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Abstract 
This work deals with a second order linear general equation with partial de-
rivatives for a two-variable function. It covers a wide range of applications. 
This equation is solved with a finite difference hybrid method: BTCS + CTCS. 
This scheme is simple, precise, and economical in terms of time and space 
occupancy in memory. 
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1. Introduction 

We are interested in the following second order linear Partial Differential Equa-
tion (PDE): 
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where Φ  designates an scalar function depending on the variables x and t. 
Usually x states for the space variable and t for the time. The Equation (1) can be 
brought in the following form: 
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The resolution of such an equation presents a great interest, because it go-
verns several phenomenas in physics, chemistry, mathematics, economy, etc. [1]. 
It is a general form that deals with:  
• Elliptic equations: It treats the Poisson equation which describes electrostatic 
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and magnetostatic phenomenas, flow of perfect incompressible fluids, vortex 
and viscous incompressible flow, filtration of fluids through porous mate-
rials, etc. It concerns also the Euler-Tricomi equation that allows the study of 
transonic flow.  

• Parabolic equations: It handles problems governed by the extended diffusion 
equation or the Diffusion Advection Reaction equation (of concentration, mat-
ter, temperature or electromagnetic field) or the BlackScholes equation in ma-
thematical finance [2] [3].  

• Hyperbolic equation: Equations such the extended complete wave equation 
and the extended complete telegraph equation are contained in (1). These 
two equations have important applications in electromagnetic and telecom-
munications [4] [5] [6] [7]. 

We propose to solve this equation with a simple, accurate and efficient me-
thod, by reducing the costs in time, memory space, and method’s heaviness. We 
aim at a good compromise between simplicity and result accuracy.  

So, we will first, formulate the problem. Then, we choose a hybrid approxima-
tion scheme, using two finite differences approaches: Backward Time Centered 
Space (BTCS) and Centered Time Centered Space (CTCS) [8] [9] [10]. This he-
terogeneous scheme has the advantages of both. The first method BTCS is impli-
cit and the second one is explicit. With their superposition, the resulting method 
becomes implicit. Therefore, we will use different methods for processing the ma-
trices that result from the discretization. These methods are the algorithm of 
Usmani [11], which inverts any regular tridiagonal matrix directly; and the algo-
rithm of Thomas which inverts a diagonal dominant tridiagonal matrix using 
the Right Hand Side (RHS) of the equation. 

Subsequently, we will treat numerical experimentation to validate our pro-
posed method. Finally, we discuss the results and give outlook for further work. 

2. Problem Formulation and Meshing 

We consider a scalar function ( ),x tΦ = Φ  which depends on the real variables 
x and t. This function satisfies the partial differential Equation (3) with the given 
conditions.  

( ) ] [ ] [
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Here, The coefficients A, B, C, D, E and F are constant or known functions 
depending on the variables x and t. L is a real constant. The function  

( ),g g x t=  is a known excitation. The functions ( )0f x , ( )1f x , ( )0g t  and  
( )Lg t  have been also given.  

The following mesh has been considered: the spatial interval [ ]0, L  is discre-
tized in 2xN +  points , 0,1, 2, , 1i xx i x i N= ⋅∆ = +� , with ( )1xx h L N∆ = = + . 
The considered instants are: nt n t= ⋅∆ . The time step is t k∆ =  and must be 
sufficiently small to allow a good, accurate and efficient resolution of the prob-
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lem. An approximated value of Φ  is to be found at point ( ),i nx t :  
( ), n

i n ix tΦ = Φ . We define: ( ), n
i n ig x t g= , ( )0 0

n
ng t g= , ( ) n

L n Lg t g= ,  
( )0 0i if x f=  and ( )1 1i if x f= . It holds: ( ), n

i n iA x t A= , ( ), n
i n iB x t B= ,  

( ), n
i n iC x t C= , ( ), n

i n iD x t D= , ( ), n
i n iE x t E=  and ( ), n

i n iF x t F= . 

3. Schema BTCS + CTCS  

We consider the Finite Difference method in Time Domain (FDTD); more pre-
cisely the two schemes: BTCS and CTCS [8] [9] [10]. Then, we superpose the 
two approaches in order to obtain a better approximation of the solution of the 
treated differential equation. In this way we combine the advantages of the two 
schemes. As one can remark, these two schemes have the same spatial discretiza-
tion (Centered Space CS). Thus, we have for the derivative in x direction the fol-
lowing approximations:  
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For the BTCS scheme, we get the first and second order backward time deriv-
atives, for 0nt > :  
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Combining the Equations (3)-(5), one gets:  
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With the CTCS scheme, we have the following first and second order deriva-
tives, for 0nt > :  
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Associating the Equations (3), (4), and (7); one gets: 
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ing the mesh points 1x  and 
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(9) 

This previous equation is equivalent to: 
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( ) ( ) ( )1 2

:

, 2,
n

n n nn n n n
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with  

( ) ( )1 0 0 1 0 1and 2i i t i i t i ik k− −Φ = Φ − Φ Φ = Φ +Φ ⋅              (11) 

So, we will discuss the inversion methods of the matrix ( )nA , which permits 
to get the solution nΦ

�
. 

4. General Solution  

An important discussion is to be done with respect to Equation (9), particularly 
concerning the matrix ( )nA . Principally, this matrix must be inverted for each 
time nt  in order to get the solution at this time: nΦ

�
. But, if the coefficients of 

Equation (1) do not dependent on the time ( ) ( )nA A=  then one and exactly 
one inversion is sufficient. 

The algorithm of Thomas can be used for the inversion (see Appendix). With 
this method, we do not have an idea about the regularity of the matrix. But, it is 
clear that if the tridiagonal matrix ( )nA  is diagonal dominant then it is regular. 
Of course, this property is sufficient but not necessary for the regularity. 

We prefer an inversion with the Usmani’s algorithm [11], which is a general 
and stable method. It allows a direct inversion that does not use the right hand 
side ( nH

�
) in the inversion process; contrarily to the algorithm of Thomas. Us-

mani has presented a direct and exact method to invert a tridiagonal regular 
matrix [11]. 

We can apply it for ( )nA , defining: 
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Then, the coefficients of the inverted matrix ( )nB  are obtained with:  
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We get the solution: 

( ) .nn nB HΦ = ×
��

                         (13) 

The solution n
iΦ , at point ix  and time nt , is given by a simple matrix- 

vector multiplication:  

1
, 1, 2, , , 2.

xN
nn
ji ij x

j
b H i N n

=

Φ = ⋅ = ≥∑ �                 (14) 
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5. Solution for Time-Depending Coefficients 

In the case that the coefficients of Equation (1) do not dependent on the space:  
( )A A t= , ( )B B t= , ( )C C t= , ( )D D t= , ( )E E t=  and ( )F F t= ; then 

the matrix (A) dependent only on the time. Its coefficients are constant at a fixed 
time nt . The formula of the invert matrix ( )nB  can be simplified [12] [13] 
[14]:  

Defining a real number ∆  and a complex number θ  in following manner: 

2 4 and atanh .d ec
d

θ
 ∆

∆ = − =   
 

                (15) 

we get , 1, 2, , xiA i N= � , which is the determinant of the submatrix of order i 
of (A); and which is of dimension ( i i× ). In the case, where 0e c⋅ = , the deter-
minant of the matrix (A) is: x

x

N
NA d=  

One can verify that this determinant, for 0e c⋅ ≠ , is given by the following 
relations [12] [13] [14]:  
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(16) 

The inverted matrix (B) exists when d is different of one of the following val-
ues [14]:  

2 cos , 1,2, , .
1l x

x

ld ec l N
N

 
= = +

π


�                 (17) 

Outside these values of ld , the matrix (A) is regular and its inverts (B) is 
given by the following formula: 

( )
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        (18) 

6. Numerical Verification  

For the numerical verification, we choose the equation of telegraph equation, 
which has been treated by several authors [4] [5] [6] [7]. We compare our results 
with those obtained by [4]. 

The following problem treated by [4] was considered and our method was ap-
plied:  

( ) ( ) ( ) ( ) ( ) ( ) ] [ ] [
( ) ( ) ( ) ( ) ( ) ( ) ] [
( ) ( ) ( ) ( ) ] [
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0 1
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Φ = = Φ = = − ∈
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π

π

π



 

(19) 
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By choosing dx = 0.02 and dt = 0.001, the following results were obtained, 
showing the L∞  and 2L  errors: 
 

BTCS + CTCS Method 

dx = 0.02; dt = 0.001 

t L∞ L2 CPU Time (s) 

0.5 8.4773420757966456E−005 1.8833168906993345E−003 0.23201400000000000 

1 8.4773420757966456E−005 2.8160185504662303E−003 0.44402700000000001 

1.5 8.4773420757966456E−005 3.0963482287696856E−003 0.57603499999999996 

2 8.4773420757966456E−005 3.1650156583819949E−003 0.82005099999999997 

Cubic B – spline Collocation; R. C. Mittal; Rachna Bhatia [3] 

dx = 0.02; dt = 0.0001 

t L∞ L2 CPU Time (s) 

0.5 2.3328E−006 1.8612E−006 3.04 

1 4.3667E−006 3.4839E−006 4.89 

1.5 4.7817E−006 3.8251E−006 5.27 

2 4.2706E−006 3.4073E−006 7.53 

 
The results are very satisfactory because our method is not heavy and leads to 

a precise solution. Compared to the one used in [4], it could be said to be less 
precise. But it should be emphasized that the method, used in [4], is a Cubic 
B-splines collocation method, which is expensive in calculation. On the other 
hand, we used the finite difference method. 

7. Conclusions  

In this work, a method of solving a general linear partial differential equation 
has been presented. The finite difference hybrid approach (BTCS + FTCS) that 
has been used is simple, accurate and efficient; and is economical in terms of 
calculation and occupancy of the memory space. 

This study can allow numerous applications of this method to several pheno-
mena of the sciences and techniques governed by this equation. In addition, other 
methods could be explored to improve performance. 
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Appendix  

For a resolution of Equation (10) with the algorithm of Thomas, the vector α� , 
γ� , and r�  can be introduced, in order to proceed to a forward elimination. Then 
the solutions are obtained by backward restitution. This algorithm is presented 
below. 
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