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Abstract 
We compute rational points on real hyperelliptic curves of genus 3 defined on 
  whose Jacobian have Mordell-Weil rank 0r = . We present an imple-
mentation in sagemath of an algorithm which describes the birational trans-
formation of real hyperelliptic curves into imaginary hyperelliptic curves and 
the Chabauty-Coleman method to find ( )C  . We run the algorithms in Sage 
on 47 real hyperelliptic curves of genus 3. 
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1. Introduction 

Let C be a hyperelliptic curve of the genus 2g ≥  defined on  . The Mordell 
conjecture proved by Fattings, gives that the set of rational points ( )C   is fi-
nite. The hyperelliptic curves can be subdivided into two types: those with real 
models and those with imaginary models. Our objective is to compute the rational 
points in the case of real hyperelliptic curves of genus 3 whose Jacobian have a 
Mordel-Weil rank equal to 0. This fits into the particular case where r g<  has 
been considered by Chabauty and the techniques developed by Coleman in 1980 
[1], allow us to use the p-adic integration to explicitly computation the set of ra-
tional points [2]. 

Although there is an algorithm by Jennifer Balakrishnan computing Coleman 
integrals in the case of real hyperelliptic curves in [3], this one is unfortunately 
not available in Sage. We then use the birational transformation of real hyperel-
liptic curves into imaginary hyperelliptic curves, because in the latter case, Bala-
krishnan, Bradshaw and Kedlaya described and implemented in Sage the explicit 
computation of Coleman integrals on imaginary hyperelliptic curves [4]. We 
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start with an overview of hyperelliptic curves and the transition from a real 
hyperelliptic curve to an imaginary hyperelliptic curve in Section 1. In Section 2, 
we recall the Chabauty-Coleman method and explicit Coleman integration. In 
Section 3, we describe our algorithm, which is subdivided into three sub-algo- 
rithms: the first one that transforms a real curve to an imaginary curve; the second 
computes the set of rational points of the imaginary hyperelliptic curve found in 
Algorithm 3. Algorithm 4 is this of Maria Inés de Frutos Fernaandez and Sachi 
Hashimoto in [5] and its implementation in [6]. To the latter, we added a func-
tion allowing it to take the hyperelliptic curves of genus 3 and of rank 0 given by 
non-monic polynomials. Finally, the third algorithm constructs the rational 
points of the curve C which is real hyperelliptic from the rational points of the 
imaginary hyperelliptic curve birationally equivalent to C. In Section 4, we 
present the results obtained on a list of curves taken from the database of hyper-
elliptic curves of genus 3 [7]. 

2. Background on Hyperelliptic Curves 

In this section we recall the definition of hyperelliptic curves, the different types 
of hyperelliptic curves and how to pass from a real hyperelliptic curve to an im-
aginary hyperelliptic curve. For more detail in this section, we refer the reader 
to [8] [9]. A hyperelliptic curve of genus 2g ≥  over   is defined by an equa-
tion: 

 ( )2y f x=                             (1) 

where f is a polynomial of [ ]x  of degree 2 2g +  or 2 1g + . This defines a 
smooth irreducible algebraic curve in the affine plane. Considering its smooth 
projective model which is obtained by adding one or two points at infinity, we 
distinguish two types of hyperelliptic curves which differ by the number of ra-
tional points at infinity: 
- Real hyperelliptic curves: they are those which have two points at infinity. In 

this case, the polynomial f is of degree 2 2g + ;  
- Imaginary hyprelliptic curves: they are those which have a one point at infin-

ity. In this case, the polynomial f is of degree 2 1g + .  
In this article, we are interested in real hyperelliptic curves.  
A real hyperelliptic curve C of genus g over   is defined by an absolutely 

irreducible equation of the form: 

 ( )2 2 2 2 1 2 2 1
2 2 2 1 2 2 1 0

g g g g
g g g gy f x f x f x f x f x f+ + −
+ + −= = + + + + +      (2) 

where 2 2 0gf + ≠ . The two points at infinity correspond to the two square roots 
of the leading coefficient of f. These points are rational if and only if this leading 
coefficient is a square, so that its square roots are rational numbers.  

Let us soppose that 2 2gf +  is a non-zero square in  . We set 2
2 2gf s+ = . The 

points at infinity of C are given in projective coordinates by ( )1 1: : 0s∞ =  and 
( )2 1: : 0s∞ = − , which are rational [9].  

The set of rational points on C denoted by ( )C  , is defined by:  
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( ) ( ) ( ){ } { }2 2
1 2, | ,C x y y f x= = ∞ ∞   

Let C be a real hyperelliptic curve of genus g over   with equation ( )2y f x= . 
If there exists a ramified prime divisor of degree 1 in   of C, then the curve C 
is birationally equivalent to an imaginary hyperelliptic curve ( )2:C y f x′ ′ ′ ′=  
of genus g. Indeed, if we denote ( ),P a b=  a rational point of the curve C such 
that P is equal to its image under the hyperelliptic involution ( ) ( ),P a bι = −  i.e.: 
that 2 0b = , then P is said to be ramified and in this case the divisor 1D P= −∞  
is the ramified prime divisor, then we can make the following change of varia-
ble:  

 1

1 and g

ax yx y b
x x +

′ ′+
= = −

′ ′
                  (3) 

In the equation of C, we thus find the equation of C′ .  
Therefore P is ramified if 0b = . By substituting a and 0b =  in the equation 

of C, we get ( ) 0f a = . We conclude that if the polynomial ( )f x  has at least 
one root in  , then the real hyperelliptic curve of equation ( )2y f x=  admits 
at least one rational ramified point and therefore it is birationally equivalent to 
an imaginary hyperelliptic curve via the change of variables below.  

We are interested in real hyperelliptic curves of genus 3 having at least one ra-
tional point of ramification and whose Jacobians have Mordell-Weil rank 0. 

3. Background Chabauty-Coleman Method and Coleman  
Integration 

In this section we recall the Chabauty-Coleman method used to compute the 
rartional points in part 2 of our algorithm. We also give a brief reminder on Cole-
man integrals. For more details see [10].  

3.1. Chabauty-Coleman Method 

Let C be a smooth projective curve over the rational numbers of genus at least 2. 
From the work of Faltings, we know that ( )C   is finite, but the proof of Falt-
ings does not explicitly give the set ( )C  . However, before Faltings’ work, Cha-
bauty considered the following configuration. Let p be a prime number and 

( )pP C∈  . We consider the following inclusion:  

[ ]: ,P C J Q Q Pι → → − . 

Let ( )J   be the p-adic closure of ( )J   and define  
( ) ( ) ( )( ) ( )p P pC J C Jι=     . Chabauty proved the following case of 

Mordell’s conjecture: 
Theorem 2.1. Let C   be a curve of genus 2g ≥  such that the Mordell-Weil 

the rank of the Jacobian J of C over Q is less than g, and let p be a prime number, 
then ( ) ( )pC J   is finite.  

Chabauty’s result was then reinterpreted and made effective by Coleman, who 
showed what follows:  

Theorem 2.2. Let C be as above and suppose that p is a prime number of good 
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reduction for C. If 2p g> , then: 

( ) ( )# # 2 2pC C g≤ + −  . 

The Chabauty-Coleman method uses the theory of p-adic integrations on 
curves to construct the p-adic integrals of 1-forms on ( )pC   which vanish on 
( )C   and which allow in practice to explain the set of rational points which are 

contained in the intersection of the set of zeros of the integrals of g-r-independent 
forms on the base change of C to p .  

3.2. Computing Coleman Integrations 

In order to Compute ( )C  , we need to evaluate 
Q

P
ω∫  for ( )1

C pω∈Ω   where 

( )1
C pΩ   is the g-dimensional vector space of regular 1-forms on C. Let 

( )0 2 1i giω ≤ ≤ −
 

be a differential basis of ( )1
dRH C  with 

2
i

i
dxx

y
ω = , then we can write  

2 1

0

g

i i i
i

df aω ω
−

=

= + ∑  where ia ∈  and if  is in the Monsky-Washnitzer (MW)  

weak completion of the coordinate ring of C deprived of the Weierstrass points 
[11]. And let ( ), pP Q C∈  . So: 

( ) ( )
1

0

gQ Q
i i i iP P

i
f Q f P aω ω

−

=

= − +∑∫ ∫  

Suppose that p is a prime of good reduction for C and let C  be the reduction 
of C modulo p. Then there is a natural reduction ( ) ( ): pred C C→   which 
sends the points of ( )pC   to the points of ( )pC  . If ( )pP C∈  , denote by 

( )pP C∈   the reduction of P modulo p. We say that two points ( ), pP Q C∈   
are in the same residue disk if they have the same reduction modulo p. To com-
pute 

Q
iP

ω∫ , we consider two cases: P and Q are in the same residue disk and P 
and Q are in the residue disks different. Algorithms in both cases are given be-
low (Algorithm 1, Algorithm 2). For more details see [4]. 

4. The Algorithm 

In this section, we specialize in the case that interests us, where C is a hyperellip-
tic curve of genus 3 given by a model of even degree defined by:  

( )2y f x= , 

where ( ) [ ]f x x∈  is monic of degree 8 (to avoid the leading coefficient of the 
polynomial f is not a square in  ) and having at least one root in  . We as-
sume that the Jacobian J of C has a Mordell-Weil rank 0 over  . Our goal is to 
compute ( )C  . Since our hyperelliptic curve is given by a polynomial having 
at least one root in  . Then from Section 1, we can find at least one hyperellip-
tic curve of odd degree model isomorphic to C. We have implemented the algo-
rithm bellow on Sage (Algorithm 3), which determines, the curve C′  isomor-
phic to C. 
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Algorithm 1. ( ), pP Q C∈   are in the same residue disk (tiny Integrals). 

Input: C hyperelliptic curve over an unramified extension K of p  with p a prime of good 

ordinary reduction, Points P, Q on C. 

Output: 
Q

iP
ω∫ . 

1) Construct an linear interpolation ( ) ( ),x t y t  from P to Q. 

2) Formally integrate the power series in t: ( ) ( )( )
( )( )

( )

2 2
Q Q Q t ii

iP P P t

d x tdxx x t
y y t

ω = =∫ ∫ ∫ . 

3) Return 
Q

iP
ω∫ . 

 
Algorithm 2. ,P Q  are in different residue disks, we use Frobenius to φ . 

Input: C hyperelliptic curve over an unramified extension K of p  with p a prime of good 

reduction Points P, Q on C. 

Output: 
Q

iP
ω∫ . 

1) Find Teichmüller points ,P Q  in the disks of ,P Q . 

2) Compute the tiny integrals 
P

iP
ω
′

∫  and 
Q

iQ
ω
′

∫ . 

3) Calculate the action of Frobenius on each basis element ( )* 2 1gm
i ij j ij

M dfφ ω ω−
= +∑ . 

4) Change of variables gives ( ) ( ) ( )2 1

0

Qg

j i ij P
M I f Q f Qω

′−

= ′
− = −∑ ∫  and solving the linear system 

gives the integrals 
Q

iP
ω
′

′∫ . 

5) Correct endpoints to recover 
Q P Q Q

i i i iP P P Q
ω ω ω ω

′ ′

′ ′
− + +∫ ∫ ∫ ∫ . 

6) Return 
Q

iP
ω∫ . 

 
Algorithm 3. Transformation of a genus 3 real hyperelliptic curve in a genus 3 imaginary 
hyperelliptic curve.  

1) Function TransformationCurves( ( )2:C y f x= ). 

2) Computation of the roots of f. 
3) Choose a root of f. 
4) ( ) = 0a f a← . 

5) Compute: 2 2 1g axF x f
x

+ + =  
 

. 

6) C′  = Hyperelliptic(F). 
7) Return C′ . 

 
The hyperelliptic curve C′  obtained in this algorithm is given by an equa-

tion of the form:  

( )2y F x=  

where ( ) [ ]F x x∈  not necessarily monic of degree 7. 
Such a model has a unique point at inifinity which we denote by ∞ . The ja-

cobian J ′  of C′  also has a rank of Mordell-Weil 0 on  . 
Let 7p ≥  a prime number such that C′  has a good reduction mod p (donte 

that p must not be divisible by the dominant coefficient of F). We now want, 
probably to count rational points of C′  so that we can count the set of rational 
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points of C. For this, we use the algorithm described in [5] which we transcribe 
here (Algorithm 4).  

Note that the output of this algorithm is a finite subset ( )pC′   containing 
( )C′  , which is returned as three separate subsets:  

● The set ( )C′   of rational points of C′ .  
● The set of points Q in ( ) ( )\pC C′ ′   such that [ ] ( )pQ J−∞ ∈   is 2-tor- 

sion.  
● The set of points Q in ( ) ( )\pC C′ ′   such that [ ] ( )( )Q J C′−∞ ∈   is an 

n-torsion point for. 
In this paper we are interested that at the set ( )C′   of rational points of 

C′ . 
Note that the implementation of this algorithm only took into account the hyper-

elliptic curves defined by a polynomial monic [5]. Since, in most of the cases that 
have processed the hyperelliptic curve it was defined by a polynomial no monic. 
So we had to add to the code in Sage of [6] a function allowing this algorithm to 
take into account polynomial not necessarily monic. 

Here we present the code for this function in SageMath Software [12].  
 

 

 
 

We give below the steps of Algorithm 4, for more details see [5]. 
Step 1 (Required precision.) We need to choose the p-adic precision N and 

the t-adic precision M to guarantee that, in Step 3, we will obtain all the roots 
of ( )if pt  in p . Set 2 4N p= +  and 2 1M p= +  is sufficient for p prime 

2 6p g> =  [2]. 
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Algorithm 4. Chabauty-Coleman method for genus 3 rank 0 hypperelliptic curve.  

1) Function Chabauty-Coleman( C′ , p, ( )know
C′  ). 

2) Set the p-adic precision N to 2 4p + . 
3) Set the t-adic precision M to 2 1p + . 
4) Initialize found-points := empty list. 

5) for each ( )pP C∈   up to the standard involution ι  do. 

6) Compute 1 2;f f  and 3f  in local coordinates. 

7) for each point ( )pQ C∈   corresponding to a common zero of the if  do. 

8) Add Q and ( )Qι  to found-points. 

9) end for. 
10) end for. 
11) return  -points of C′ . 

 
Step 2 (Annihilator) A basis of the space of differentials ( )0 1,

p
H C′ Ω ; is 

given by { }0 1 2, ,ω ω ω  where ( )2i
i x y dxω = . For each 0;1;2i = , define: 

( ) z
i if z ω

∞
= ∫  

where ∞  denotes the point at infinity. The functions ( )if z  are zero on all ra-
tional points of C′ , but not identically zero.  

Step 3 (Searching in residue discs.) For each point ( )pP C∈  , we compute 
the set of p -rational points P reducing to P  such that ( ) 0if P =  for 

0;1;2i = . To perform this computation, we consider two different cases: 
1) If there is a point ( )knownP C′∈   reducing to P , then we expand each 

iω  in terms of a uniformizer t at P and we formally integrate to obtain three 
power series ( )if t , that parametrize the integrals of the iω  between P and any 
other point in the residue disc.  

2) Otherwise, we start by finding a pQ -point P reducing to ( )0 0;P x y=  (note 
that P  cannot be ∞  in this case). If 0 0y =  we can take ( )0 ;0P x=  where 0x  
is the Hensel lift of 0x  to a root of ( )F x . Otherwise, we can take ( )0 0;P x y=  
where 0x  is any lift of 0x  to p  and 0y  is obtained from 0y  by applying 
Hensels Lemma to ( )2

0y F x= . Then we set ( ) ( ) z
i i if t f t ω

∞
= + ∫ ; where each 

( )if t  parametrizes the integral of iω  between P and any other point in the re-
sidue disc. 

Step 4 (Identifying the rational points.) Now, for each of the points Q found in 
Step 3, we attempt to reconstruct Q as a Q-rational point, using Sage. If this is 
not possible, then [ ]Q −∞  must be a torsion point in ( )pJ  , because J has 
rank 0. 

Once we have the rational points of C′  we can reconstruct the rational points 
of C. Note that C has the same number of rational points as C′  and being a 
curve given by a model of even degree, it has two points at infinity that we note 

+∞  and −∞ . 
We use above algorithms to determine the rational points of C from the ra-

tional points of C′  (Algorithm 5). 
Note also that, if after reconstruction, we do not have the at inifinity, we must  
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Algorithm 5. Computation of the rational points of C.  

1) Function RationalPoints-of-C (C, ( )C′  ). 

2) Initilize found-ponits = empty list. 
3) Add ( ),0P a=  to found-points. 

4) for each ( ) ( ),Q x y C′ ′ ′∈   such that x a′ ≠  do. 

5) Compute ( ) ( ),P x y C∈   such that. 

6) 1 axx
x

′+
=

′
 and 

4

yy
x
′

=
′

. 

7) end for. 
8) Add P and ( )Pι  to found-points. 
9) return  -points of C. 

 
add them because they are known in advance in our case these are the coordi-
nate points ( )1:1: 0  and ( )1: 1: 0− .  

5. Example 

We run our algorithms in Sage on a list of 47 hyperelliptic curves of genus 3 and 
rank 0, obtained from the database [7] giving the models of even degree poly-
nomials having at least one root in  .  

Our implementation proves that for each of the studied curves, the set of ra-
tional points is equal to the set of rational points of naive height at most 105.  

Figure 1 shows how many of the curves in our list have certain number of ra-
tional points.  

We observe that the maximun of the points is 4 and that a majority of the 
curves have three rational points. 

We conclude this section, showing how the algorithms work on a particular 
curve and we show an example of a curve which does not have rational points at 
infinity.  

5.1. Example 

Consider a hyperelliptic curve C of genus 3 given by: 
2 8 7 6 5 4 3 2: 4 4 2 8 8 4C y x x x x x x x x= − + + − + + − . 

The function RankBound in Magma shows that the jacobian J of C has a rank 
of Mordell-Weil 0. Then we can apple the algorithms described above to com-
pute the number of rational points of C. We proceed as follows: 

Let’s pose ( ) 8 7 6 5 4 3 24 4 2 8 8 4f x x x x x x x x x= − + + − + + − . It is easy see that 
f vanishes into 0∈ . Therefore, the curve C is  -isomorphic a imaginary 
hyperelliptic curve that denote C′ . 

Step 1: Compute of the equation of C' 
Let ( )2y F x=  the equation of the curve C′ . By Algorithm 3, we have  

( ) 8 1 axF x x f
x
+ =  

 
 with 0a = , then C′  is given by: 

2 7 6 5 4 3 2: 4 8 8 2 4 4 1C y x x x x x x x′ = − + + − + + − + . 
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Figure 1. Number of hyperelliptic curves of genus 3 given by a model of even degree in 
the list and n points rationels. 

 
Step 2 Computing rational points of C' 
Using Magma we find that the set of rational points of C′  with a height 

bounded by 105 is: 

( ) ( ) ( ) ( ){ }know , 0, 1 , 0,1 , 1,0C′ = ∞ − . 

Since the curve has good reduction modulo 7 > 6, we run the Algorithm 4 using 
this prime. The points of ( )7C′   are as follows:  

 ( ) ( ) ( ){ }, 1;0 , 0;1 , 0;6∞ . 

After Hensel lifting each of these points to a point of ( )7C′  , we write 
( ) ( )0 1,f z f z  and ( )2f z  in local coordinates, we obtained: 

( )

( )

3 5 7 9
0

11 13 15

1 9 1767 62103 9063575
4 32 2560 28672 1179648
338395653 25665563035
11534336 218103808

f z z z z z z

z z O z

= − − − − −

− − +
 

( )

( )

3 5 7 9
1

11 13 15

1 25 321 55933 8124485
4 96 512 28672 1179648
302419335 22889075713
11534336 218103808

f z z z z z z

z z O z

= − − − − −

− − +
 

( )

( )

3 5 7 9
2

11 13 15

1 23 1451 50195 7261675
4 96 2560 28672 1179648
269617641 20370900655
11534336 218103808

f z z z z z z

z z O z

= − − − − −

− − +
. 

Then we use the PARI/GP function polrootspadic to compute the common 
zeros of the ( ) 18

0 mod 7f z , ( ) 18
1 mod 7f z  and ( ) 18

2 mod 7f z . We notice, that 
they have the common zeros in the discs ( ) ( ), 1;0 , 0;1∞  and ( )0;6  which cor-
respond respectively to the points ( ) ( ), 1,0 , 0,1∞  and ( )0, 1− . 

Therefore, we have shown that ( ) ( ) ( ) ( ){ }, 0; 1 , 0;1 , 1;0C′ = ∞ − .  
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Step 3 Determination of the rational points of C  
We now move on to the phase of constructing the rational points of C from 
( )C′   using Algorithm 5. We start adding the point used for the variable change 

i.e.: ( )1 0;0P a =  and the points at infinity +∞  and −∞ . Let  
( ) ( )1,0Q C′= ∈  , we compute the point ( ) ( )2 ;P x y C∈   such that  
1 axx

x
′+

=
′

 and 4

yy
x
′

=
′

 Hence ( )2 1;0P = . Since Q is the only point in C′   

whose the x-coordinate is different from 0a = , Algorithm 5 stops here. There-
fore: 

( ) ( ) ( ){ }, , 0;0 , 1;0C + −= ∞ ∞ . 

We check that we have the same result using Magma with a height of 105. 
In our list, we found case of a hyperelliptic curve whose polynomial f is not 

monic and its leading coefficient is not a square in  . So the curve has no pints 
at infinity. We present it in the following example.  

5.2. Example 

Let be the hyperelliptic curve: 
2 8 7 6 5 4 3 2: 3 8 18 18 15 2 5 8C y x x x x x x x x= − − − − − + + + . 

This curve does not have rational points at infinity since the leading coeffi-
cient of the polynomial defining the curve is not a square in  .  

By Algorithm 3, the curve C is transformed into the imaginary hyperelliptic 
curve C′  given by: 

2 7 6 5 4 3 2: 8 5 2 15 18 18 8 3C y x x x x x x x′ = + + − − − − − . 

Using Magma, we have: 

( ) { }knowC′ = ∞ . 

Since the curve has good reduction modulo 7, we run Algorithm 4 and we 
find that ( ) { }C′ = ∞ .  

Since C′  has only one rational point, then C will only have one rational point 
too which will be none other than the point used for the change of variable. By 
Algorithm 5, we get ( ) ( ){ }0,0C = .  

6. Conclusion 

In this paper, we have presented the computation of rational points on hyperel-
liptic curves of genus 3 given by an even degree model and whose Jacobian has a 
Mordell-Weil rank 0, using the isomorphism between the real hyperelliptic 
curve and the imaginary hyperelliptic curve. Our calculations show that the ra-
tional points on C are the same as when we search on Magma with a height of at 
most 105. 
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