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Abstract 
The purpose of this article is to investigate approaches for modeling individ-
ual patient count/rate data over time accounting for temporal correlation and 
non-constant dispersions while requiring reasonable amounts of time to 
search over alternative models for those data. This research addresses formu-
lations for two approaches for extending generalized estimating equations 
(GEE) modeling. These approaches use a likelihood-like function based on 
the multivariate normal density. The first approach augments standard GEE 
equations to include equations for estimation of dispersion parameters. The 
second approach is based on estimating equations determined by partial de-
rivatives of the likelihood-like function with respect to all model parameters 
and so extends linear mixed modeling. Three correlation structures are con-
sidered including independent, exchangeable, and spatial autoregressive of 
order 1 correlations. The likelihood-like function is used to formulate a like-
lihood-like cross-validation (LCV) score for use in evaluating models. Exam-
ple analyses are presented using these two modeling approaches applied to 
three data sets of counts/rates over time for individual cancer patients in-
cluding pain flares per day, as needed pain medications taken per day, and 
around the clock pain medications taken per day per dose. Means and disper-
sions are modeled as possibly nonlinear functions of time using adaptive re-
gression modeling methods to search through alternative models compared 
using LCV scores. The results of these analyses demonstrate that extended li-
near mixed modeling is preferable for modeling individual patient count/rate 
data over time, because in example analyses, it either generates better LCV 
scores or more parsimonious models and requires substantially less time.  
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1. Introduction 

An ongoing study (NIH/NINR 1R01NR017853) of patients with cancer is col-
lecting daily longitudinal count/rate data including numbers of pain flares per 
day and numbers of as needed pain medications taken per day. Data are being 
collected for each study participant over periods of up to five months long. A 
completed study (NIH/NINR RC1NR011591) collected numbers for cancer pa-
tients over 3 months of around the clock pain medications taken per day per 
dose, that is, the number of times a medication is taken in a day relative to the 
number of doses that are supposed to be taken in a day. Standard assumptions of 
means linear in time and dispersions constant over time are not always appro-
priate for such data. Also, a Poisson process assumption of independence over 
time needs not always hold. A model selection score needs to be defined for 
evaluating models for the data and for use in searches over alternative models. 
Times to conduct these searches need to be as short as possible, especially as the 
number of time measurements increases. 

Approaches are presented for modeling mean counts/rates over time sepa-
rately for each individual patient controlling for temporal correlation as well as 
for time-varying dispersions. These approaches use Poisson regression methods, 
because count/rate data are being modeled. Generalized estimating equations 
(GEE) methods [1] [2] provide a natural choice for modeling correlations for 
such count variables. However, standard GEE methods have limited value, be-
cause they assume constant dispersions. Furthermore, GEE methods avoid spe-
cification of likelihood functions, which are useful for generating model selec-
tion criteria. In what follows, two extensions of GEE methods are formulated 
and evaluated that address temporal correlation and time-varying means and 
dispersions for repeated count/rate measurements. A likelihood-like function, 
that is, a function used like a likelihood but which needs not integrate to 1, is de-
fined and used in computing parameter estimates for these extensions along with 
a model selection criterion for comparing alternative models. Example analyses of 
selected individual cancer patient count/rate data are presented using adaptive 
regression methods [3] for identifying possibly nonlinear trajectories for means 
and dispersions of counts/rates over time while controlling for temporal correla-
tion. 

2. Modeling Individual Count/Rate Data 
2.1. Generalized Linear Modeling of Means 

Let ( )t iy  denote count values for an individual patient observed at N distinct 
times within a general set T of times, that is, ( ) ( ){ }:1t i T t i i N∈ = ≤ ≤ . Com-
bine these into the 1N ×  vector y . Let ( ) ( )t i t iEyµ =  denote associated mean 
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or expected counts and combine these into the 1N ×  vector µ . Denote the re-
siduals as ( ) ( ) ( )t i t i t ie y µ= −  for ( )t i T∈  and combine these into the 1N ×  
vector = −e y µ . Let ( ),t i jx  denote predictor values over times ( )t i T∈  and 
over predictors indexed by 1 j J≤ ≤  and combine these into the 1J ×  vector 

( )t ix  with transpose denoted by ( )
T
t ix  for ( )t i T∈ . Let X  be the N J×  ma-

trix with rows ( )
T
t ix  for 1 i N≤ ≤ . Let β  denote the associated 1J ×  vector 

of coefficient parameters. Use generalized linear models [4] [5] of ( )t iµ  for 
( )t i T∈  with natural log link function ( ) ( )logeh µ µ=  so that  

( )( ) ( )
T

t i t ih µ = ⋅x β  for ( )t i T∈ . When ( ),1 1t ix =  for ( )t i T∈ , the first entry 
𝛽𝛽1 of β  is an intercept parameter. Treat each ( )t iy  as Poisson distributed so 
that its variance is ( )( ) ( )t i t iV µ µ= .  

The counts ( )t iy  sometimes have associated totals ( ) 0t iY > , and then the 
model for the mean counts ( )t iµ  is converted to a model for the means ( )t iµ′  of 
the rates ( ) ( ) ( )t i t i t iy y Y′ =  using offsets ( ) ( )( )logt i t io Y= . Formally, replace 

( )
T
t i ⋅x β  by ( ) ( )

T
t i t io⋅ +x β  so that mean counts are ( ) ( ) ( )( )Texpt i t i t ioµ ⋅= +x β  

and then 

( ) ( ) ( ) ( ) ( )( )Texpt i t i t i t i t iEy Yµ µ′ ′ ⋅= = = x β  

are the mean rates. 

2.2. Time-Varying Dispersions 

Let ( ),t i jx′  denote predictor values over times ( )t i T∈  and over predictors in-
dexed by 1 j J ′≤ ≤  and combine these into the 1J ′×  vectors ( )t i′x  for 
( )t i T∈ . Let ′X  be the N J ′×  matrix with rows ( )

T
t i′x  for 1 i N≤ ≤ . Let 

′β  denote the associated 1J ′×  vector of coefficient parameters. Let ( )t iϕ  
denote dispersion values over times ( )t i T∈  satisfying ( )( ) ( )

Tlog t i t iϕ ′ ′= ⋅x β  
and define the extended variances as  

( ) ( ) ( )( ) ( ) ( )
2
t i t i t i t i t iVσ ϕ µ ϕ µ= ⋅ = ⋅  

and the extended standard deviations as ( ) ( ) ( )
1 2 1 2

t i t i t iσ ϕ µ= ⋅  for ( )t i T∈ . Infor-
mally, these quantities extend the usual Poisson variances and standard devia-
tions through multiplication by dispersions. These are used to compute the 
standardized residuals ( ) ( ) ( )t i t i t istde e σ= . Combine the extended standard 
deviations into the 1N ×  vector σ . When ( ),1 1t ix′ =  for ( )t i T∈ , the first 
entry 1β ′  of ′β  is an intercept parameter. The constant dispersion model 
corresponds to ( ),1 1t ix′ =  for ( )t i T∈  with 1J ′ = . This is the dispersion mod-
el used in standard GEE modeling. 

When offsets ( )t io  are used to convert the model for the counts ( )t iy  to a 
model for the rates ( )t iy′ , they can also be added to the dispersions. The disper-
sions then satisfy ( )( ) ( ) ( )

Tlog t i t i t ioϕ ′ ′= ⋅ +x β  so that the extended variances for 
the counts ( )t iy  are  

( ) ( ) ( ) ( )( ) ( )( ) ( )( )2 T T 2exp exp expt i t i t i t i t i t ioσ ϕ µ ′ ′= ⋅ = ⋅ ⋅ ⋅⋅x xβ β  

and then the variances for the rates ( )t iy′  are 
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( ) ( ) ( ) ( ) ( )
2 2 2

t i t i t i t i t iTσ σ ϕ µ′ ′ ′= = ⋅
 

where 

( ) ( )( )Texp .t i t iϕ′ ′ ′= ⋅x β  

2.3. Modeling Correlations 

Denote the covariance matrix for the count vector y  as Σ . Use the GEE ap-
proach [1] [2] to model the covariance matrix for y  as  

( ) ( ) ( )Diag Diagρ= ⋅ ⋅Rσ σΣ  where ( )Diag σ  is the N N×  diagonal matrix 
with diagonal entries ( )t iσ  for ( )t i T∈  and ( )ρR  is a N N×  correlation 
matrix with diagonal entries 1 and off diagonal entries ( ) ( ),t i t iR ′  for 1 i i N′≤ ≠ ≤  
determined by a correlation parameter ρ  varying with the assumed correla-
tion structure. Under independent (IND) correlations, ( ) ( ) IND, 0t i t iR ρ′ = =  for 
1 i i N′≤ ≠ ≤ . A Poisson process generates such correlations. Under exchangea-
ble (EXCH) correlations, ( ) ( ) EXCH,t i t iR ρ′ =  for 1 i i N′≤ ≠ ≤ , that is, the correla-
tions are constant. Under autoregressive of order 1 (AR1) correlations,  

( ) ( )
( ) ( )

AR1,
t i t i

t i t iR ρ ′−
′ =  for 1 i i N′≤ ≠ ≤  where ( ) ( )t i t i′−  is the absolute value 

of ( ) ( )t i t i′− . These differences are all assumed to be integers so that the corre-
lations ( ) ( ),t i t iR ′  are all well-defined. In general, ( ) ( ),t i t iR ′  are spatial AR1 corre-
lations. The special case of non-spatial AR1 correlations with ( )t i i=  treats times 
as equally spaced. The parameter AR1ρ  is called the autocorrelation. 

2.4. Possible Extensions 

The above formulation can be extended to address repeated measurements of 
types other than counts/rates and for multiple patients. More complex correla-
tion structures based on multiple correlation parameters can also be considered. 
One such example is unstructured correlations with different correlations for 
different pairs of measurements, but this requires data from multiple patients to 
be reasonably estimated. These extensions are not addressed further. 

3. Standard Generalized Estimating Equations Modeling 
3.1. Notation and Parameter Estimation 

Under standard GEE modeling, dispersions are treated as a constant 0ϕ  so that 
the covariance matrix satisfies 

( )( ) ( ) ( )( )1 2 1 2
0 Diag Diagϕ ρ= ⋅ ⋅ ⋅V VRµ µΣ  

where ( )V µ  is the 1N ×  vector with entries ( )( ) ( )t i t iV µ µ=  for ( )t i T∈ . 
The generalized estimating equations are given by ( ) =g 0β  where 0 is the 

1J ×  vector with all zero entries, ( ) T 1−= ⋅ ⋅g eDβ Σ , and the N J×  matrix 
= ∂ ∂D µ β  with entries ( ) ( ) ( ) ( ), ,jt i j t i t i j t iD xµ β µ= ∂ ∂ = ⋅  for ( )t i T∈  and 

1 j J≤ ≤ . Let ( ) T 1−= − ⋅ ⋅H D Dβ Σ . Note that in the general GEE context with 
correlated outcomes for multiple subjects, the formulation for ( )g β  would 
equal a sum of terms like T 1−⋅ ⋅eD Σ  for each subject and ( )H β  would equal 
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a sum of terms like T 1−− ⋅ ⋅D DΣ  for each subject. Only one such term is 
needed here since data for only one subject/patient are being modeled. The GEE 
process for estimating β  iteratively solves ( ) 0=g β  as follows. Given the 
current value uβ  for β , the next value is given by ( ) ( )1

1u u u u
−

+ = − ⋅ gHβ β β β , 
thereby adapting Newton’s method with ( )g β  in the role of the gradient vec-
tor and ( )H β  in the role of the Hessian matrix. 

The constant dispersion parameter 0ϕ  is estimated using the Pearson residuals 

( ) ( ) ( ) ( )( )1 2
t i t i t iPe e V µ=β  evaluated at a given value for the mean coefficient pa-

rameter vector β . The bias-adjusted estimate ( )0ϕ β  of the dispersion parameter 

0ϕ  satisfies ( ) ( ) ( ) ( )2
0 1

N
t ii Pe N Jϕ

=
= −∑β β  assuming 0N J− > . Next, the 

correlation parameter ( )ρ β  is estimated using standardized errors  

( ) ( ) ( ) ( ) ( )1 2
0t i t istde Peϕ−= ⋅β β β  

for ( )t i T∈  as follows. The IND correlation structure has no need for an esti-
mate. For the EXCH correlation structure and a given value β  for the mean 
parameter vector, EXCHρ  can be estimated by  

( ) ( ) ( ) ( ) ( ) ( )( )1
EXCH 1 1 1 2N N

t i t ii i i stde stde N N Jρ −
′′= = +

= ⋅ ⋅ − −∑ ∑β β β  

assuming ( )1 2 0N N J⋅ − − > . For the AR1 correlation structure and a given 
value β  for the mean parameter vector, the autocorrelation AR1ρ  can be es-
timated by  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( )

1 11
AR1 11 1

t i t iN
t i t ii stde stde N Jρ

− +−
+=

= ⋅ − −∑β β β  

assuming 1 0N J− − > . In the non-spatial AR1 special case, 

( ) ( ) ( ) ( ) ( )( ) ( )1
AR1 11 1N

t i t ii stde stde N Jρ −
+=

= ⋅ − −∑β β β  

because ( ) ( )1 1t i t i− + =  for 1 i N≤ < . 
For any correlation structure, once the GEE estimate ( )Tβ  of the coefficient 

parameter vector β  is computed using the observations indexed by ( )t i T∈ , 
the GEE estimate of the dispersion parameter 0ϕ  is ( ) ( )( )0 0T Tϕ ϕ= β . The 
GEE estimate of the correlation parameter ρ  is ( ) ( )( )T Tρ ρ= β  computed 
using ( )Tβ  and ( )0 Tϕ . 

3.2. The Likelihood-Like Function 

Let ( )TT
0ϕ=θ β  be the ( )1 1J + ×  vector of the GEE mean and dispersion 

parameters. The correlation parameter ρ  is a function of β  and 0ϕ  and so 
has not been included in θ . Use the multivariate normal likelihood to define 
the likelihood-like function ( );L T θ  satisfying  

( ) ( )( ) ( ) ( )T 1; log ; 2 log 2 log 2 2T L T N−= = − ⋅ ⋅ − − ⋅ ⋅ πe e θ θ Σ Σ  

where Σ  is the determinant of the covariance matrix Σ . The vector 
( );T∂ ∂ θ β  of partial derivatives of ( );T θ  can be expressed as the sum of 

two terms. The first term corresponds to differentiating the residual vector part 
e  of ( );T θ  with respect to β  holding the covariance part Σ  fixed in β  
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and equals ( )g β , the gradient-like quantity used in standard GEE modeling. 
This fact seems to have been first recognized by Chaganty [6]. One advantage for 
having a likelihood-like function for GEE models is that it can be used to com-
pute parameter estimates. Another is that it can be used to compute model selec-
tion criteria not otherwise available for GEE modeling. 

3.3. Likelihood-Like Cross-Validation 

Burman [7] defined k-fold cross-validation with observations partitioned into k 
disjoint subsets called folds. Fold observations are predicted using parameter es-
timates computed using the data from the other folds. In k-fold likelihood-like 
cross-validation (LCV), these deleted fold predictions are scored using the asso-
ciated likelihood-like function L. Randomly partition the times ( )t i T∈  into k 
disjoint folds ( )T f  for 1 f k≤ ≤ . Use the same initial seed for randomization 
with all models under consideration so that their LCV scores are comparable. 
Let ( )( )\T T fθ  denote the estimate of θ  using the data with times in the 
complement ( )\T T f  of the fold ( )T f . For 1 f k≤ ≤ , let ( )T f+  denote 
the union of all folds ( )T f ′  for 1 f f′≤ ≤  with ( )0T +  the empty fold and 
set ( )( )0 ; 1L T + =θ . Define the LCV score to satisfy 

1
1LCV LCVk N

ff ==∏  

where LCVf  is defined as the conditional likelihood-like term for the data in 
fold ( )T f  conditioned on the data in the union ( )1T f+ −  of the prior folds 
using the deleted estimate ( )( )\T T fθ  of the parameter vector θ . Formally, 

( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

LCV | 1 ; \

; \ 1 ; \

f L T f T f T T f

L T f T T f L T f T T f

+

+ +

= −

= −

θ

θ θ
 

Because fold assignment is random, folds can be empty when the number k of 
folds is large relative to the number N of measurements, and then those folds are 
dropped from the computation of the LCV score. Larger LCV scores indicate 
better models. Note that even if the full data are non-spatial with observations at 
consecutive integer times ( )t i i=  for 1 i N≤ ≤ , the folds ( )T f  and the fold 
unions ( )T f+  are not consecutive integer times except in rare cases and so 
require more general handling. 

4. Incorporating Nonconstant Dispersions 
4.1. Formulation 

GEE modeling can be extended to handle nonconstant dispersions. Let 

( )TT T′=θ β β  be the ( ) 1J J ′+ ×  vector of the mean and dispersion parame-
ters. The definition of the likelihood-like function ( );L T θ  given for standard 
GEE holds using the more general parameter vector θ . Differentiate  
( ) ( )( ); log ;T L T= θ θ  with respect to the vector ′β  of dispersion coefficient 

parameters while holding the correlation parameter ρ  fixed in the current pa-
rameter vector ′β  to provide the J ′  estimating equations  
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( ) ( );T′ ′ ′ ′= ∂ ∂ =g  0β θ β  where the notation ( );T′ ′ ′∂ ∂ θ β  is used to indi-
cate that this is not the full partial derivative vector for ( );T θ  in ′β  due to 
not accounting for the effect of ′β  on ρ . Now, combine these with the J 
standard GEE equations ( ) =g 0β  to solve for joint estimates of β  and ′β . 
Then, iteratively solve for  

( ) ( ) ( )( )TT T′= =g g g 0θ β β  

with ( )g θ  in the role of the gradient vector and the ( ) ( )J J J J′ ′+ × +  matrix 
( )H θ  in the role of the Hessian matrix. ( )H θ  has four component subma-

trices: the J J×  matrix ( )H β  for the mean coefficients as defined for stan-
dard GEE, the J J′ ′×  matrix ( ) ( )′ ′ ′ ′ ′= ∂ ∂H gβ β β  for the J ′  dispersion 
coefficients, the J J ′×  matrix ( ) ( ), ′ ′ ′ ′= ∂ ∂H gβ β β β , and its transpose 

( ) ( )T, ,′ ′=H Hβ β β β . 
Note that  

( ) ( )( ) ( )( ) ( )( )( )1 1
log log log log ,N N

e e e et i t ii i
Vρ ϕ µ

= =
= + +∑ ∑RΣ  

( ) ( )( )Texpt i t iϕ ′ ′= ⋅x β  

and 

( )T 1 T 1 ρ− −⋅ ⋅ = ⋅ ⋅e e stde stdeRΣ  

where stde  is the 1N ×  vector with entries ( ) ( ) ( )t i t i t istde e σ=  for ( )t i T∈ . 
Consequently, ( )′g β  has entries  

( ) ( ) ( )
T 1

,1 2N
j j t i ji xρ−

=
′ ′ ′= ⋅ ⋅ −∑g stdex stdeRβ  

for 1 j J ′≤ ≤  where j′stdex  is the 1N ×  vector with entries  

( ) ( ) ( ), , 2t i j t i j t istdex x stde′ ′= ⋅  

for ( )t i T∈ . ( )′H β  has entries 

( ) ( ) ( )T 1 T 1
. .j j j j j jρ ρ− −
′ ′ ′′ ′′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx stde stdex stdexH R Rβ  

for 1 ,j j J′ ′≤ ≤  where .j j′′′stdexx  is the 1N ×  vector with entries  

( ) ( ) ( ) ( ), , , 4t i j j t i j t i j t istdexx x x stde′ ′′′ ′ ′= ⋅ ⋅  

for ( )t i T∈ . ( ), ′H β β  has columns  

( ) ( ) ( )
( ) ( )

T 1

T 1

, Diag

Diag
j j

j

ρ

ρ

−

−

′ ′= − ⋅ ⋅ ⋅

′− ⋅ ⋅ ⋅

invx stde

stdex

H D R

D 1 R

β β σ

σ
 

where j′invxσ  is the 1N ×  vector with entries ( ) ( ) ( )( ), , 2t i j t i j t iinvx xσ σ′ ′ ⋅=  
for ( )t i T∈  and 1 j J ′≤ ≤ . If offsets are included, they are carried along in 
equations without any effect on derivatives. 

4.2. Parameter Estimation 

Given a value for the vector θ  of all coefficient parameters, an estimate of the 
correlation parameter ρ  can be based on the associated standardized residuals 
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( )t istde . Calculate correlation estimates for the IND, EXCH, and AR1 correlation 
structures using the same formulas as before but computed with these more 
general standardized residuals. Iteratively solve ( ) 0=g θ  as follows. Given the 
current value uθ  for θ , the next value is given by ( ) ( )1

1u u u u
−

+ = − ⋅ gHθ θ θ θ , 
thereby adapting Newton’s method with ( )g θ  in the role of the gradient vec-
tor and ( )H θ  in the role of the Hessian matrix. The solution to the estimating 
equations for observations indexed by T is denoted as ( ) ( ) ( )( )TT TT T T′=θ β β  
with associated correlation estimate ( ) ( )( )T Tρ ρ= θ . 

5. Extended Linear Mixed Modeling 
5.1. Formulation 

GEE modeling can be further extended to handle full parameter estimation 
through maximizing the likelihood-like function. Let ( )TT Tρ′=θ β β  be the 
( )1 1J J ′+ + ×  vector of the mean, dispersion, and correlation parameters. The 
definition of the likelihood-like function ( );L T θ  given for standard GEE holds 
using this more general parameter vector θ . The likelihood-like function 
( );L T θ  is maximized in the coefficient parameter vector θ  by solving the es-

timating equations  

( ) ( );T= ∂ ∂ =g  0θ θ θ  

where ( );T∂ ∂ θ θ  is the vector of standard partial derivatives of ( );T θ . 
The associated matrix ( ) ( )= ∂ ∂H gθ θ θ . In this case, ( )g θ  is a true gra-
dient vector and ( )H θ  a true Hessian matrix. This approach is extended linear 
mixed modeling in the sense that if the entries of y  were continuous variables 
treated as normally distributed with ( ) 1V µ = , then it would be exactly linear 
mixed modeling. Formulations given in what follows are adapted from those of 
[8]. 

The gradient vector ( ) ( ) ( ) ( )( )TT T ρ′=g g g gθ β β . The gradient sub-vector 
( ) ( );T′ ′= ∂ ∂g β θ β  has the same formulation as for extended GEE modeling, 

only now its entries are standard partial derivatives. The gradient subvector 
( ) ( );T= ∂ ∂g β θ β  has entries  

( ) ( ) ( )
T 1

,1 2N
j j t i ji xρ−

=
= ⋅ ⋅ −∑g stdex stdeRβ  

where jstdex  is the 1N ×  vector with entries  

( ) ( ) ( ) ( )( ) ( )( ), , 2t i j t i j t i t i t istdex x y µ σ= + ⋅  

for ( )t i T∈  and 1 j J≤ ≤ . The partial derivative ( ) ( );g Tρ ρ= ∂ ∂ θ  satis-
fies 

( ) ( ) ( )( )( )T 1 2 log 2g ρ ρ ρ ρ ρ−= − ⋅∂ ∂ ⋅ − ∂ ∂stde stdeR R  

where  

( )( )( ) ( ) ( )( )1log trρ ρ ρ ρ ρ−∂ ∂ = ⋅∂ ∂R R R , 

tr denotes the trace function, and 
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( ) ( ) ( ) ( )1 1 1 .ρ ρ ρ ρ ρ ρ− − −∂ ∂ = − ⋅∂ ∂ ⋅R R R R  

For IND correlations, ( )ρ ρ∂ ∂ =R 0 . For EXCH correlations, ( )ρ ρ∂ ∂R  
is the N N×  matrix with diagonal entries all equal to 0 and off-diagonal entries 
all equal to 1. For AR1 correlations, ( )ρ ρ∂ ∂R  is the N N×  matrix with di-
agonal entries all equal to 0 and off-diagonal entries equaling  

( ) ( ) ( ) ( ) 1
AR1
t i t it i t i ρ ′− −′− ⋅  

in the thi  row and thi′  column for 1 i i N′≤ ≠ ≤ . 
( )H β  has nine component submatrices: the J J×  matrix  

( ) ( )= ∂ ∂H gβ β β  for the mean parameters, the J J′ ′×  matrix  
( ) ( )′ ′ ′= ∂ ∂H gβ β β  for the dispersion parameters computed as for extended 

GEE modeling, the second partial derivative ( ) ( )H gρ ρ ρ= ∂ ∂  for the corre-
lation parameter, the J J ′×  matrix ( ) ( ), ′ ′= ∂ ∂H gβ β β β , and its transpose 

( ) ( )T, ,′ ′=H Hβ β β β , the 1J ×  vector ( ) ( ),ρ ρ= ∂ ∂H gβ β  and its 
transpose ( ) ( )T, ,ρ ρ=H Hβ β , and the 1J ′×  vector ( ) ( ),ρ ρ′ ′= ∂ ∂H gβ β  
and its transpose ( ) ( )T, ,ρ ρ′ ′=H Hβ β . ( )H β  has entries 

( ) ( ) ( )T 1 T 1
, ,j j j j j jρ ρ− −
′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx stde stdex stdexH R Rβ  

for 1 ,j j J′ ′≤ ≤  where ,j j′stdexx  is the 1N ×  vector with entries 

( ) ( ) ( ) ( ), , , 4t i j j t i j t i j t istdexx x x stde′ ′= ⋅ ⋅  

for ( )t i T∈ . The second partial derivative ( )H ρ  satisfies 

( ) ( ) ( )( )( )T 2 1 2 2 22 log 2H ρ ρ ρ ρ ρ−= − ⋅∂ ∂ ⋅ − ∂ ∂stde stdeR R  

where  

( )( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2 2 1 1

1 2 2

log

.

tr

tr

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

− −

−

∂ ∂ = − ⋅∂ ∂ ⋅ ⋅∂ ∂

+ ⋅∂ ∂

R R R R R

R R
 

For IND and EXCH correlations, ( )2 2 0ρ ρ∂ ∂ =R . For AR1 correlations, 
( )2 2ρ ρ∂ ∂R  is the N N×  matrix with diagonal entries all equal to 0 and 

off-diagonal entries equaling  

( ) ( ) ( ) ( )( ) ( ) ( ) 2
AR11 t i t it i t i t i t i ρ ′− −′ ′− ⋅ − − ⋅  

in the thi  row and thi′  column for 1 i i N′≤ ≠ ≤ . ( ),′H β β  has entries 

( ) ( ) ( )T 1 T 1
, ,,j j j j j jρ ρ− −
′ ′ ′′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx stde stdex stdexH R Rβ β  

for 1 ,j j J′ ′≤ ≤  where ,j j′′stdexx  is the 1N ×  vector with entries  

( ) ( ) ( ), , , 2t i j j t i j t i jstdexx x stdex′ ′ ⋅′ ′=  

for ( )t i T∈ , 1 j J≤ ≤ , and 1 j J′ ′≤ ≤ . ( ),ρH β  has entries 

( ) ( ) 1T,j jρ ρ ρ−= ⋅∂ ∂ ⋅stdex stdeH Rβ  

for 1 j J≤ ≤ . ( ),ρ′H β  has entries 

( ) ( )T 1,j jρ ρ ρ−′ ′= ⋅∂ ∂ ⋅stdex stdeH Rβ  

for 1 j J ′≤ ≤ . 
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5.2. Parameter Estimation 

The parameter vector θ  is estimated by iteratively solving ( ) 0=g θ  as fol-
lows. Given the current value uθ  for θ , the next value is given by  

( ) ( )1
1u u u u

−
+ = − ⋅ gHθ θ θ θ , 

thereby using Newton’s method with gradient vector ( )g θ  and Hessian matrix 
( )H θ . The estimation process can be stopped early if ( )1; uT + θ  does not in-

crease by much compared to ( ); uT θ . The solution to the estimating equations 
for observations indexed by T is denoted as ( ) ( ) ( ) ( )( )TT TT T T Tρ′=θ β β . 

The covariance matrix for the parameter estimate vector ( )Tθ  can be com-
puted as ( )( )1 T−−H θ  and the variances corresponding to its diagonal entries 
can be used to compute z tests of zero individual model parameters. These are 
useful for fixed models of theoretical importance. On the other hand, tests for 
parameters of adaptively generated models (as described in Section 6) are usually 
significant as a consequence of the model selection process, and so results for 
these tests are not reported for models generated in the example analyses. 

6. Modeling Possibly Nonlinear Means and Dispersion over  
Time 

Knafl and Ding [3] provide a detailed formulation for adaptively searching 
through alternative regression models for means and dispersions in a variety of 
contexts using adaptive fractional polynomial models [9]. A brief overview is 
provided here. These methods are used in the example analyses of individual 
cancer patient count/rate data presented later. Model selection proceeds through 
two phases. The expansion phase first grows the model adding in alternative pow-
er transforms of predictors for means and dispersions. The contraction phase 
then reduces the model to a parsimonious set of power transforms by removing 
transforms from the current model one at a time and adjusting the powers of the 
remaining transforms. Alternative models are evaluated using LCV scores. The 
modeling process is controlled by tolerance parameters indicating how much of 
a reduction in the LCV score can be tolerated at given stages of the process. Knafl 
and Ding [3] also provide a wide variety of example analyses demonstrating the 
usefulness of these adaptive regression methods. A description of these methods 
in the standard Poisson regression context is provided in [10]. 

A SAS® (SAS Institute, Inc., Cary, NC) macro has been developed for generat-
ing adaptive analyses including the reported example analyses. This macro as 
well as data and code used to generate the results of the example analyses are 
available from the first author. 

7. Example Analyses 
7.1. Pain Flare Counts per Day 

Figure 1 displays pain flare counts for Cancer Patient 1 over a period of 34 days.  
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Figure 1. Pain flare counts over time for cancer patient 1. 

 
Pain flares range from 0 to 4 per day and tend to increase over time. Data are 
available for N = 33 days with a missing value for one day (day 33). These data 
were collected using Ecological Momentary Assessment (EMA) [11] as imple-
mented in the mEMA app [12].  

Table 1 contains results for adaptive models for means and dispersions of 
pain flare counts over time using the two modeling approaches extended GEE 
modeling and extended linear mixed modeling and the three correlation struc-
tures IND, AR1, and EXCH. Power transforms reported in Table 1 were gener-
ated by adaptively searching through alternative power transforms using the 
methods described in Section 6. LCV scores are based on k = 5 folds with fold 
sizes ranging from 2 to 8 measurements and no empty folds. For extended GEE 
modeling, IND correlations generate the best LCV score 0.38018 over the three 
correlation structures. For extended linear mixed modeling, IND correlations 
also generate the best LCV score 0.40622. These results suggest that a Poisson 
process assumption is reasonable for these pain flare counts. 

Extended linear mixed modeling generates better LCV scores than extended 
GEE for all three correlation structures. Moreover, computation times are much 
shorter ranging from 0.4 to 1.2 minutes compared to 13.9 to 35.5 minutes. These 
results suggest that extended linear mixed modeling is preferable for modeling 
these pain flare counts because it generates better LCV scores in less time. Con-
sequently, only extended linear mixed modeling using IND correlations is con-
sidered further for these data, generating the model with means based on 
( )0.49t i  without an intercept and dispersions based on ( )8.37t i  and ( )0.5t i  

without an intercept. Figure 2 displays estimates of mean pain flare counts over 
time along with unit error bands over time (i.e., the mean ±1 extended standard 
deviation at each time) to account for variability about the means. Mean pain 
flare counts increase over time, somewhat close to linearly in time. Variability in 
pain flare counts is smaller in the middle of the period, somewhat larger at the 
start of the period and even larger at the end of the period. Figure 3 displays  
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Figure 2. Mean pain flare counts (middle curve) with unit error bounds for cancer pa-
tient 1. 
 

 
Figure 3. Standardized residuals for the model of Figure 2. 

 
Table 1. Adaptive models for means and dispersions of pain flare counts over time for 
alternative modeling approaches and correlation structures. 

Modeling 
Approach 

Correlation Power Transformsa 5-fold 
LCV Score 

Timeb 
Structure Estimate Means Dispersions 

extended GEE 

IND 0 ( )0.54t i  ( )0.12t i  038018 13.9 

EXCH 0.001 ( )0.869t i  ( )0.29t i  0.34712 35.5 

AR1 0.10 ( )0.59t i  ( )0.1t i  0.37404 17.6 

extended LMM 

IND 0 ( )0.49t i  ( )8.37t i , ( )0.5t i  0.40622 0.4 

EXCH 0.42 ( )0.511t i  ( )0.2t i  0.36590 1.2 

AR1 0.20 ( )0.4t i  1, ( )1.01t i , ( )1.01t i  0.37693 0.4 

AR1—autoregressive of order 1; EXCH—exchangeable; GEE—generalized estimating equations; IND— 

independent; LCV—likelihood-like cross-validation; LMM—linear mixed modeling. a. The ith time value is 
denoted as t(i). A 1 corresponds to an intercept parameter; otherwise, the model has a zero intercept. b. 
Difference in minutes of clock times between the start and end of computations. 

https://doi.org/10.4236/ojs.2021.115038


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2021.115038 645 Open Journal of Statistics 
 

standardized residuals for this model, which range between ±2 without any ex-
treme outliers, suggesting the model is a reasonable fit for these data. 

The associated model generated using k = 10 folds has similar means based on 
( )0.5t i  without an intercept and simpler dispersions based on ( )0.2t i  without 

an intercept. However, the 10-fold LCV score 0.38107 is smaller, suggesting that 
k = 5 is a better choice for these data. Moreover, there is one empty fold, sug-
gesting that the choice of k = 10 folds is too large for these data with only N = 33 
measurements. The associated model generated with k = 5 folds and assuming 
constant dispersions has a similar model for the means based on ( )0.53t i  with-
out an intercept but a smaller LCV score 0.37031, suggesting that the dispersions 
for these data are reasonably treated as nonconstant over time.  

7.2. As Needed Pain Medications Taken Counts per Day 

Figure 4 displays as needed pain medications taken counts for Cancer Patient 2 
over a period of 100 days. As needed pain medications taken counts range from 
0 to 4 per day and tend to decrease over time. Data are available for N = 92 days 
with a missing value for eight other days (days 4, 14, 52, 56, 74, 81, 85, and 89). 
These data were also collected using the mEMA app. 

Table 2 contains results for adaptive models for means and dispersions of as 
needed pain medications taken counts over time using the two modeling ap-
proaches extended GEE modeling and extended linear mixed modeling and the 
three correlation structures IND, AR1, and EXCH. LCV scores are based on k = 
5 folds with fold sizes ranging from 13 to 21 measurements with no empty folds. 
For extended GEE modeling, AR1 correlations generate the best LCV score 
0.41497 over the three correlation structures. For extended linear mixed model-
ing, AR1 correlations generate the best LCV score 0.40509. These results indicate 
that a Poisson process assumption may not be appropriate for these as needed 
pain medications taken counts. 
 

 
Figure 4. As needed pain medications taken counts over time for cancer patient 2. 
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Table 2. Adaptive models for means and dispersions of as needed pain medications taken 
counts over time for alternative modeling approaches and correlation structures. 

Modeling 
Approach 

Correlation Power Transformsa 5-fold 
LCV Score 

Timeb 
Structure Estimate Means Dispersions 

extended GEE 

IND 0 1, ( )0.5t i  1 037030 84.5 

EXCH −0.01 1, ( )0.5t i  1 0.36340 202.3 

AR1 0.57 ( ) 0.12t i − , ( )3t i  1, ( ) 1.5t i −  0.41497 222.7 

extended LMM 

IND 0 ( )0.3t i , ( )0.1t i  1 0.36845 0.5 

EXCH −0.01 1, ( )0.4t i  1 0.37379 1.7 

AR1 0.45 1, ( )0.4t i  1 0.40509 0.8 

AR1—autoregressive of order 1; EXCH—exchangeable; GEE—generalized estimating equations; IND— 

independent; LCV—likelihood-like cross-validation; LMM—linear mixed modeling. a. The ith time value is 
denoted as t(i). A 1 corresponds to an intercept parameter; otherwise, the model has a zero intercept. b. 
Difference in minutes of clock times between the start and end of computations. 

 
Extended GEE modeling generates a better LCV score than extended linear 

mixed modeling for the IND correlation structure, but the scores for these two 
approaches are not too different. Extended linear mixed modeling generates a 
better LCV score than extended GEE modeling for the EXCH correlation struc-
ture. Extended GEE modeling generates a better LCV score than extended linear 
mixed modeling for the AR1 correlation structure. Although this is the best 
overall LCV score, the associated model for extended linear mixed modeling is 
more parsimonious with an intercept and one time transform for the means 
compared to two time transforms and constant dispersions compared to disper-
sions based on and intercept and one time transform. Moreover, computation 
times are substantially shorter for extended linear mixed modeling ranging from 
0.5 to 1.7 minutes compared to 84.5 to 222.7 minutes or 1.4 to 3.7 hours. These 
results suggest that extended linear mixed modeling is preferable for modeling 
these as needed pain medications taken counts because it generates competitive 
or better scores or more parsimonious models in substantially less time. Conse-
quently, only extended linear mixed modeling using AR1 correlations are consi-
dered further for these data, generating the model with means based on ( )0.4t i  
with an intercept, constant dispersions based on an intercept, and estimated au-
tocorrelation AR1 0.45ρ = . Figure 5 displays estimates of mean as needed pain 
medications taken counts over time along with unit error bands over time (i.e., 
the mean ±1 extended standard deviation at each time) to account for variability 
about the means. Mean as needed pain medications taken counts decrease non-
linearly over time. Variability in as needed pain medications taken counts is 
close to constant over time. Figure 6 displays standardized residuals for this 
model, which range well within ±3 without any extreme outliers, suggesting the 
model provides a reasonable fit to these data. 
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Figure 5. Mean as needed pain medications taken counts (middle curve) with unit error 
bounds for cancer patient 2. 
 

 
Figure 6. Standardized residuals for the model of Figure 5. 

 
The associated model generated using k = 10 folds is about the same with 

means based on ( )0.5t i  with an intercept, constant dispersions, and estimated 
correlation AR1 0.45ρ = . The 10-fold LCV score 0.40958 is larger, suggesting 
that k = 10 is a better choice for these data. There are no empty folds. The asso-
ciated model generated using k = 15 folds is similar with means based on ( )0.5t i  
with an intercept, dispersions based on ( )0.07t i  without an intercept, and esti-
mated correlation AR1 0.46ρ = . The 15-fold LCV score 0.40353 is smaller, sug-
gesting that k = 10 is a better choice for these data. There are no empty folds. 
The associated model generated with k = 15 folds assuming constant dispersions 
has means based on ( )0.5t i  with an intercept and close 15-fold LCV score 
0.40318. Consequently, models generated by 5, 10, and 15 folds using extended 
linear mixed modeling are not too different, suggesting that the results are rea-
sonably robust to the choice of the number of folds. 
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7.3. Around the Clock Pain Medications Taken Rates per Day per  
Dose 

Adherence data for around the clock pain medications were collected using pill 
bottles equipped with Medication Event Monitoring System (MEMS) devices 
(AARDEX North America, Boulder, CO) that recorded the date and time of 
each pill bottle opening and presumably of the taking of the pain medication 
[13] [14]. Cancer Patient 3 was monitored for a period of 91 days. Counts of 
around the clock pain medications taken were computed for 30 equal-sized sub-
periods of 3.03 days each, ranging from 0 to 18. Around the clock pain medica-
tions were to be taken five times a day by this patient. Methods for modeling 
such data assuming the special case of a Poisson process with constant disper-
sions are provided in [10]. Figure 7 displays around the clock pain medications 
taken rates per day per dose for Cancer Patient 3. The ideal rate of 1 means that 
the patient took around the clock pain medications at the appropriate rate over 
the associated time subperiod. Around the clock pain medications taken rates 
range from 0 to 1.19 per day per dose and tend to decrease over time. Data are 
available for N = 30 subperiods with none missing.  

Table 3 contains results for adaptive models for means and dispersions of 
around the clock pain medications taken rates over time using the two modeling 
approaches extended GEE modeling and extended linear mixed modeling and 
the three correlation structures IND, AR1, and EXCH. LCV scores are based on 
k = 5 folds with fold sizes ranging from 2 to 8 measurements with no empty 
folds. For extended GEE modeling, EXCH correlations generate the best LCV 
score 0.051583 over the three correlation structures. For extended linear mixed 
modeling, AR1 correlations generate the best LCV score 0.053856, which is also 
the best overall LCV score for Table 3 models. For both modeling approaches, 
the LCV score for IND correlations is quite a bit smaller than the best LCV score 
over the three correlation structures. These results indicate that a Poisson 
process assumption may not be appropriate for these around the clock pain me-
dications taken rates. 
 

 
Figure 7. Around the clock pain medications taken rates per day per dose over time for 
cancer patient 3. 

https://doi.org/10.4236/ojs.2021.115038


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2021.115038 649 Open Journal of Statistics 
 

Table 3. Adaptive models for means and dispersions of around the clock pain medica-
tions taken rates per day per dose over time for alternative modeling approaches and 
correlation structures. 

Modeling 
Approach 

Correlation Power Transformsa 5-fold 
LCV Score 

Timeb 
Structure Estimate Means Dispersions 

extended GEE 

IND 0 ( )0.7t i  1 0.046556 5.1 

EXCH −0.03 1, ( )5t i  1 0.051583 11.9 

AR1 0.58 ( )1.1t i  1 0.048525 6.9 

extended LMM 

IND 0 ( )0.8t i  1 0.046837 0.2 

EXCH −0.03 ( )0.9t i  1 0.045251 0.7 

AR1 0.75 ( )1.1t i  1, ( ) 1.5t i −  0.053856 0.2 

AR1—autoregressive of order 1; EXCH—exchangeable; GEE—generalized estimating equations; IND— 

independent; LCV—likelihood-like cross-validation; LMM—linear mixed modeling. a. The ith time value is 
denoted as t(i). A 1 corresponds to an intercept parameter; otherwise, the model has a zero intercept. b. 
Difference in minutes of clock times between the start and end of computations. 

 
Extended linear mixed modeling generates better LCV scores than extended 

GEE for the IND and AR1 correlation structures. Its LCV score is smaller for the 
EXCH correlation structure, but its model is more parsimonious based on one 
time transform for the means with constant dispersions compared to one time 
transform plus an intercept for the means with constant dispersions. Further-
more, computation times are much shorter for extended linear mixed modeling 
ranging from 0.2 to 0.7 minutes compared to 5.1 to 11.9 minutes. These results 
suggest that extended linear mixed modeling is preferable for modeling these 
around the clock pain medications taken rates because it generates the best LCV 
score in less time. Consequently, only extended linear mixed modeling using 
AR1 correlations are considered further for these data, generating the model 
with means based on ( )1.1t i  without an intercept, dispersions based on ( )6.1t i  
with an intercept, and estimated autocorrelation AR1 0.75ρ = . Figure 8 displays 
estimates of mean around the clock pain medications taken rates over time along 
with unit error bands over time (i.e., the mean ±1 extended standard deviation at 
each time) to account for variability about the means. Mean around the clock 
pain medications taken counts decrease close to linearly over time. Variability in 
around the clock pain medications taken rates is larger at the end of the period. 
Figure 9 displays standardized residuals for this model, which range well within 
±3 without any extreme outliers, suggesting the model provides a reasonable fit 
to these data. 

The associated model generated using k = 10 folds is somewhat similar with 
means based on ( )0.4t i  without an intercept, constant dispersions based on an 
intercept, and estimated autocorrelation AR1 0.76ρ = . However, the 10-fold 
LCV score 0.052023 is smaller, suggesting that k = 5 is a better choice for these 
data. Moreover, there is one empty fold, suggesting that the choice of k = 10  
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Figure 8. Mean around the clock pain medications taken rates per day per dose (middle 
curve) with unit error bounds for cancer patient 3. 
 

 
Figure 9. Standardized residuals for the model of Figure 8. 

 
folds is too large for these data with only N = 30 measurements. The associated 
model generated with k = 5 folds and assuming constant dispersions has a model 
for the means based on based on ( )1.01t i  without an intercept, an autocorrela-
tion estimate of AR1 0.75ρ = , and a smaller LCV score 0.0.050386, suggesting 
that the dispersions for these data are reasonably treated as nonconstant over 
time.  

8. Discussion 
8.1. Summary 

Methods are formulated for modeling individual patient count/rate data over 
time allowing for nonlinear trajectories for means, time-varying dispersions, and 
temporal correlation. Three correlation structures are considered including IND, 
EXCH, and spatial AR1 correlations. Two extensions of standard GEE modeling 

https://doi.org/10.4236/ojs.2021.115038


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2021.115038 651 Open Journal of Statistics 
 

are considered. Extended GEE modeling augments standard GEE mean para-
meter estimating equations with dispersion parameter estimating equations 
while using the GEE approach for correlation parameter estimation. Extended 
linear mixed modeling estimates all model parameters using estimating equa-
tions for mean, dispersion, and correlation parameters. These new estimating 
equations are determined by partial derivatives of a likelihood-like function 
based on the multivariate normal density. This likelihood-like function is also 
used to define a likelihood-like cross-validation (LCV) score for evaluating 
models. LCV scores are used to control adaptive regression modeling of possibly 
nonlinear means and dispersions over time. It is also possible to generate pena-
lized likelihood-like criteria for model selection generalizing standard penalized 
likelihood criteria [15] such as the commonly used Akaike information criterion 
(AIC) and Bayesian information criterion (BIC). Pan [16] has formulated a pe-
nalized model selection criterion related to the AIC called the quasi-likelihood 
information criterion (QIC) for GEE model selection, but the QIC score does 
not fully account for the correlation structure. Model selection criteria based on 
the likelihood-like function fully account for the correlation structure.  

Example analyses using these methods are provided using three types of 
count/rate data for individual cancer patients including cancer pain flares per 
day, as needed cancer pain medications taken per day, and around the clock 
cancer pain medications taken per day per dose. Extended linear mixed model-
ing generates models with either better LCV scores or more parsimonious mod-
els than extended GEE modeling. Moreover, times to compute models are sub-
stantially smaller for extended linear mixed modeling than for extended GEE 
modeling. Time differences can be extreme for even moderate samples sizes, for 
example, analyses for the second example data set with 92 observations required 
at most 1.7 minutes for extended linear mixed modeling compared to up to 3.7 
hours for extended GEE. These results indicate that extended linear mixed mod-
eling is preferable for modeling individual patient count/rate data over time. 
This is likely to hold in more general modeling situations with other types of da-
ta and for combined data for multiple patients. 

8.2. Alternative Approaches 

The formulation provided here assumes that separate modeling of each patient’s 
longitudinal data is preferable to modeling the combined data for all patients. 
Separate modeling is a person-centered approach to modeling longitudinal data 
as opposed to a variable-centered approach using the combined data [17] [18]. 
This is only feasible when there are substantial numbers of time measurements 
for each patient. Modeling the combined data for all patients typically involves 
the assumption that means and dispersions for all patients are reasonably treated 
as having the same functional form. Knafl et al. [10] provide an example where 
this is not an appropriate assumption for a specific set of data on medication 
taken rates per day for HIV patients on antiretroviral medications. In any case, 
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the methods considered here generalize to handle combined data for multiple 
patients, not only count/rate longitudinal data but also continuous and dicho-
tomous longitudinal data, and not just data for cancer patients. 

Multilevel (or hierarchical linear) modeling [19] [20] could alternatively be 
used to provide for individual patient differences, but that usually accounts for 
nonlinearity using polynomial models, often simple quadratic models. Poly-
nomial models can be too simplistic for addressing general nonlinearity. Knafl 
and Ding [3] provide an example for independent data where the polynomial 
model generating the best LCV score for degrees 0-3 is the degree 0 constant 
model, but a nonlinear adaptive regression model generates a much better LCV 
score. Future research is needed to investigate general nonlinearity using adap-
tive regression methods applied to multilevel models as well as to random effects 
models [21] and to generalized linear mixed models [22]. 

Spatial AR1 correlations generate better models than independent and ex-
changeable correlations for two of the three example data sets. This suggests 
consideration of autoregressive and/or moving average correlations [23] of or-
ders more than 1. As the number of time points increases, even relatively large 
autocorrelations can generate small correlations for larger distances apart. For 
example, the third example data set had an estimated autocorrelation of 

AR1 0.75ρ =  with integer time measurements ranging from 1 to 30 so that the 
smallest correlation is 290.75 0.0002= . The second example data set had an 
even smaller estimated autocorrelation of AR1 0.45ρ =  with an even larger 
range of 1 to 100 integer time measurements so that the smallest correlation is 

99 350.45 4.7 10−= × . These results suggest consideration of banded correlation 
autoregressive structures with zero correlations for measurements further apart 
than some fixed amount. 
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