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Abstract 

In this paper, the problem of nonparametric estimation of finite population 
quantile function using multiplicative bias correction technique is considered. 
A robust estimator of the finite population quantile function based on mul-
tiplicative bias correction is derived with the aid of a super population model. 
Most studies have concentrated on kernel smoothers in the estimation of re-
gression functions. This technique has also been applied to various methods 
of non-parametric estimation of the finite population quantile already under 
review. A major problem with the use of nonparametric kernel-based regres-
sion over a finite interval, such as the estimation of finite population quanti-
ties, is bias at boundary points. By correcting the boundary problems asso-
ciated with previous model-based estimators, the multiplicative bias corrected 
estimator produced better results in estimating the finite population quantile 
function. Furthermore, the asymptotic behavior of the proposed estimators is 
presented. It is observed that the estimator is asymptotically unbiased and 
statistically consistent when certain conditions are satisfied. The simulation 
results show that the suggested estimator is quite well in terms of relative bias, 
mean squared error, and relative root mean error. As a result, the multiplica-
tive bias corrected estimator is strongly suggested for survey sampling esti-
mation of the finite population quantile function. 
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1. Introduction 

In recent years, the estimation of population distribution functions in the con-
text of survey sampling has received considerable attention. A particular focus of 
this attention was the median, which is often considered to be a more acceptable 
position measure than the mean, especially when the interest variable follows a 
distorted distribution. Modern population mean or total estimators may typical-
ly be significantly enhanced when appropriate supplementary information is 
made available. Accordingly, the use of the auxiliary information in sample 
quantile estimators seems highly desirable. Use of known auxiliary knowledge 
both at the estimation stage and at the selection stage contributes to better esti-
mation strategies in the sampling of surveys. If such information is not fully 
known or missing and information on the auxiliary variable(s) is relatively 
cheaper to obtain, one may consider taking a broad preliminary sample to esti-
mate the auxiliary variable population mean(s). 

Traditional kernel estimation methods have generally held that the perfor-
mance of kernel methods depends largely on the smoothing bandwidth of the 
kernel, and very little depends on the type of the kernel. Most kernels used are 
symmetric kernels and are set once chosen. This may be useful for estimating 
unbounded support curves, but not for curves that have compact support and 
are discontinuous at boundary points. For curves of this kind, a fixed kernel 
shape leads to a boundary bias. This boundary bias is due to the weight alloca-
tion of the fixed symmetric kernel outside the distribution support when smooth-
ing close to the boundary takes place. In addition, standard kernel methods yield 
wiggly estimates in the tail of the distribution as the reduction of the boundary 
bias leads to a limited bandwidth that prevents the pooling of appropriate data. 
Even otherwise, as noted in [1] when estimating the probability density function, 
the standard kernel estimator “works well for densities not far from Gaussian in 
shape”, however, it can perform very poorly when the shape seems far from 
Gaussian, particularly near the boundary. 

Boundary bias is a well-known problem, and several scholars have proposed 
ways to eliminate it. In the context of nonparametric regression, [2] [3] [4] pro-
posed the use of boundary kernels, while [5] used Richardson’s extrapolation to 
combine two kernel estimates with different bandwidths. In density estimation, 
[6] proposed data reflection, [7] considered empirical transformations, and [8] 
proposed a framework of jaccknife methods for correcting boundary bias. In re-
cent years, it has been shown by [9] [10], that in nonparametric regression, local 
linear smoother is free of boundary bias and achieves the optimal convergence 
for mean integrated squared error. It is interesting to note a local linear smooth-
er uses a fixed kernel in its initial form, and the local least-regression implicitly 
employs different kernels at different places. The transformation method is 
among the numerous methods suggested to deal with data on [ ]0,+∞ . In order 
to minimize the boundary bias in the density estimation framework, [1] [11] 
[12], among others, studied general transformation methods. The transforma-
tion may operate under unique conditions and it is important to select the ap-
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propriate transformation by analyzing the subject matter and related studies. 
The estimation of population quantiles is of great interest when a parametric 

form for the underlying distribution is not available. In a broad range of statis-
tical applications, quantile estimation plays an important role: the Q-Q plot; the 
goodness-of-fit, the computation of extreme quantiles and value at risk in in-
surance business and financial risk management. Also, a large class of actuarial 
risk measures can be defined as functional of quantiles see ([13]). Most contri-
butions have been made based on simple random sampling (SRS) to estimate the 
pth quantile using a kernel function. The reader can be referred to [14] [15] [16]. 

Quantile estimation has been intensively used in many fields. Most of the ex-
isting quantile estimators suffer from either a bias or an inefficiency for high 
probability levels. In order to correct the bias problems, [17] suggested several 
nonparametric quantile estimators based on the beta-kernel and applied them to 
transformed data. A Monte Carlo based study showed that those estimators im-
prove the efficiency of the traditional ones, not only for light tailed distributions, 
but also for heavy tailed, when the probability level is close to 1, [18] used trans-
formed kernel estimate. In their study, they overcame this inconsistency by us-
ing a new approach based on the modified Champernowne distribution which 
behaves as the Pareto distribution. 

As a result, the aim of this paper is to develop a nonparametric estimator for 
the quantile function of finite populations using a bias corrected approach to 
address the shortcomings of previously studied estimation methods. There are 
two unique features about this approach. One is that it ensures an accurate esti-
mate and the other is that it reduces the estimation bias with negligible increase 
in variance. 

The concept of Multiplicative Bias Correction (MBC) approach was first con-
sidered in [19], and the results obtained showed that the estimator of the regres-
sion function had desirable properties compared to existing estimators, includ-
ing solving the boundary problems. This form of correction is especially well 
suited for changing non-negative regression function because it does not change 
the sign of the regression function and ensures an accurate estimate and reduces 
the estimation bias with negligible increase in variance. As there is always a bi-
as-variance trade off for non-parametric smoothers in finite samples, smoothers 
can be generated whose asymptotic bias converges to zero while maintaining the 
same asymptotic variance. For a deeper discussion of Multiplicative Bias Correc-
tion technique we refer the reader to [20] [21] [22] [23]. 

Outline of the paper 
In Section 2, we propose an estimator for finite population quantile function 

using a bias correction technique. Asymptotic properties of the proposed esti-
mator are derived in Section 3. Empirical study of the results is given in Section 
4 and the conclusion of the findings is given in Section 5. 

2. Proposed Estimator 

In the sampling survey, we are time and again interested in studying the distri-
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bution of a specific variable of interest, Y. The efficient technique to illustrate the 
distribution function is by assessing the quantiles of the distribution. By the pth 
quantile of the distribution, we imply the value Q, which would be ( )P Y Q p≤ = . 
One way of designing quantile estimators is to invert the estimator of the distri-
bution function. Let ( )ˆ

yF t  denote an estimator of ( )P Y t≤ . Since the esti-
mator ˆ

yF  is often a step function, the form of the quantile estimator may not 
be smooth. 

In this section we discuss a quantile estimator derived from a model-based 
multiplicative bias correction distribution function estimator that integrates 
auxiliary information. This distribution function estimator was introduced by 
[24]. The quantile estimator is based on inverting the [24] distribution function 
estimator. We derive a Bahadur representation for the quantile estimator. 

Let ( ) ( )F y P Y y= <  be a probability distribution function. The population 
quantile of order α  is defined as  

( ) ( ){ }inf :Q t F tα α= >                     (1) 

for 0 1α< < . If F is continuous and strictly increasing, then  

( ) ( )1Q Fα α−=  

is the unique solution to Equation (1). In general, ( )Q α  satisfies  

( ){ } ( ){ },P Y Q P Y Qα α α< − < < <                (2) 

or equivalently  

( )( ) ( )( ).F Q F Qα α α− < <                   (3) 

Suppose that iX s′  for 1,2, ,i N=   are independent and identically distri-
buted (i.i.d) random variables with conforming survey values ( )1,2, ,iY i N=  . 
By definition, 1, , NY Y  are independent, identically distributed random va-
riables, each with common distribution function F. For all real t, the empirical 
population distribution function for 1, , NY Y  is defined to be  

( ) ( )
1

1
y

N

N i
i

F t I y t
N =

= ≤∑                     (4) 

where 

( ) 1 if ;
0 if otherwise.

i
i

y t
I y t

≤
≤ = 


 

The sample quantile of order α  is defined as  

( ) ( ){ }inf :
y yN NQ t F tα α= >                   (5) 

The sample quantile of order α  is a strongly consistent estimator of ( )Q α , 
unless ( )( )F Q α α=  and ( )( ) ( )( )F Q F Qα α ε= +  for some 0ε >  (i.e., un-
less F is flat in a right neighborhood of ( )Q α ). See ([25]).  

Theorem 1 ([26]). Let 1, , NY Y  be a random sample of size n with common 
distribution function F, and let 0 1p< < . If ( )y q p=  is the unique solution 
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of ( ) ( )F y p F y− < < , then ( ) ( )a.sˆnq p q p→  as n →∞ . 
Suppose a sample s of n units is drawn through simple random sampling 

without replacement from a finite population and r u s= −  be the non-sampled 
units of the finite population. Let Y be the survey variable associated with aux-
iliary variable X which are assumed to follow superpopulation model under 
model-based approach. A commonly used working model for the finite popula-
tion is 

( ) ( ) , 1, 2, ,i i i iY x x e i Nµ σ= + =                   (6) 

where ( )ixσ  is a known function of ix  that accounts for heteroscedasticity 
and ie s′  are independent and identically distributed (i.i.d) random variables 
with mean 0 and variance 2σ , ( ) ( )i iE Y xµ=  and  

( ) ( )2 if 1, 2, ,
,

0 elsewhere.
i

i j
x i NCov Y Y σ =

= 




 

Under model-based approach Equation (4) can be expressed as  

( ) ( ) ( )1
yN i j

i s j r
F t I y t I y t

N
∗

∈ ∈

 
= ≤ + ≤ 

 
∑ ∑               (7) 

where ( )ii I y t≤∑  represent the sampled part and is known while ( )ij I y t≤∑  
is the non-sampled part which is unknown. 

The problem is estimating the second term of Equation (7). To estimate Equa-
tion (7), [24] proposed a multiplicative bias corrected estimator for finite popu-
lation distribution given by  

( ) ( ) ( )( )1ˆ ˆ ˆMBC i j
i s j r

F t I y t H t x
N

µ
∈ ∈

 
= ≤ + − 

 
∑ ∑            (8) 

where ( )ˆ jxµ  is the model-based nonparametric estimator for ( )jxµ  and 
( )( )ˆ ˆ jH t xµ−  is the estimated distribution function of the residuals defined by 
( )ˆj j je y xµ= − . 

In this study, we propose a multiplicative bias corrected quantile estimator for 
finite population based on finite population distribution in Equation (8) given 
by  

( ) ( ){ } ( )( )
( ) ( ) ( )( )

ˆ ˆˆ ˆinf :

1 ˆ ˆˆ ˆ( )

MBC MBC MBC MBC

i MBC MBC j
i s j r

Q t U F t F Q

I y Q H Q x
N

α α α

α α µ
∈ ∈

= ∈ > =

 
= ≤ + − 

 
∑ ∑

   (9) 

The problem is to estimate ( )ˆ
MBCQ α  for any α  given. Thus, from the 

sample of n units of a population of size N, we observe , ,l ny y . The general 
method is formulated as follows: first obtain an estimator of the distribution 
function, ( )ˆ

MBCF t , and then estimate the quantile by taking the inverse. 

3. Properties of Proposed Estimator 
3.1. Asymptotic Unbiasedness 

In simple random sampling, as ( )( )ˆ
yMBC NnF Q α  is hypergeometrically distri-
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buted variable, then 

( )( ) ( )( )ˆ
y y yMBC N N NE F Q F Qα α α  = =

 
             (10) 

and 

( )( ) ( )1ˆ 1
yMBC N

fVar F Q
n

α α α−  = −
 

              (11) 

If the sample size n is sufficiently large then ( )( )ˆ
yMBC NF Q α  is approximately 

normal. 
Theorem 2 ([27]). Let x be in the interval 1A  containing ( )0

1q γ  as an inte-
rior point. Then the sample quantile, 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )
1

ˆrn rn rnq q f q F q F q Rγ γ γ γ γ γ
− ∗   = − − +        (12) 

with ( ) ( )1 2
rn p rR o nγ∗ −=  uniformly in γ  for γ  in 1H , where  

( ){ }1 1: andH F x x Aγ γ= = ∈   
Proof: For proof see [27]. 
We now study the properties of the ( )ˆ

MBCQ α  estimator. For this, a linear 
approximation is needed because ( )ˆ

MBCQ α  is not a continuous function. The 
estimator ( )ˆ

MBCQ α  can be expressed asymptotically as a linear function of the 
estimated distribution function evaluated at the quantile ( )

yNQ α  by the Ba-
hadur representation (see [28]) together with the results from Theorem 2 above. 

Let MBCF  be the multiplicative bias corrected distribution function of the 
density MBCf .  

Theorem 3 (Taylor’s Theorem). Let 1k ≥  be an integer and let the function 
:f →   be k times differentiable at the point a∈ . Then there exists a 

function :kh →   such that  

( ) ( )
( ) ( ) ( ) ( )( )

1
,

!

nk n k
k

n

f a
f x f a x a h x x a

n=

= + − + −∑         (13) 

and ( )lim 0kx a
h x

→
= . This is called the Peano form of the remainder.  

Then using Taylor series expansion of the function ( )( )ˆ
MBC MBCF Q α  around 

( )
yNQ α  we can write  

( )( )
( ) ( )( )

( ) ( )

( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

0

2

1
2

ˆ ˆ
!

ˆ

ˆ

ˆ

y

y

y y y

y y

y y y

n
nMBC N

MBC MBC MBC N
n

MBC N MBC N MBC N

MBC N MBC N

MBC N MBC N MBC N

F Q
F Q Q Q

n

F Q F Q Q Q

F Q Q Q

F Q f Q Q Q O n

α
α α α

α α α α

α α α

α α α α

∞

=

−

 = − 

 ′= + − 

 ′′+ − + 
  = + − +      

∑



   (14) 

where ( )( ) ( )( )y yMBC N MBC NF Q f Qα α′ = , according to [29] since MBCF  contains 
two derivatives in a ( )

yNQ α  neighborhood, this neighborhood is bound by the 
second derivative and ( )( )yMBC NF Q α′  is positive. 

Then solving for ( )ˆ
MBCQ α  in Equation (14) we have the Bahadur’s repre-
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sentation as 

( ) ( )

( )( ) ( )( ) ( )( )
1
2

ˆ

1 ˆ

y

y

y

MBC N

MBC MBC MBC N

MBC N

Q Q

F Q F Q O n
f Q

α α

α α
α

−

−

  = − +      

   (15) 

Moreover, it can be shown that 

( )( ) ( )( )
( )( ) ( )( )

1
2

ˆ

ˆˆ ˆ

y

y

MBC MBC MBC N

MBC MBC MBC N

F Q F Q

F Q F Q O n

α α

α α
−

−

 
= − +   

 

           (16) 

Substituting the above results of Equation (16) in Equation (15) yields 

( ) ( )

( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( )

1
2

1
2

ˆ

1 ˆˆ ˆ

1 ˆ

y

y

y

y

y

MBC N

MBC MBC MBC N

MBC N

MBC N

MBC N

Q Q

F Q F Q O n
f Q

F Q O n
f Q

α α

α α
α

α α
α

−

−

−

 
= − +   

 

 
= − +   

 

   (17) 

where ( ).MBCf  denotes the derivative of the limiting value of ( ).MBCF  as 
N →∞  and ( )( )ˆˆ

MBC MBCF Q α α= . 
The linear approximation previously used by [30] [31] helps to study the 

asymptotic properties of the estimator. On the other hand, the estimator ( )ˆ
MBCQ α  

is asymptotically unbiased because ( )ˆ
MBCF t  is unbiased estimator of ( )ˆ

NF t  
(see [24]). In this way  

( ) ( )

( )( ) ( )( )( )

( )( ) ( )( )( )

1
2

1
2

ˆ

1 ˆ

1 ˆ

y

y

y

y

y

MBC N

MBC N

MBC N

MBC N

MBC N

E Q Q

E F Q O n
f Q

E F Q O n
f Q

α α

α α
α

α α
α

−

−

 − 
   = − +       

 
= − +   

 

       (18) 

but ( )( )ˆ 0
yMBC NE F Qα α − = 

 and by using Equation (18) it can be seen that 

( ) ( )
1
2ˆ

yMBC NE Q Q O nα α
− 

  = +    
 

                (19) 

The bias of ( )ˆ
MBCQ α  is of order 

1
2O n

− 
  
 

. Thus, it converges to zero at a 

faster rate. Therefore, ( )ˆ
MBCQ α  is asymptotically unbiased. 

3.2. Asymptotic Variance 

Asymptotic Variance of ( )ˆ
MBCQ α  will be obtained as follows, Consider the 

Bahadur’s representation: 
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( ) ( )
( )( ) ( )( )( )

1
21ˆ ˆ

y y

y

MBC N MBC N

MBC N

Q Q F Q O n
f Q

α α α α
α

− 
− = − +   

 
  (20) 

Then applying variance on both side of Equation (20) we have  

( ) ( )

( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( ) ( )( )( ){ }

( )( ) ( )

( ) ( )( )

1
2

2

2

2

2

ˆ

1 ˆ

1 ˆ

1 ˆ

1 1 1

1 1

y

y

y

y

y

y

y

y

y

MBC N

MBC N

MBC N

MBC N

MBC N

MBC N

MBC N

MBC N

MBC N

Var Q Q

Var F Q O n
f Q

Var F Q
f Q

Var Var F Q
f Q

f
nf Q

f f Q
n

α α

α α
α

α α
α

α α
α

α α
α

α α α

−

−

 − 
   = − +       

 
 = −
 
  

 
 = +
 
  

 
− = −

 
  
−  = −  

      (21) 

3.3. Asymptotic Mean Squared Error 

The asymptotic mean squared error of the estimator ( )ˆ
MBCQ α  is given by  

( )( ) ( )( ) ( )( ) 2ˆ ˆ ˆ
MBC MBC MBCMSE Q Var Q Bias Qα α α = +          (22) 

Substituting Equations (19) and (21) we get  

( )( ) ( ) ( )( )

( ) ( )( )

212
2

2

1ˆ 1

1 11

y

y

MBC MBC N

MBC N

fMSE Q f Q O n
n

f f Q O
n n

α α α α

α α α

− −

−

  −  = − +         
−   = − +     

   (23) 

Equation (23) tends to zero as n →∞  and thus ( )( )ˆ 0MBCMSE Q α → . This 
shows that ( )ˆ

MBCQ α  is asymptotically consistent. 

4. Empirical Study 

The main purpose of this section is to compare the performance of the proposed 
estimator MBCQE with the existing quantile estimators: RKMQE, CDQE, FAQE 
and NWQE. In this study, two populations are considered, which are generated 
from the regression model given by 

( )i i iy m x e= +  

where 1 1000i≤ ≤  with the following mean functions described in Table 1. 
A population of 1000 auxiliary values ix  are generated as independent and 

identically distributed uniform random variables, [ ]0,1ix ∈ . The mean functions  
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Table 1. Mean functions used in the simulation study. 

Mean function  

Linear ( )1 2 0.5ix+ −  

Cosine ( )( )cos 1 2 0.5ix+ −  

 
represent a class of correct and incorrect model specifications for the estimators 
being considered. The errors are assumed to be independent and identically dis-
tributed (i.i.d) normal random variables having mean 0 and standard deviation, 

1σ = . They contain 1000 units and the population is simulated as i.i.d uniform 
random variables. The population values iy s′  are generated from the mean 
functions by adding the errors ie s′  in each of the cases. 1000 samples are simu-
lated using simple random sampling without replacement for each case. 

Nadaraya-Watson kernel weights are used in the smoothing of iy  to obtain 
the rough estimator, ( ) ( )1 ;n

n i i jjx w x l yµ
=

= ∑ , of the mean function ( )ix . A  

ratio 
( )

i
i

n i

y
x

β
µ

=


 is evaluated and is smoothed further to obtain the correction  

factor ( )ˆ ixα  which is then used together with the rough estimator to obtain the 
multiplicative bias corrected estimator, ( )ˆn ixµ , of the mean function. 

The existing estimators for quantile functions for finite populations that were 
used for comparison with our developed estimator Multiplicative Bias Corrected 
Quantile Estimator (MBCQE); 

( ) ( ){ }ˆ ˆinf :MBC MBCQ t U F tα α= ∈ >  

are: 
1) Chamber and Dunstan Quantile Estimator (CDQE):  

( ){ }, , ,
ˆ ˆinf |y CD y CDQ t F tα α= ≥  

2) Nadaraya Watson Quantile Estimator (NWQE):  

( ) ( ){ }ˆinf : , 0 1NW nQ p x F x p p= ≥ < <  

3) Rao Kovar Mantel Quantile Estimator (RKMQE):  

( )1
;

ˆ ˆ
RKM rkmQ Fα α−=  

4) Dorfman and Hall Quantile Estimator (FAQE):  

( ) ( ){ }ˆ ˆinf :DH DHQ p t F t p= ≥  

The results of this simulation study are summarized in Table 2. Table 2 shows 
the unconditional Biases, Relative Mean Error (RME) and Relative Root Mean 
Squared Error (RRMSE) for the estimators at various values of the quantile α  
(i.e. 0.25, 0.5 and 0.75). Linear and cosine mean functions were used to obtain the 
tabulated results. Similar results and conclusions can be obtained using other 
mean functions such as quadratic, sine, bump etc. To analyze the performance of 
the proposed estimator against some specified estimators, unconditional Relative  
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Table 2. Unconditional biases, relative mean errors and relative root mean squared errors. 

  LINEAR COSINE 

α Estimator Bias RME RRMSE Bias RME RRMSE 

0.25 

RKMQE 0.6048 3.0136 0.7977 0.3820 1.0475 0.4958 

CDQE 1.7358 3.5052 0.9279 0.3411 1.1029 0.5220 

FAQE 0.7600 2.9623 0.7842 0.3438 0.9495 0.4494 

NWQE −3.6280 3.6652 0.9702 −0.8407 0.9674 0.4579 

MBCQE 0.2452 2.9367 0.7773 0.2317 0.9384 0.4442 

0.5 

RKMQE −0.6990 2.9746 0.4565 −0.4352 1.0471 0.3544 

CDQE −1.2883 3.0075 0.4515 −0.5186 1.0699 0.3621 

FAQE −1.0713 2.9777 0.4470 −0.3968 1.0682 0.3616 

NWQE −4.3034 4.3185 0.6483 −1.6661 1.7740 0.6005 

MBCQE −0.6840 2.8757 0.4317 −0.3854 1.0133 0.3430 

0.75 

RKMQE −3.1533 4.13236 0.4376 −1.2097 1.5206 0.4045 

CDQE −4.0437 4.8268 0.5112 −1.3309 1.6303 0.4337 

FAQE −3.5487 4.5007 0.4767 −1.1978 1.5440 0.4107 

NWQE −6.7790 6.7822 0.7183 −2.4528 2.4667 0.6562 

MBCQE −2.9630 4.1183 0.4362 −1.1149 1.4458 0.3846 

 
Mean Error and Relative Root Mean Squared Errors for the estimator ( ),

ˆ
n XQ p  

are computed as  

( )
( ) ( ) ( )( ),

1

1 1 ˆRME
N

s
n X

s
Q p Q p

Q p N =

 = − 
 

∑            (24) 

and 

( )
( ) ( ) ( )( )2

,
1

1 1 ˆRRMSE
N

s
n X

s
Q p Q p

Q p N =

 = − 
 

∑           (25) 

where ( ) ( ),
ˆ s

n XQ p  is the quantile corresponding to the sth simulated sample 

{ }1 2, , ,s s s
nX X X  and N is the number of replications. The RME indicates the 

measure of how close the estimator being considered is from the actual value, 
while RRMSE indicates measure of accuracy of the estimator. For instance, an 
estimator, MBCQE, will be said to be “better” or more preferable than the other 
estimators if its RRMSE is comparably smaller. 

Bias of a quantile estimator refers to the deviation of the expected value of the 
estimator from the true quantile value. All of the quantile estimators considered 
here are biased but comparetively MBCQE exhibits a smaller bias. MBCQE can 
be seen to be a very efficient estimator of the empirical quantile function at all 
levels of the α-quantile followed closely by RKMQE and FAQE. CDQE proved to 
be a very inefficient estimator at all levels of α. 

Further, comparison of estimators was done with respect to empirical quantile 
function which further affirmed the results tabulated above. Table 3 and Table 4 
give a tabulation of all the estimators listed below. 
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Table 3. Quantile estimates for linear mean function. 

Quantile estimates 

Estimators 0.05 0.10 0.25 0.50 0.75 0.90 0.95 

Q (p) 1.2435 1.2435 3.7776 6.6617 9.4424 2.7891 1.2578 

RKMQE 3.6002 3.7099 4.3825 5.9927 6.2890 2.3354 4.2224 

CDQE 4.8990 4.8918 5.5135 5.3733 5.399 1.5787 2.3654 

FAQE 3.4606 3.235 4.5376 5.5904 5.894 2.3354 4.2224 

NWQE −1.1691 −0.8517 0.1497 2.3583 2.6635 2.3354 4.2224 

MBCQE −0.3213 0.5437 4.0229 5.9777 6.4790 2.6474 1.2347 

 
Table 4. Quantile estimates for cosine mean function. 

Quantile estimates 

Estimators 0.05 0.10 0.25 0.50 0.75 0.90 0.95 

Q (p) 0.8917 1.3130 2.1128 2.9543 3.7592 4.5294 5.0166 

RKMQE 2.469 2.5494 2.4947 2.5191 2.5495 2.5305 2.4572 

CDQE 2.6548 2.6190 2.4539 2.4357 2.4282 2.6412 2.5945 

FAQE 2.5477 2.3186 2.4566 2.5576 2.5615 2.7704 2.9166 

NWQE 2.5477 2.2673 1.2721 1.2882 1.3064 1.2944 1.2680 

MBCQE 1.6502 1.6450 2.3444 2.5690 2.6443 2.9880 3.1520 

 
CDQE overestimates the empirical quantile function at all points while MBCQE 

give an almost perfect estimation of the empirical quantile function. On the oth-
er hand, NWQE underestimates the true quantile function at some points to-
wards the lower tail while it overestimates the same function at other points 
along the upper tail. 

The conditional performance of the estimator was done and compared with 
the performance of other existing quantile estimators. To do this, 200 random 
samples, all of size 400, were selected and the mean of the auxiliary values ix  
was computed for each sample to obtain 200 values of X . These sample means 
were then sorted in ascending order and further grouped into clusters of size 20 
such that a total of 10 groups were realized. Further, group means of the means 
of auxiliary variables was calculated to get X . Empirical means and biases were 
then computed for all the estimators RKMQE, CDQE, FAQE, NWQE and 
MBCQE. The conditional biases were plotted against X  to provide a good un-
derstanding of the pattern generated. Figures 1-6 show the behavior of the con-
ditional biases, relative absolute biases and mean squared error realized by all the 
estimators of quantile functions under linear and cosine mean functions at vari-
ous values of the quantile α  (i.e. 0.25, 0.5 and 0.75). 

In most cases, there are significant differences among the bias characteristics 
of the various estimators. A detailed examination of the plots reveals that 
MBCQE and RKMQE have lower levels of bias overall, as indicated by the  
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Figure 1. Conditional biases, RAB and MSE for the estimators using a linear mean func-
tion at 0.25α = . 
 

 

Figure 2. Conditional biases, RAB and MSE for the estimators using a linear mean func-
tion at 0.5α = . 
 

 

Figure 3. Conditional biases, RAB and MSE for the estimators using a linear mean func-
tion at 0.75α = . 
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Figure 4. Conditional biases, RAB and MSE for the estimators using a cosine mean func-
tion at 0.25α = . 
 

 

Figure 5. Conditional biases, RAB and MSE for the estimators using a cosine mean func-
tion at 0.5α = . 
 

 

Figure 6. Conditional biases, RAB and MSE for the estimators using a cosine mean func-
tion at 0.75α = . 
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proximity of plotted curves to the horizontal (no bias) line at 0.0 on the vertical 
axis. Interestingly, despite the rather entangled nature of some of the plots, esti-
mator MBCQE emerges clearly as the least biased for nearly every group means 
of the means of auxiliary variables and quantile level. For the median, several es-
timators exhibit identical bias, and for most of the estimators, bias is not sym-
metrical with respect to quantile level. 

Plots of Conditional MSE versus group means of the means of auxiliary va-
riables similarly reveal coincident behavior for the quantiles. MBCQE and RKMQE 
produce generally the lowest MSE values. In particular, MBCQE yields the low-
est MSE in most cases among all other estimators. MBCQE is consistently better 
than all other estimators for both bias and MSE. All of these estimators are 
asymptotically unbiased and they all exhibit MSE consistency in that the MSE 
values tend toward zero as sample size increases. 

From the plots it can be seen that MBCQE and RKMQE performed equally 
better than all other estimators of the true quantile function and it can be seen 
that sample balancing does not affect the performance of the estimators. 

5. Conclusions and Suggestions 

In conclusion, using the results from Table 2-4 and Figures 1-6, MBCQE was 
found to be an efficient estimator of the quantile function for finite population. 
NWQE was found to be very inefficient of all the estimators with large condi-
tional bias, relative absolute bias and mean squared error compared to the other 
estimators. MBCQE can therefore be used in estimating quantile functions for 
various units in the population in various sectors of the economy. Finally, fur-
ther work can be done on the construction of confidence intervals for the pro-
posed estimator, and a researcher can investigate various bias correction strate-
gies such as Adaptive Boosting and the Bootstrap bias reduction techniques in 
quantile function estimation. 
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