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Abstract 
A land cover classification procedure is presented utilizing the information 
content of fully polarimetric SAR images. The Cameron coherent target de-
composition (CTD) is employed to characterize each pixel, using a set of ca-
nonical scattering mechanisms in order to describe the physical properties of 
the scatterer. The novelty of the proposed classification approach lies on the 
use of Hidden Markov Models (HMM) to uniquely characterize each type of 
land cover. The motivation to this approach is the investigation of the alter-
nation between scattering mechanisms from SAR pixel to pixel. Depending 
on the observations-scattering mechanisms and exploiting the transitions be-
tween the scattering mechanisms we decide upon the HMM-land cover type. 
The classification process is based on the likelihood of observation sequences 
been evaluated by each model. The performance of the classification approach 
is assessed my means of fully polarimetric SLC SAR data from the broader 
area of Vancouver, Canada and was found satisfactory, reaching a success from 
87% to over 99%.  
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1. Introduction 

In the past several decades, Remote Sensing has gradually broadened being the 
cornerstone in a plethora of research topics. By now, more than 150 Earth-obser- 
vation satellites are currently in orbit, carrying sensors that provide continuously 
high-quality data. Synthetic Aperture Radar (SAR) is an advanced technology in 
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Earth Observation with a wide range of application from land cover/land use clas-
sification [1] to flood and fire detection [2] [3]. 

SAR imaging is different to how optical imaging works. A radar antenna ac-
tively sends electromagnetic waves towards its target and then measures what is 
backscattered. SAR takes advantage of EM waves to penetrate clouds, foliage and 
even upper layers of Earth’s surface, while the data acquisition can be made at 
any time of day or night. A “Synthetic Aperture” means physically moving the 
small SAR instrument over an area while it gathers information of its target. To 
achieve this, SAR antennas are often mounted on satellites and airplanes which 
enables them to cover a large area in a very short time. The radar antenna records 
the strength and the time delay of these return signals. SAR system utilizes spe-
cially designed antenna to transmit and receive a radar wave of a specific polari-
zation. 

Fully polarimetric SAR is preferred for complete target analysis since it pro-
vides the backscattering behavior of the electromagnetic scatterer. The informa-
tion about the target surface can be retrieved based on its response in different 
polarization states. When a polarized radar wave interacts with the earth’s sur-
face, the polarization of the wave is modified depending upon the specific cha-
racteristics of the surface. This includes its geometrical structure, shape, reflec-
tivity, orientation as well as the geophysical properties such as moisture content, 
surface roughness etc. One of the main advantages of polarimetric techniques is 
the possibility to separate scattering contributions of different nature, which can 
be associated to certain elementary scattering mechanisms. Elementary radar scat-
terers are represented by polarization scattering matrices that contains all the scat-
tering information. In order to extract this information, the matrix decomposi-
tion is needed. 

So far, plenty of target decomposition approaches have been proposed in the 
literature. These techniques are broadly classified into coherent and incoherent 
decompositions. Coherent decomposition methods were developed to charac-
terize completely polarized scattered waves, for which fully polarimetric infor-
mation is contained in the scattering matrix. Hence, there is no need of second 
order statistics. On the other hand, incoherent decomposition techniques were 
developed to characterize a large number of statistically independent scatterers, 
randomly distributed and with none of them being dominant. In such a case the 
second order statistics are required. Cloude and Pottier [4] proposed a method 
that relies on an eigenvalue analysis of the coherency matrix and introduced the 
parameters of entropy, anisotropy, a and β angle. Freeman and Durden [5] pro-
posed a unique incoherent decomposition. Touzi [6] developed an approach that 
combines three simple scattering mechanisms to a polarimetric SAR observa-
tion. On the other side, stands out the Cameron’s Coherent Target Decomposi-
tion (CTD) [7] [8] which is employed in this work. 

One of the major topics being investigated in the field of remote sensing, is 
the land cover classification as a consequence of the interaction between rapidly 
grown population and environment. The necessity to control the rate of changes 
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and improve the environmental management brought to the fore the need for 
high accuracy in land cover classification. Many algorithms have been examined 
and found successful, such as artificial neural networks [9], random forests [10], 
support vector machines with the use of radial basis function kernel [11]. Re-
cently, Fully Polarimetric Land Cover Classification based on Markov Chains 
was proposed [12] which gives a high rate of success in discriminating between 
different land cover types.  

In this work, we present a novel land cover classification method based on 
Hidden Markov Models. We assumed that the observations of HMM could be 
the scattering mechanisms at each pixel while the hidden states stand for the 
underlying land cover type. Therefore, we developed the hypothesis that each 
land cover type is uniquely characterized by an HMM. At this point, is impor-
tant to take into consideration that this work differs from others, firstly as for the 
parallelism we follow with the components of an HMM land cover types and 
scattering mechanisms and secondly on the way the HMMs were trained. The 
classification process was carried out by the HMM’s solution of the evaluation 
problem. The novelty of the proposed method was challenged from the need to 
investigate for spatially extended targets, as land cover types, which led us to 
Hidden Markov Models. Therefore, we could construct an HMM, considering as 
observations the scattering mechanisms which are emitted from each type of 
land cover. 

The paper is organized as follows. Cameron’s CTD is explained in Section 2 
while in Section 3 a brief analysis of HMMs is presented. Section 4 refers to the 
preprocessing stage and in Section 5 we present the experimental procedure with 
the points of novelty and comparisons. The conclusions are drawn in Section 6. 

2. Cameron’s Coherent Target Decomposition 

Cameron proposed a coherent target decomposition into elementary scatterers 
that is based on the properties of reciprocity and symmetry. The first stage is to 
decompose the scattering matrix S that represents a SAR pixel into reciprocal 
and non-reciprocal components via an angle recθ . The second stage considers 
decomposition of the reciprocal term into two further components, namely 
symmetric and non-symmetric via an angle symτ . The Cameron’s Decomposi-
tion takes the following form: 

{ }{ }max minˆ ˆ ˆcos cos sin sinrec sym sym sym sym rec nonrecS S S S= + +
�

α θ τ τ θ          (1) 

where the scalar ( )
2

2
a S span S= =

�
, 

The angle recθ  represents the degree to which the scattering matrix obeys the 
reciprocity principle,  

The angle symτ  represents the degree to which the scattering matrix deviates 
from the set of scattering matrices corresponding to symmetric scatterers,  

ˆ
nonrecS  represents the normalized nonreciprocal components, 
maxˆ
symS  the normalized maximum symmetric component and the minˆ

symS  the nor- 
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malized minimum symmetric component. 
The maximum symmetric component can be transformed into a normalized 

complex vector ( )ˆ zΛ  with z being referred to as a complex parameter (given in 
Table 1) that eventually determines the scattering mechanism. The normalized 
complex vector ( )ˆ zΛ  is given by: 

( )
2

1
01ˆ
01

z
z

z

 
 
 Λ =
 +  
 

                     (2) 

Cameron in order to determine the scattering mechanism of each target z 
considered the following metric distance from a reference scatterer 

( ) ( ) ( )( )1
*, sin min , , ,ref ref refd z z d z z d z z−

−
 =              (3) 

where 

( )
( ) ( )

2

22
,

1 1

ref
ref

ref

z z
d z z

z z
−

−
=

+ +
              (4) 

( )
( )( )

( ) ( )

2 22*

* 22 *

1 1
,

1 1

ref ref

ref

ref

z z z z
d z z

z z

− + − −
=

+ +
          (5) 

3. Hidden Markov Models 

A Hidden Markov Model [13] [14] [15] [16] is a statistical model with an un-
derlying stochastic process that is not observable (it is hidden) but can only be 
observed through another set of stochastic processes that produce a sequence of 
emitted observation symbols (outputs). 

A first order Hidden Markov Model can be represented [16] by the compact 
notation ( ), ,A B=λ π . Specification of HMM requires the choice of the length  
 
Table 1. Cameron’s scattering mechanisms. 

Elementary Scatterer Type 
(Reference) 

Normalized Complex Vector Complex Parameter z 

Trihedral ( )ˆ 1Λ  1 

Dihedral ( )ˆ 1Λ −  -1 

Dipole ( )ˆ 0Λ  0 

Cylinder 
1ˆ
2

 Λ + 
 

 1
2

+  

Narrow diplane 
1ˆ
2

 Λ − 
 

 1
2

−  

1/4 wave devise ( )ˆ jΛ ±  ±j 
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of the observation sequence T, the number of states N in which the underlying 
process takes place namely hidden states, the number of discrete symbols M that 
can be observed and the specification of the three probability densities A, B and 
π. Let assume for the set of hidden states and possible emitted symbols  

{ }1 2, , , NS S S S= �  and { }1 2, , , Mo oO o= �  respectively and denote the actual 
state at time instants 1,2,t = �  as tq . The state transition probability distribu-
tion: 

{ }ijA a=  (Transition Matrix)                (6) 

where for 1 ,i j N≤ ≤  

1 |ij t j t ia P q S q S+= = =                     (7) 

corresponds to the probability that the HMM is in state iS  at time instance t 
and it makes a transition to state jS  at time instant 1t + . 

The observation symbol probability distribution in state j (Emission Matrix): 

( ){ }jB b k=                           (8) 

where for 1 j N≤ ≤ , 1 k M≤ ≤  

( ) at | atj k jb k P O t q t =                        (9) 

corresponds to the probability that the observation symbol kO  is emitted in 
state jq  at time instant t, while an initial state probability distribution is de-
fined as [16]: 

{ }i=π π                            (10) 

where for 1 i N≤ ≤  

[ ]1i iP q S= =π                         (11) 

1

0

1N
i

=

≤


=∑ ιι

π

π
                         (12) 

An HMM can be classified into different types in the light of its state transi-
tion. Two well-known types of models are  
­ Ergodic model: An ergodic model is a fully connected HMM, that means that 

every state of the model can be reached from every other state of the model. 
­ Left-right Bakis model: A left-right model has only partial state transition such 

that 0ija =  j i∀ < . 
There are many possible variations and combinations. In the current study we 

make use of ergodic Hidden Markov Models. Rabiner [13] introduced the idea 
that Hidden Markov Models should be characterized by three fundamental prob-
lems: 

1) Given the observation sequence 1 2, , , TO O O O= �  and the model  

( ), ,A B=λ π  how we compute ( ),P O λ , the probability of the observation 
sequence, known as Evaluation Problem. 

2) Given the observation sequence 1 2, , , TO O O O= � , how we choose a state 
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sequence which is optimal in some meaningful sense, known as Decoding Prob-
lem 

3) How we adjust the model parameters ( ), ,A B=λ π  to maximize ( )|P O λ , 
known as Training/Learning Problem. 

The introduction of Evaluation and Learning problem follows, as these two 
were used on our experimental procedure. The observation-evaluation problem 
can be solved using the Forward-Backward procedure, in terms of a forward and 
backward variable. The definition of a forward variable is [16]: 

( ) ( )1 2 , |t t t ia i P O O O q S= =� λ                 (13) 

( )ta i  can be solved inductively: 
1) Initialization: 

( ) ( )1 1 ,1i ia i b O i N= ≤ ≤π                    (14) 

2) Induction for 1, , 1t T= −� , and for 1, ,j N= �  

( ) ( )( ) ( )1 11t t ij
N

j tia j a i a b O+ +=
= ∑                  (15) 

3) Evaluating the probability 

( ) ( )1| Ti
NP O a i
=

= ∑λ                      (16) 

The Backward algorithm is analogous to the Forward algorithm with the dif-
ference that it starts at the end and works backwards to the beginning. 

Given any finite observation sequence as training data, the model’s parame-
ters should be adjusted appropriately in order to find the model that fits best the 
given observation sequence. A classic approach is the Baum-Welch method. It is 
important to know that this algorithm finds a local maximum for ( )|P O λ , but 
it doesn’t guarantee a global maximum. 

This method makes use of the forward-backward algorithm, together with the 
following temporary variables [16]: 

1) ( ),t i jγ  which is the probability of being in state iq  at time t and in state 

jq  at time 1t +  
Where 

( ) ( ) ( ) ( )
( )

1 1
1, , | ,

|
t ij j t t

t t i t j

a b O j
i j P S q S q O

P O
+ +

+= = = =
α β

γ λ
λ

      (17) 

Summing ( ),t i jγ  over t can be interpreted as the expected number of tran-
sitions from state iq  to state jq  given the model’s parameters and the obser-
vation sequence O. 

2) The probability of being in each state at time t 

( ) ( ) ( ) ( )
( )

| ,
|

t t
t t i

a i i
i P x q O

P O
= = =

β
γ λ

λ
               (18) 

Summing ( )t iγ  over t can be interpreted as the expected number of times 
that the state iq  is visited or the expected number of transitions made from 
state iq , given the model parameters and the observation sequence O. 
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By using these two variables the re-estimation procedure has the following de-
finition: 

1) For 1, ,i N= �  let 

( )1i i=π γ                          (19) 

2) For 1, ,i N= �  and 1, ,j N= �  

( )
( )

1
1

1
1

,tt
Tij

tt

T i j
a

i

−

−
=

=

= ∑
∑

γ

γ
                      (20) 

3) For 1, ,j N= �  and 1, ,k M= �  

( )
( ){ }

( )
1, , ,

1

,
t tt T O k

t
Tj

t

i j
b k

i
∈ =

=

=
∑

∑
�

γ

γ
                  (21) 

The numerator of the re-estimated b is the expected number of times the 
model is in state jq  and the emitted symbol is k. Divided by the expected 
number of times the state iq  is visited, the probability of emission symbol k is 
obtained. 

Then the re-estimation is defined as an iterative process [16]: 
1) Initialize ( ), ,A B=λ π , if no reasonable guess is available the values are 

randomly chosen: 

1
i N
=π , 

1
ija

N
= , ( ) 1

jb k
M

=  

2) Compute ( )ta i , ( )t iβ , ( ),t i jγ  and ( )t iγ . 
3) Re-estimate the model ( ), ,A B=λ π . 
4) If ( )|P O λ  increases, repeat from 2 with the new re-estimated parame-

ters. 

4. Preprocessing 

In this work we made use of the fully polarimetric SAR data from the broader 
area of Vancouver city in Canada. The used fully polarimetric SAR imagery is of 
the Wide Fine Quad-Pol SLC product [17]. As a first processing stage, by using 
the SNAP’s environment (SeNtinel Application Platform) a radiometric calibra-
tion was employed to convert raw digital image data from satellite to a common 
physical scale based on known reflectance measurements taken from objects on 
the ground surface. Figure 1(a) depicts the SLC data while Figure 1(b) the cali-
brated data using SNAP. Then we applied the CTD method to characterize land 
cover pixel by pixel. As it was mentioned before this characterization results to a 
total of 8 simple geometric structures.  

The partitioning in different types of land cover was made based on the geo-
logical features of the specific area and on global criteria so that the proposed 
classification process to be robust and effective in every other data set. There-
fore, we selected 4 types of land cover, namely, water, urban/built up areas, for-
est/wooded area, agriculture/pasture area, as shown in Figure 2. 
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(a)                              (b) 

Figure 1. (a) SLC SAR product; (b) Data projected into geographic coordinates using 
SNAP (longitude, latitude). 
 

 

Figure 2. The selected four types of Land cover. Blue marked region corresponds to water 
land cover, green to forest/wooded area, red corresponds to urban/built-up area and 
beige to agriculture/pasture land cover. 
 

In order to carry out this type of supervised classification there is a need for 
ground truth data. This was accomplished by applying range doppler terrain 
correction on SNAP. Accordingly, we were able to match the SLC data to Google 
Earth maps and mark specific regions that correspond to the 4 types of land 
cover that were mentioned above. Then, a train-test split procedure was used 
with the ratio of 80/20, respectively for each land cover type to separate the data 
sequences into those that will be used for training the HMMs and for evaluating 
the trained models. 

5. Points of Novelty and Classification Procedure 

The novelty of this study is in the parallelism between our data and the compo-
nents of HMM that inspires the use of this model to classify different types of 
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land cover. Specifically, we assume that each pixel which corresponds to a Ca-
meron’s elementary scattering mechanism, constitutes an observation and each 
type of land cover is a hidden state. Therefore, we could construct an HMM, 
considering as observations the scattering mechanisms which are emitted from 
each type of land cover. 

The major advantage of HMM lies on the information contained in the way 
the elementary scattering mechanisms are alternating from pixel to pixel in each 
region. The importance of mining this feature relies on the fact that a neighbor 
of an elementary scattering mechanism, regardless of whether it is different, it 
mainly corresponds to the same land cover type. The transitions matrices for the 
scattering mechanisms is a strong feature for the specific data and play the role 
of probabilistic weighting during the training and classification process.  

The main component of this study is to construct an HMM for each land cov-
er type and classify a given observation sequence by determining the likelihood 
( )|P O λ  for every model with the forward/backward algorithm. This allows us 

to choose the model which best matches the observations. 
To construct the model that fits best a given observation sequence we used the 

Baum-Welch algorithm, to find the unknown parameters of every HMM by 
maximizing the probability of the given observation sequence. In our case, we 
have a multiple observation training as a consequence of assuming that each re-
gion consists of a set of observation sequences. For this task we obtain the Le-
vinson’s equations: 

1) State transition probability: 
( ) ( )
( ) ( )

1
1 1

1
1 1

,k

k

K T k
tk t

ij T k
t

K
k t

i j
a

i

−

= =
−

= =

= ∑ ∑
∑ ∑

γ

γ
, 1, ,i N= �  and 1, ,j N= �       (22) 

2) Symbol emission probability: 

( )
( ) ( )( )

( ) ( )

1
1 1,

1 1

k
k

it

k

T k
tk t o v

j

K

T k
tk t

K

j
b i

i

−

= = =

= =

=
∑ ∑
∑ ∑

γ

γ
, 1, ,i N= �  and 1, ,j N= �     (23) 

3) Initial state probability: 

( ) ( )11

1 , 1K k
k i i N

K =
= ≤ ≤∑ιπ γ                    (24) 

Scaling of computation was needed to avoid underflow and overflow [16]. 
According to the above material, from the four different types of land cover 

we chosen, we calculated the emission matrix shown in Table 2. Each row cor-
responds to a specific land cover type and each column to the rate that a scatter-
ing mechanism was obtained.  

From the emission matrix it can be concluded that we cannot be based on the 
dominant scattering mechanism at each land cover type. Firstly, because we have 
the same dominant scattering mechanisms between classes 1 and 4 and between 
classes 2 and 3, and secondly, because the ratio of dominance in class 2 and class 
3 is comparable with the rest. 
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After the learning process, four HMMs have been trained based on the sets of 
observations each of which corresponds totally to a specific type of land cover. 
The transition and emission matrices for the hidden states of each model were 
calculated and are depicted in Tables 3-10. 

Model 1-Water areas  
Model 2-Urban/Built up areas  
Model 3-Forest/Wooded areas  
Model 4-Agriculture/Pasture areas  
The classification performance is based on the computation of the likelihood 
( )|P O λ . By giving an observation at a time we can evaluate each model with 

the Forward/Backward algorithm, as mentioned before and find the model which 
best fits the observation. The accuracy rate for this experiment is given in Table 
11. 
 
Table 2. Observation rate for each of the 8 scattering mechanisms in each type of selected 
land cover, for the specific experimental procedure. 

 Trihedral Dihedral Dipole Cylinder 
Narrow 
Diplane 

¼ wave 
Device 

Left 
Helix 

Right 
Helix 

water 0.7319 0.0015 0.0179 0.2067 0.0051 0.0360 0.0006 0.0004 

urban 0.0257 0.0646 0.2299 0.1496 0.1564 0.2777 0.0581 0.0378 

forest 0.1048 0.0255 0.1713 0.2891 0.0756 0.2641 0.0406 0.0290 

agriculture 0.5156 0.0033 0.0448 0.3173 0.0141 0.0926 0.0073 0.0049 

 
Table 3. Hidden state transition matrix for the HMM corresponding to water land cover 
type. 

0.443415 0.065094 0.132725 0.358765 

0.383188 0.106376 0.17453 0.335906 

0.403767 0.091818 0.160338 0.344078 

0.436102 0.069939 0.137835 0.356124 

 
Table 4. Emission matrix for the HMM corresponding to water land cover type. 

0.729186 0.001607 0.01833 0.209171 0.004621 0.03598 0.000728 0.000377 

0.729170 0.001608 0.018333 0.209169 0.004619 0.035999 0.000729 0.000373 

0.729178 0.001607 0.018332 0.209170 0.004620 0.035989 0.000728 0.000375 

0.729185 0.001607 0.01833 0.209171 0.004620 0.035981 0.000728 0.000377 

 
Table 5. Hidden state transition matrix for the HMM corresponding to urban/built up 
land cover type. 

0.115817 0.375477 0.333571 0.175135 

0.061987 0.474750 0.345442 0.117822 

0.071501 0.452814 0.346178 0.129506 

0.097580 0.404473 0.340206 0.157741 
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Table 6. Emission matrix for the HMM corresponding to urban/built up land cover type. 

0.024321 0.070354 0.216769 0.146470 0.160998 0.283256 0.059278 0.038554 

0.024202 0.070260 0.216814 0.146180 0.161225 0.283543 0.059195 0.038581 

0.024211 0.070264 0.216811 0.146205 0.161205 0.283520 0.059203 0.038579 

0.024269 0.070310 0.216789 0.146347 0.161094 0.283380 0.059244 0.038567 

 
Table 7. Hidden state transition matrix for the HMM corresponding to forest/wooded 
land cover type. 

0.205632 0.260550 0.288928 0.244889 

0.107232 0.391872 0.336626 0.164271 

0.127326 0.361515 0.328405 0.182754 

0.178667 0.292863 0.303399 0.225072 

 
Table 8. Emission matrix for the HMM corresponding to forest/wooded land cover type. 

0.104692 0.026346 0.173721 0.288036 0.074499 0.262646 0.041339 0.028719 

0.104675 0.026344 0.173721 0.288025 0.074524 0.262636 0.041334 0.028741 

0.104679 0.026345 0.173721 0.288028 0.074518 0.262638 0.041335 0.028736 

0.104687 0.026346 0.173721 0.288033 0.074506 0.262644 0.041338 0.028725 

 
Table 9. Hidden state transition matrix for the HMM corresponding to agriculture/pas- 
ture land cover type. 

0.424838 0.00429 0.196397 0.374475 

0.015879 0.957907 0.011113 0.015101 

0.403306 0.005902 0.223177 0.367615 

0.420462 0.004575 0.201856 0.373107 

 
Table 10. Emission matrix for the HMM corresponding to agriculture/pasture land cover 
type. 

0.543129 0.003126 0.040192 0.307221 0.011389 0.084589 0.006255 0.004098 

0.505043 0.003421 0.049044 0.306076 0.017145 0.106073 0.010006 0.003192 

0.542996 0.003128 0.040215 0.307207 0.011399 0.084691 0.006271 0.004094 

0.543108 0.003126 0.040196 0.307219 0.011391 0.084605 0.006258 0.004098 

 
Table 11. Classification accuracy of hidden markov models. 

Land cover type Classification Accuracy 

Water areas 99.73% 

Urban/built up areas 99.09% 

Forest/wooded areas 99.35% 

Agriculture/pasture areas 87.37% 
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6. Conclusions 

In the current work, we examined the applicability of the Hidden Markov Mod-
els in land cover classification and assess their performance. Our study was based 
on the Cameron’s Coherent Target Decomposition for fully polarimetric SAR 
images, a powerful tool especially in target detection applications. The need to 
investigate for spatial extended targets, as land cover types, led us to Hidden Mar-
kov Models. The main reason was to take advantage of the Markovian property, 
the rich mathematical structure which presents a well-fitting analogy with our 
task. The results were excellent, as the classification performance is over 87% 
and in many of the cases it reached 99%. In total, our hypothesis was formed 
successfully in the specific dataset and the process we present is effective. The 
procedure was completed in the SNAP environment for the preprocessing level 
and in MATLAB as for the extraction of scattering mechanisms, the learning of 
HMMs and the classification procedure. 

Future extension of the method proposed in this manuscript is already in a 
thorough testing, where the representation of each pixel with more than one ele-
mentary scatterer is investigated. To implement this approach, it is necessary to 
develop a more complex HMM model for land cover classification. This model is 
currently being searched. 
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