

2 1
4 24 2 2 2 2

2 1 2 1 2 1

s

n k kkG f V n k k
k

n kn k k k
k

n k n nn k k
k k k

γ
− + −  ≤ = − ⋅ + + ⋅   +  

− −
= − − − − ⋅

+
− −  = − + − ⋅ = + = + + + + 

. So, we have: 

( ) 2
2 1s

nG
k

γ  = + + 
. 
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If k is even, then: 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )

1, if 1, , , 3 2 1 , 5 2 1 , ,
2

2 1 2 1 ,2 2 2 1 , ,

2 2 1 2 1 , 1, ,
2 2

1, if 1, , 1, 2 2 1 , 4 2 1 , ,
2

2 2 1 ,2 2 2 1 , ,3 1 2 1 ,
2

3 2 2 1 , , ,
2

i

ki k q k k q k

k q k k q k
k kk q k n n

f v ki k k q k k q k

kk q k k q k k q k

kk q k n k n

− = + + + + + +


+ + + + + +

 + + − + + − +
= 
+ = + + + + + + + +

 + + + + + + + + +

+ + + − −


 





 










 

where 
( )2 1 2

0, ,
2 1

n k k
q

k
− + −

=
+

 . Specially, if 
( )2 1 2
2 1

n k k
q

k
− + −

=
+

, then  

( ) ( )q n kf v f v −=  and all such vertices are label to +1. Then G has a  

( )2 1 2
2

2 2 1
n k kkt k k

k
− + −

= ⋅ + + ⋅
+

 vertices with −1 and other vertex is label to +1. 

It is follows that 
( ) ( ) ( )2 1 2

2 2
2 2 1

4 22 2 2
2 1 2 1 2 1

s

n k kkG f V n k k
k

n k n nn k k k
k k k

γ
− + − 

≤ = − ⋅ + + ⋅ + 
− −  = − − − ⋅ = =  + + + 

. So, we 

have ( )
2 1s

nG
k

γ  =  + 
. 

Subcase 2.3. ( )2  2 1n mod k≡ + . 
We first prove that it is true for the lower bound of signed domination num-

ber of k
nP . 

If k is odd, then [ ]1 1f v k= +  is even. By Lemma 1, we have: 

[ ] ( )1
1 1 2k

iif v f v+

=
= ≥∑ , [ ] ( ) 2n

n ii n kf v f v
= −

= ≥∑ , ( )1 1n kf v − − ≥ − . It is follows 

that 
( ) ( )

( )

( ) ( ) ( )
( )

2 2 1
1 2 1

12 1 11 1

2 2 1 2 3 22 1 2 3 2 1
2 1 2 1 2 1 2 1

n k
k nk

i n k ik ii i i n kf V f v f v f v f v

n k n k n n
k k k k

− + +
+ +

− −+ += = = −
 = + + + 

− + + − − −  ≥ + − + = + = + = + + + + + 

∑ ∑ ∑
. 

So, we have ( ) 1
2 1s

nG
k

γ  ≥ + + 
. 

If k is even, then [ ]2f v  is even. By Lemma 1, we have: 

[ ] ( )2
2 1 2k

iif v f v+

=
= ≥∑ , [ ] ( ) 1n

n ii n kf v f v
= −

= ≥∑ , ( )1
2 1 1n k

ii n k k f v− −

= − − −
≥∑ . It is 

follows that 

( ) ( )
( )

( )

( ) ( )
( )

2 4 2
2 2 1

2 1 21 1

2
2 1 1

2 4 2 4 42 1 1 4
2 1 2 1

2 2 1
2 1 2 1

n k k
k k

i k ii i

n k n
i ii n k k i n k

f V f v f v

f v f v

n k k n k
k k

n n
k k

− + +
+ +

+ += =

− −

= − − − = − −

 = +  

+ +

− + + − −
≥ + + + = +

+ +
−  = + = + + + 

∑ ∑
∑ ∑

. So, we have:  
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( ) 1
2 1s

nG
k

γ  ≥ + + 
. 

On the other hand, we only need to give a signed domination function f. 
If k is odd, then let: 

( )

( ) ( )

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

1, if 1, , , 2 2 1 , 4 2 1 , ,
2

2 1 2 1 , 2 1 2 1 , 2 2 2 1 , ,

3 1 2 1 , 1, 1, ,
2

1, if 1, , 1, 3 2 1 , 5 2 1 , ,
2

2 2 1 ,2 3 2 1 , ,3 2 1 ,

3 1 2

i

ki k q k k q k

k q k k q k k q k

kk q k n k n n
f v

ki k k q k k q k

k q k k q k k q k

k q k

 − = + + + + + +  
− + + + + + + + +

 − + + − − − +  
=

 + = + + + + + + + +  
+ + + + + + +

+ + +

 





 



( ) ( )1 ,3 2 2 1 , , ,
2
kk q k n k n















  + + + − −    


 

where 
( )2 1 1

0, , 1
2 1

n k
q

k
− + −

= −
+

 . It is easy to see that G has a  

( )2 1 1
2 1

2 2 1
n kkt k

k
− + − = ⋅ + + ⋅  + 

 vertices with −1 label and other vertex is label 

to +1. It is follows that 
( ) ( ) ( )2 1 1

2 2 1
2 2 1

2 3 42 2 1
2 1 2 1 2 1

s

n kkG f V n k
k

n k n k nn k k
k k k

γ
− + −  ≤ = − ⋅ + + ⋅   +  

− − +  = − − ⋅ = = + + + + 

. 

So, we have ( ) 1
2 1s

nG
k

γ  = + + 
. 

If k is even, then let: 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )

1, if 1, , , 3 2 1 , 5 2 1 , ,
2

2 1 2 1 ,2 3 2 1 , ,

2 2 2 1 , 1, ,
2 2

1, if 1, , 2, 4 2 1 , 6 2 1 , ,
2

2 2 2 1 ,2 3 2 1 , ,3 2 2 1 ,
2

3 3 2 1 , 1, ,
2

i

ki k q k k q k

k q k k q k

k kk q k n n
f v ki k k q k k q k

kk q k k q k k q k

kk q k n k n

− = + + + + + +


+ + + + + +

 + + + + − +
= 
+ = + + + + + + + +

+ + + + + + + + + +

+ + + − − −


 





 












 

where 
( )2 2 2

0, ,
2 1

n k k
q

k
− + −

=
+

 . Specially, if 
( )2 2 2
2 1

n k k
q

k
− + −

=
+

, then  

( ) ( )1q n kf v f v − −=  and all such vertices are label to +1. It is easy to see that G 

has a 
( )2 2 2

2
2 2 1

n k kkt k k
k

− + −
= ⋅ + + ⋅

+
 vertices with −1 label and other vertex 

is label to +1. It is follows that: 
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( ) ( ) ( )2 2 2
2 2

2 2 1

4 4 42 2 2 1
2 1 2 1 2 1

s

n k kkG f V n k k
k

n k n k nn k k k
k k k

γ
− + − 

≤ = − ⋅ + + ⋅ + 
− − +  = − − − ⋅ = = + + + + 

. So, we have: 

( ) = 1
2 1s

nG
k

γ   + + 
. 

Subcase 2.4. ( ) 2 1 , 3,5,7, , 2 1n r mod k r k≡ + = − . 
We first prove that it is true for the lower bound of signed domination num-

ber of k
nP . 

Claim. Let 1 2n nP v v v=   be a path and f be an SED of k
nP . If every vertex 

( )1iv i n r≤ ≤ −  is optimal, then ( )( )2 1 1k qf v + = − , where 1, ,
2 1
n rq
k
−

=
+

 . 

Proof: If k is odd, then [ ]1 1f v k= +  is even. Since every vertex iv  is  

optimal, by Lemma 1, we have [ ]1 2f v = . It is follows that [ ]1f v  has 
2
k 
  

 

vertices with −1 label, [ ]3f v  has 1
2
k  +  

 vertices with −1 label,  , [ ]kf v  has 

2 2
k k   +      

 vertices with −1 label. Because of [ ] [ ] ( )1 2 1k k kf v f v f v+ += + ,  

and 1kv +  is optimal and therefore [ ]1kf v +  has k vertices with −1 label. So, we 
have ( )2 1 1kf v + = − . 

If k is even, then [ ]1 2f v k= +  is even. Since every vertex iv  is optimal, by 

Lemma 1, we have [ ]2 2f v = . It is follows that [ ]2f v  has 
2
k  vertices with −1  

label, [ ]4f v  has 1
2
k
+  vertices with −1 label,  , [ ]kf v  has 1

2 2
k k
+ −  ver-

tices with −1 label. Due to [ ] [ ] ( )1 2 1k k kf v f v f v+ += + , and 1kv +  is optimal and  

therefore [ ]1kf v +  has k vertices with −1 label. So, we have ( )2 1 1kf v + = − . 
We consider that every vertex iv  is optimal and the following facts.  

[ ] ( )2 1
1 1

k
k iif v f v+
+ =

= ∑  

( ) ( ) ( )( ) ( )( )2 2 1 1 2 1 1 2 1 2 2 2 1k k j k k j k j k k jf v f v f v f v+ + + ⋅ + + + ⋅ + + ⋅ + + + ⋅
   = − +     

( ) ( ) ( )( ) ( )( )3 2 1 2 2 1 2 2 1 2 3 2 1k k j k k j k j k k jf v f v f v f v+ + + ⋅ + + + ⋅ + + ⋅ + + + ⋅
   = − +     

… 

( ) ( ) ( )( ) ( )( )3 2 2 1 3 1 2 1 2 1 2 1 4 2 2 1k k j k k j k k j k k jf v f v f v f v+ + + ⋅ + + + ⋅ + + + ⋅ + + + ⋅
   = − +     

where 
2 10, , 1

2 1
n r kj

k
− − −

= −
+

  

It is follows that: 

( ) ( ) ( ) ( )( )( )1 2 2 4 3 1 2 1 1k k k qf v f v f v f v+ + + + −= = = =  
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( ) ( ) ( ) ( )( )( )2 2 3 4 4 2 2 1 1k k k qf v f v f v f v+ + + + −= = = =  

… 

( ) ( ) ( ) ( )( )( )2 1 4 2 6 3 2 1 2 1 1k k k k k qf v f v f v f v+ + + + + + −= = = =  

where 1, ,
2 1
n rq
k
−

=
+

  

So, we have: 

( )( )2 1 1k qf v + = − .  

Subsubcase 2.4.1. If 1r k≤ + , then 2 1k r k+ ≤ + . 
If k is odd, then [ ] 1nf v k= +  is even and [ ] ( ) 2n

n ii n kf v f v
= −

= ≥∑ . So, 
( ) [ ]1 2k r

i ri f v f v+

=
= ≥∑ . It is follows that: 

( ) ( )
( )

( ) ( )
( )

1
2 1

2 11 1

1 2 12 2 4
2 1 2 1

3 2
2 1 2 1

n k k r
k r nk

i ik i ri i i n kf V f v f v f v

n k k r n k r
k k

n r n
k k

− + + +
+ +

+ += = = −
 = + + 

− + + + − − −
≥ + + = +

+ +
−  = + = + + + 

∑ ∑ ∑

. Hence,  

( ) 2
2 1s

nG
k

γ  ≥ + + 
. 

If k is even, then [ ]1 2nf v k− = +  is even and [ ] ( )1 1 2n
n ii n kf v f v− = − −

= ≥∑ . 
So, ( )1

1 2k r
ii f v+ −

=
≥∑ . It is follows that: 

( ) ( )
( )

( ) ( )
( )

2 1
1 2 1

2 1 11 1 1

1 2 12 2 4
2 1 2 1

3 2
2 1 2 1

n k k r
k r nk

i ik i ri i i n kf V f v f v f v

n k k r n k r
k k

n r n
k k

− + + + −
+ − +

+ + −= = = − −
 = + + 

− + + + − − −
≥ + + = +

+ +
−  = + = + + + 

∑ ∑ ∑

. Hence,  

( ) 2
2 1s

nG
k

γ  ≥ + + 
. 

Subsubcase 2.4.2. If 1r k> + , then 2 1k r k+ > + . 

It is follows that ( ) ( ) ( )2 1
2 11 1

n r
nk

ik i ki i n rf V f v f v
−
+

+ −= = − +
 = + ∑ ∑ . Owing to  

( )1 3n
ii n r f v

= − +
≥∑  (Otherwise, since r is odd and therefore ( )1 1n

ii n r f v
= − +

≤∑ . 
In order to obtain the ( )k

s nPγ , we have to consider that all vertices are as op-
timal as possible. By Claim, we have ( )( )2 1 1k qf v + = − , namely, ( ) 1n rf v − = − . So,  
[ ] ( ) ( )1 1 1 1 0n

n k n r ii n rf v f v f v− + − = − +
= + ≤ − + =∑ , this is a contradiction to Defi-

nition 1). 

Hence, ( ) ( ) ( )2 1
2 11 1 3 2

2 1 2 1

n r
nk

ik i ki i n r

n r nf V f v f v
k k

−
+

+ −= = − +

−   = + ≥ + = +   + + 
∑ ∑ . 

On the other hand, we only need to give a signed domination function f. 
If k is odd, then we give a signed domination function f by the following rules. 
If 1 1i k≤ ≤ +  and n k i n− ≤ ≤ , then let: 
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 ( )
1, if 1, , , 1, ,

2 2

1, if 1, , 1, , ,
2 2

i

k ki n n
f v

k ki k n k n

    − = − +        = 
   + = + + − −       

 

 

 

If 2 1k i n k+ ≤ ≤ − − , then let: 

( )
( ) ( ) ( )
( ) ( ) ( )

( )

1, if 2 2 1 , 4 2 1 , ,3 2 1
1, if 3 2 1 , 5 2 1 , ,3 1 2 1 ,

3 2 2 1
i

i k q k k q k k q k
f v i k q k k q k k q k

k q k

− = + + + + + + + +
= + = + + + + + + + + +
 + + +



  

where 
( ) ( )2 1 1

0, ,
2 1

n k r
q

k
− + − −

=
+

 . It is trivial to see that G has a  

( ) ( )2 1 1
2

2 2 2 1
n k rk rt k

k
− + − −   = ⋅ + + ⋅    +   

 vertices with −1 label and other vertex 

is label to +1. It is follows that: 

( ) ( ) ( ) ( )

( ) ( )

2 1 112 2
2 2 2 1

2 1
2 2 2 1

2 1

3 2
2 1 2 1

s

n k rk rG f V n k
k

n k r
n k k r

k
n r n
k k

γ
− + − − − ≤ = − ⋅ + + ⋅   +  

− − −
= − + − ⋅ − −

+
−  = + = + + + 

. So, we have: 

( ) 2
2 1s

nG
k

γ  = + + 
. 

If k is even, then we give a signed domination function f by the following 
rules. 

If 1 2i k≤ ≤ +  and 1n k i n− − ≤ ≤ , then let: 

 ( )
1, if 1, , , 1, ,

2 2

1, if 1, , 2, 1, ,
2 2

i

k ki n n
f v

k ki k n k n

− = − += 
+ = + + − − −


 

 

 

If 3 2k i n k+ ≤ ≤ − − , then let: 

( )
( ) ( ) ( )
( ) ( ) ( )

( )

1, if 3 2 1 , 5 2 1 , ,3 1 2 1
1, if 4 2 1 , 6 2 1 , ,3 2 2 1 ,

3 3 2 1
i

i k q k k q k k q k
f v i k q k k q k k q k

k q k

− = + + + + + + + + +
= + = + + + + + + + + +
 + + +



  

where 
( ) ( )2 2 3

0, ,
2 1

n k r
q

k
− + − −

=
+

 . It is trivial to see that G has a  

( ) ( )2 2 332
2 2 2 1

n k rk rt k
k

− + − −−
= ⋅ + + ⋅

+
 vertices with −1 label and other vertex 

is label to +1. It is follows that: 

( ) ( ) ( ) ( )

( )

2 2 332 2
2 2 2 1

2 12 3 2 3 2
2 1 2 1 2 1

s

n k rk rG f V n k
k

n k r n r nn k r k
k k k

γ
− + − − −

≤ = − ⋅ + + ⋅ + 
− − − −  = − − − − ⋅ = + = + + + + 

. So, we have:
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( ) 2
2 1s

nG
k

γ  = + + 
. 

Subcase 2.5. ( ) 2 1 , 2,4,6, , 2n r mod k r k≡ + =  . 
We first prove that it is true for the lower bound of signed domination num-

ber of k
nP . 

Subsubcase 2.5.1 If 1r k≤ + , then 2 1k r k+ ≤ + . 
If k is odd, then [ ]2 3nf v k− = +  is even and [ ] ( )2 2 2n

n ii n kf v f v− = − −
= ≥∑ . 

Hence, ( )2
1 1k r

ii f v+ −

=
≥∑ . It is follows that: 

( ) ( )
( )

( ) ( )
( )

3 2
2 2 1

2 1 21 1 2

2 1 2 11 2 3 2 1
2 1 2 1 2 1 2 1

n k k r
k r nk

i ik i ri i i n kf V f v f v f v

n k r n k r n r n
k k k k

− + + + −
+ − +

+ + −= = = − −
 = + + 

− + + − − − −  ≥ + + = + = + = + + + + + 

∑ ∑ ∑
. So,  

we have ( ) 1
2 1s

nG
k

γ  ≥ + + 
. 

If k is even, then [ ]1 2nf v k− = +  is even and ( )2 1n kf v − − ≥ − ,  
[ ] ( )1 1 2n

n ii n kf v f v− = − −
= ≥∑ . Hence, ( )2

1 2k r
ii f v+ −

=
≥∑ . It is follows that: 

( ) ( )
( )

( )

( ) ( )
( )

2 2 1
2 2 1

2 1 21 1

2 1

2 1
2 1 2

2 1
2 13 2 1
2 1 2 1 2 1

n k k r
k r k

i k i ri i

n
n k ii n k

f V f v f v

f v f v

n k r
k

n k r n r n
k k k

− + + + − +
+ − +

+ + −= =

− − = − −

 = +  

+ +

− + +
≥ + − +

+
− − − −  = + = + = + + + + 

∑ ∑
∑

. So, we have: 

( ) 1
2 1s

nG
k

γ  ≥ + + 
. 

Subsubcase 2.5.2. If 1r k> + , then 2 1k r k+ > + . 

It is follows that ( ) ( ) ( )2 1
2 11 1

n r
nk

ik i ki i n rf V f v f v
−
+

+ −= = − +
 = + ∑ ∑ . Because of  

( )1 2n
ii n r f v

= − +
≥∑  (Otherwise, we have ( )1 1n

ii n r f v
= − +

≤∑ . In order to obtain 
the ( )k

s nPγ , we have to consider that all vertices are as optimal as possible. By 
Claim, we have ( )( )2 1 1k qf v + = − , namely, ( ) 1n rf v − = − . It follows that: 
[ ] ( ) ( )1 1 1 1 0n

n k n r ii n rf v f v f v− + − = − +
= + ≤ − + =∑ , this is a contradiction to Defi-

nition 1). 

Hence, ( ) ( ) ( )2 1
2 11 1 2 1

2 1 2 1

n r
nk

ik i ki i n r

n r nf V f v f v
k k

−
+

+ −= = − +

−   = + ≥ + = +   + + 
∑ ∑ . 

On the other hand, we only need to give a signed domination function f. 
If k is odd, then we give a signed domination function f by the following rules. 
If 1 1i k≤ ≤ +  and n k i n− ≤ ≤ , then let: 

( )
1, if 1, , , 1, ,

2 2

1, if 1, , 1, , ,
2 2

i

k ki n n
f v

k ki k n k n

    − = − +       = 
   + = + + − −       
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If 2 1k i n k+ ≤ ≤ − − , then let: 

( )
( ) ( ) ( )
( ) ( ) ( )

( )

1, if 2 2 1 , 4 2 1 , ,3 2 1

1, if 3 2 1 , 5 2 1 , ,3 1 2 1 ,

3 2 2 1
i

i k q k k q k k q k

f v i k q k k q k k q k

k q k

− = + + + + + + + +


= + = + + + + + + + + +
 + + +




 

where 
( ) ( )2 1 1

0, ,
2 1

n k r
q

k
− + − −

=
+

 . It is trivial to see that G has a  

( ) ( )2 1 112
2 2 2 1

n k rk rt k
k

− + − −−   = ⋅ + + ⋅    +   
 vertices with −1 label and other ver-

tex is label to +1. It is follows that: 

( ) ( ) ( ) ( )2 1 1
2 2

2 2 2 1

2 12 2 2 1 1
2 1 2 1 2 1

s

n k rk rG f V n k
k

n k r n r nn k r k
k k k

γ
− + − −  ≤ = − ⋅ + + ⋅   +  

− − − −  = − + − − ⋅ = + = + + + + 

. So, we have 

( ) 1
2 1s

nG
k

γ  = + + 
. 

If k is even, then we give a a signed domination function f by the following 
rules. 

If 1 2i k≤ ≤ +  and 1n k i n− − ≤ ≤ , then let: 

( )
1, if 1, , , 1, ,

2 2

1, if 1, , 2, 1, ,
2 2

i

k ki n n
f v

k ki k n k n

− = − += 
+ = + + − − −


 

 

 

If 3 2k i n k+ ≤ ≤ − − , then let: 

( )
( ) ( ) ( )
( ) ( ) ( )

( )

1, if 3 2 1 , 5 2 1 , ,3 1 2 1
1, if 4 2 1 , 6 2 1 , ,3 2 2 1 ,

3 3 2 1
i

i k q k k q k k q k
f v i k q k k q k k q k

k q k

− = + + + + + + + + +
= + = + + + + + + + + +
 + + +



  

where 
( ) ( )2 2 3

0, ,
2 1

n k r
q

k
− + − −

=
+

 . It is trivial to see that G has a  

( ) ( )2 2 332
2 2 2 1

n k rk rt k
k

− + − −− = ⋅ + + ⋅  + 
 vertices with −1 label and other ver-

tex is label to +1. It is follows that: 

( ) ( ) 2 2 12 2
2 2 2 1

2 12 2 2 2 1
2 1 2 1 2 1

s
k r n k rG f V n k

k
n k r n r nn k r k

k k k

γ − − − − ≤ = − ⋅ + + ⋅ + 
− − − −  = − − + − ⋅ = + = + + + + 

. So, we have 

( ) 1
2 1s

nG
k

γ  = + + 
. 

As mentioned above, we have: 

If 1 1
2
nk  ≤ ≤ −  

 and k is odd, then: 
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( )
( )

( )

2, if 0,1, , 2 1  2 1
2 1

1, if 2, 4, , 2  2 1
2 1

k
s n

n n k mod k
k

P
n n k mod k

k

γ

  + ≡ − + + = 
  + ≡ +  + 





 

If 1 1
2
nk  ≤ ≤ −  

 and k is even, then: 

( )

( )

( )

( )

, if 0,1  2 1
2 1

1, if 2, 4, , 2  2 1
2 1

2, if 3,5, , 2 1  2 1
2 1

k
s n

n n mod k
k
nP n k mod k

k
n n k mod k

k

γ

  ≡ + + 
 = + ≡ + + 
  + ≡ − + + 





 

If ( )1 3, 1
2
n k n n k  ≤ ≤ − ≠ ≠  

, then: 

( ) ( )
( )

1, if 1  2
2, if 0  2

k
s n

n mod
P

n mod
γ

 ≡=  ≡
 

If 3, 1n k= = , then ( )3 3s Pγ = .                                     

4. Concluding Remarks 

As the dominance theory of graphs becomes more and more diversified, the do-
minance problem of graphs is NP-complete. Therefore, studying the upper and low-
er bounds of domination numbers of graphs and even accurate estimation and mu-
tual relations are the main aspects of current research. In this paper, we determine 
the exact value of the Signed Domination Number of k-th power graphs k

nC  and 
k

nP  for 1k ≥ , these conclusions are the basis for the study of the bounds of the 
signed domination number of the k-th power graphs of generally connected graphs, 
which have important meanings in the structural theory of graph theory. From the 
signed domination number of the k-th power graph, other types of domination 
numbers can be further studied, which will be the key research object in the future. 
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