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Abstract 
A result from Kieffer, as outlined at the beginning of the article identifies two 
different candidates for initial time steps, delta t. We assert that this differ-
ence in time steps may be related to a specific early universe Lorentz Viola-
tion. The author asserts that the existence of early universe Lorentz violation 
in turn is assisting in a breakup of primordial black holes. And that also has a 
tie into Kieffer different time steps as outlined. And the wrap up is given in 
the final part of this document. 
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1. Introduction, First of All Finding Two Different Initial 
Time Steps 

Our initial goal is to obtain, via a Kieffer Density function candidate minimum 
time steps which will be for the purpose of giving input into an uncertainty 
principle of the form [1] [2] [3] [4] 

4E t∆ ∆ ≈                            (1) 

With a use of [4] [5] 
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In doing all of this we are making full use of the following from [4] due to a 
one loop approximation [4] [6] 
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Which after we isolate out t∆  makes use of Equation (1), which is derived as 
given in [1] [2] [3] [4] 

( )

2 2

2 2

8 4
2

P

P

ttE
tt t

γ
γ
∆

∆ ≈ ⋅ ≡
∆∆

 



                     (4) 

We will be applying Equation (4) to obtain t∆ , and then from this step apply-
ing Equation (1) to say foundational import issues of time flow in the beginning. 

1a. Understanding the probability density functional as an Outgrowth of 
Kieffer’s derivation 

Our assumption is that time, t, which becomes t∆  is extremely small. Hence 
without loss of generality we write, if as an example, 2Z ≈ . 

And we simplify time dependence by setting 3
2

ν =
π  in Equations (2)-(4)  

Then, without loss of generality, if we observe this, and set Θ  as a probability 
density value of Equation (4), we then have [4] [6] 
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If so, then we have a minimum time step of the form 
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Equations ((6), (9)) are keys to the formation of a Lorentz violation, for the 
reasons we will go into in the next section. 

Now for the existence of an initial Lorentz violation, in part linked to Equa-
tion (6). 

2. Making Use of [7] and the Use of Lorentz Violation, as in [7] 
to Define More Precisely the Contribution of Gravitons to 
Both DE, Due to the Breakup of Black Holes 

To do this we need to review the Lorentz violating energy-momentum relation-

https://doi.org/10.4236/jhepgc.2021.74081


A. Beckwith 
 

 

DOI: 10.4236/jhepgc.2021.74081 1317 Journal of High Energy Physics, Gravitation and Cosmology 
 

ship. In short we have that 
2 2 2 3E p m pλ= + −                         (7) 

where the positive LV parameter λ  is usually assumed of the order of Planck 
mass, λ ∼ 1/M (Planck mass). This Lorentz violating energy-momentum rela-
tionship leads to, according to [7] [8] 
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1p λ≈   is used if we integrate, Equation (6) and if we use the first order 
Romberg numerical integration scheme as given in [9], page 695, so then for 
high temperature 
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We will then in the next section interpret Equation (9) when we set Notice 
here that we have restrictions on particle manufacturing for the theory. This is in 
line with [4] 
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Futher more we can make the following identification g gm m N≈ ⋅ . 

3. Interpreting Equation (13), So as to Ascertain the Number 
of Gravitons 

We are then looking at [7] [8] Using the Planck units renormalized such that 
1B Pk c M= = = = , we have that in the Pre Planckian state we can look at 
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We then can up to a modeling round off make the following approximation 
This value of Equation (11) will lead to approximately if ( ) ~ 1temp PT T  [9] 
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We will be utilizing [9] and [10] due to the subtle physics involved. [9] appeals 
to specific Lorentz transformations, which are necessary to understand the 
physics of the BEC (Bose-Einstein condensation) assumed in [10] for the treat-
ment of mini black holes as BEC of gravitons. To see BEC invoked, look at [10] 
which has the specified form as given. 

To whit the differences in Equations (9) and (10), will be such that we can 
now attend to the final piece of the puzzle which is primordial black holes being 
composed of Gravitons as Bose-Einstein condensates so the following is true, 
namely [10] 
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If, so then we will have applying special relativity, and a further elaboration of 
Equation (13a) can be done as follows, namely [9] 
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Given us, let us compare terms, and tell ourselves what we can expect if we 
have the variance in Equation (14) for BEC treatment of Gravitons. 

4. What 1057 Gravitons in a Radius of 1000 Kilometers 
Means in Terms of DE and a Cosmological Constant  
Calculation 

We will first of all refer to an early universe treatment of the uncertainty prin-
ciple is, in the startup of inflationary cosmology [7] [11]. 

The value of time t will be set as t ~ (10−32 s/t(Planck)) whereas we can utilize 
the ideas of having Planck time set ~ 5 × 10−44 seconds, hence, t ~ 1012, in Planck 
Units, whereas 1P P BG m k= = = = =  , so then we will have, as reset as [7] 
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The interesting thing, is that the factor of roughly 10^-120 shows up in this 
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situation so as to imply that there may be some linkage between setting the ef-
fective energy as roughly some proportional power value of Planck Mass [7].  

( ) ( )2 67 510 gravitons 10 gravitons per 10 black holeP Pm m⇒       (16) 

5. Making DE Equivalent to a Sea of Initial Gravitons, in Re-
gime 10−43 to 10−32 Seconds 

Roughly put, one hydrogen atom is about 1.66 times 10−24 grams. The weight of 
a Massive graviton is about 10−65 grams [12], hence we are talking about 10−22 
grams, or about 1044 gravitons, with each graviton about 6 × 10−32 eV/c2 after 
10−27 seconds, the following in the set of equations given below are Equivalent, 
and that these together will lead to a cosmological constant, Λ  of the sort 
which we will be able to refer to later with 651 graviton 10 g−≈ . Then set to have 
a micro sized black hole of the size [7] 

( )
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Table 1, inputs into forming DE if one is assuming uniform distribution of 
BH to be broken up by Karen Freeze model as given in the following Table 1. 

Assuming that gravitons contribute to the Dark Energy value will lead to us 
using the Karen Freeze model, with gravitons being released in the early universe 
by the breakup of early universe black holes which have a maximum value of 
about 1 g, as opposed to the value of the Sun which has about 1033 grams, in first 
10−32 seconds. 

6. What 1057 Gravitons in a Radius of 1000 Kilometers 
Means if We Go to the Rosen Early Universe Cosmology 

Let us first recall the Shalyt-Margolin and Tregubovich (2004, p.73) [13], Shalyt- 
Margolin (2005, p.62) [14] [15]. 

For sufficiently small γ . The above could be represented by [3] [14] 
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        (18) 

 
Table 1. Summary of infiationary and post inflationary information. 

Number of black 
holes, 

Mass of black hole of size 1 
Planck mass set aside for 
gravitons 

Mass of black hole for 108 
gravitons 

Radii of proto universe 

108 10−8 grams 10−5 g = 1 Planck mass 1000 Kilometers 

Volume of 
Universe is 103 
kilometers, cubed 

Starting range for Mass of 
black hole for Gravitons 

Assumed to be starting range 
of BH masses, at about 10−43 
seconds 

From less than a meter to 1000 Kilometers for 
constructing black holes which may be torn 
asunder by Karen Freeze’s criteria 
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This would lead to a minimal relationship between change in E and change in 
time as represented by Equation (18), so that in the end we would write a limit-
ing case as 

4E t∆ ∆ ≈                           (19) 

Having brought this up, let us then go to the Rosen [16] version of comology, 
and this needs explanation due to its rescaling of the values of the comology time 
and temperatures involved. The key point of this mini chapter will be to sum-
marize derivation of the space-time temperature [16] 
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4 2
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arT
a r

ρ σ= ⋅
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                   (20) 

With 310 cma −= , ( ) ( )4 321 1.574 10 K kelvinFρ σ = ×  Then according to [2], 
the initial temperature is ( )180

initial 2.65 10 K kelvinT −= ×  Whereas the tempera-
ture where one has the breakup of Primordial black holes is at 

( )31
black hole breakup starts 7.41 10 K kelvinT = × . As given in [2], we have then that if 

R(radius) is between 1 meter to say 1000 Kilometers this mass m breaks up for m 
as given by [7] [17] 

( )38 radius
3

R
m

ρπ ⋅
≈                      (21) 

Here, the density function is given by Equation (15) and Equation (11), for 
our application and also we obtain for black holes a break up criteria for mass m 
Black holes if [17] 

3
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4 81 3
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G

G P

mm
p M
ρρ   ≈ − ⋅ + ⋅ ⋅  

   

π                  (22) 

So we can have the start of breakup of black holes, if we have gravitons from 
1/1000 of the mass of given black holes, and if black holes contribute DE ac-
cording to when pressure is approximately equal to the negative value of the 
density which would lead to a Black hole contribution of Equation (23) to DE. 
As given below [7]. 

( )30 3 6DE from black holes 7 10 g cm 7 10 g 1000 km− −= × = ×      (23) 

This rough value of DE, as given in Equation (23) will be directly compared to 
what we can expect as far as applying in Equation (23) as to comment directly on 
the t∆  time interval for the active generation of DE in the early cosmos. 

Keep in mind that J. W. Moffat in [18] postulated in the initial phases of cos-
mology a situation for which we have no conservation of energy, and in fact this 
is exactly the situation we could be portraying here, that is if the description of 
the Rosen cosmology as in [16] are not wrong, i.e. we have a massive violation of 
conservation of energy. 

This would be doable if the initial phases of creation of the universe follow 
[16] if we utilize, initially a near zero temperature start regime in the early un-
iverse, as in [16]. The early universe will have an energy input via thermal inputs 
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of a value commensurate with 

( ) universe(dim)
thermal energy

2
Bd k T

E
⋅ ⋅

=              (24) 

7. What about a Tie into an Early Wavefunction for the  
Universe Argument? Viutilli Treatment of Schrodinger 
Equation for Curved Space-Time 

The tie in, as can be stated is to make, after all the proximations, the following 
argument in [19] [20] we have after several manipulations a wave function 
dominated by 

2 2
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Whereas the approximation given is that we will be examining what if r
rR  is 

a constant. If so then, using the S.E. will be leading to an effective energy of 
2 2
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Where we are assuming there is a non zero flatness term. 
This will be linkable to, if we are assuming temperature eventually appears, 
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        (28) 

The final step is to assume a non zero effective temperature we are in this sit-
uation directly using the idea of Lorenz invariance being broken in order to 
make sense of what Equation (28) is stating, we can also look at the following’ 
heuristic short hand, namely of Equations (13)-(14) being employed for the val-
ue of m above so as to have, say we are considering black holes of BEC configu-
ration 

2

2 2 2
min

2 61 1eff P

eff g

Mcm
c a N

ω κ
ω

 ⋅
≈ ⋅ ± − ≈ 

⋅  



             (29) 

In such a situation, for gravitons being released from black holes due to a BEC 
condensate for black holes, as being destroyed by the Karen Freeze criteria, we 
must realize that a Lorentz violation would either tend to favor a very small re-
lease of gravitons being put into Equation (26) or a large value i.e., the Lorentz 
violation would then be favoring the term gN  as being favored by the larger 
value as given in Equations (12)-(14). This leads to the following question to be 
raised. Assume we could release a breakup of primordial Black holes, do we 
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have, say any conditions where. 
After setting up the formulation of conditions for the creation of DE accord-

ing to which we are looking at in the regime of space-time from less than a meter 
in radii to 1000 km in radii we have the formation of DE with the given fre-
quency, for setting up DE, and then by default the Cosmological constant, 

( )( ) Graviton generated DEV tφ ω≈                    (30) 

Is Equation (30) in any way commensurate with the Frequency stated as of 
Equation (28) and is this identification due to an early Universe Lorentz viola-
tion? 
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See this final take away as to what the cosmological constant is equivalent to, 
i.e. does the following make sense? If we multiply Equation (19) say by the cube 
of a Planck volume, and then can we work with the following derivation? One 
solution is as follows, [21] [22] 

1 1
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3 3
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The above is one such relationship. We need to reconcile it with Equation (32) 
in which we have the following provided that we have, at the point where  

( )0 flatnessκ =  will lead to m not equal to 
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3 2
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What is set in Equation (19) is in line with also using 

( ) mina t a tγ=                         (35) 

Leading to [21] [22] the inflaton 
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And what we will use later the “inflaton potential” we write as [21] [22] 
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Furthermore, we have from applying a reference from the author, [21] and 
[22], using pages 212-213 of reference [22] 

( )2 3 0tm a a⋅ ∂ − =                       (38) 

And then, a minimum time step we define via a minimum time step of 
1

min

2
3

t
a

γ
 

=  
 

                        (39) 

Note that if the time as defined by Equation (39) is on the order of Planck 
time, i.e. 10−44 seconds, we have then that 61 - 62γ ≈  Given this value of 61 to 
62 in gamma, it leads to having gN  approximately of the value of 10 which is in 
line with, if m is in this case commensurate with Equation (14), i.e. an effective 
graviton mass. Furthermore gamma of the value of 61 or so would lead to an ef-
fective frequency 1.8549 × 1043 s−1 times 1/sqrt of 10. i.e. c/Planck Length times 
1/sqrt of 10, which is normalized in Planck Units to be ~ 1/sqrt of 10. 

In line with Equation (25), and normalized Planck units, this would corres-
pond to 1.416784 (16) × 1032 K/sqrt 10, or about a breakup of Planck sized black 
holes at a temperature, due to Lorentz violation processes, early on of 

20
Plank BH Breakup 10 0.507 10 GeVPT T≈ ≡ ×              (40) 

Having this temperature for the energy is then equivalent, if we have a transi-
tion from curved to flat space to writing, if Gamma is ~61 and we have Planck 
time, after a Lorentz violating transformation from curved space to Flat space 
which we would write as 

( )

( )Planck
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γ
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γγ

γ γ

ω
γ γ

−

− −

≡

π
π

π
π

≡ ≡

  = ⋅ ⋅ 
−  

    

π

π
→ ⋅ ⋅ ≈ ∝   −    


      (41) 

Which is in turn related to [7] 

( )

8
42

0
0

8
8 3 1

G
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GVtP V t
G

γ
γγ

γ γ

−
π

π ⋅  = − ⋅ ⋅ 
⋅ −  

π

π
              (42) 

44 1
32

1 3

p P
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G

G

m m
m P

ρ

ρ

 = ⋅ ⋅ 
  +

π
                  (43) 

What we will be looking at would be having a glimpse of 
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Doing this would be at a minimum of having, a distance greater than or equal 
to 

3010DE Pλ ≈                          (45) 

Assume then we have, for the sake of argument 
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      (46) 

The particulars of the coefficient of the right hand side of Equation (46), if 
1P PG t= = = =  , then if we set 

2 1 0
4 4
γ γ

π
− − =

π
                      (47) 

So then we have if we wish to neutralize sensitivity to time itself at first ap-
proximation 

( )2
4 1 2γ = ⋅ ±π                        (48) 

We can then look at the following 
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    (49) 

The above equation can be used, to locate appropriate values for 0V  in units 
where 

1P P PG t m c= = = = = =   
Given an approximate value for 0V  we will then proceed to come up with 

examining 

( )

44
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black hole primordial 23
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32 1 3 10
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m m
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 = ⋅ ⋅  − ⋅ 

 
× 


π




            (50) 

The Lorentz symmetry breaking would be occurring at roughly a multiple of 
Planck time t, at a distance of say where we would be using we will first start off 
with the redone calculation as to the vacuum energy and how we rescale them to 
be in sync as to the observed value for vacuum energy which is of the present 
era. This methodology is consistent with the zero-point energy calculation, we 
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start off with the following as given by [23] [24] [25] 
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In stating this we have to consider that 
( )4

4

2
8DE

DEG
ρ

λ
Λ

= ≈
π

⋅
π

 , so then that  

the equation we have to consider is a wavelength 30
Planck10DEλ ≈   which is 

about 1030 times a Plank length radius of a space-time bubble. That would, we 
have after 10−42 seconds 

( )4

4

2
8DE

DEG
ρ

λ
Λ

= ≈
π

⋅
π

                      (52) 

We then have to consider how to reach the experimental conditions for when 
a nonsingular expansion point for Cosmology, will after 10−42 seconds lead to 
Equation (4). That means a discussion of what Rosen and Israelit did in [16]. 
Our point in this admittedly ad hoc discussion will be to do dimensional analysis 
when applying [16] is that we have a factor of 1030 expansion as to where we can 
at least measure the onset of DE. 

Looking now at Rosen and Israelit, in terms of Thermodynamics of a 
non-singular universe [16] will be relevant for several reasons 

A. We will be able to come up with an initial temperature of 10−180 Kelvin, at a 
radius of about Planck length, in value. Almost absolute zero B. The temperature 
of space-time will be of the order of Planck Temperature after expansion of 
about 1030 times from the initial nonsingular configuration earliest phase, whe-
reas we have the following Entropy value of [26] 

2 3~ 3 1.66S g T∗
 ⋅                        (53) 

Here, the degrees of freedom term is defined in [16] and initially is about 110 
This maximum entropy for slightly less than a Planck sized temperature, T oc-
curs at the point where we have maximum Graviton release, due to the breakup 
of black holes as postulated by Karen Freeze, as when the space-time density is 
in line with Equation (60) with we wish to refer to the following as motivation in 
order to link this to graviton mass and other such concerning heavy gravity, so 
we have the following, as to how to obtain the mass of an inflaton, namely use, if 
Equation (37) is used for V (phi) 

( )

( )

2
2
inf 2

0, 3.9776

inf

d 16
d 3 2

2.74635619187 Planck units
Pt t

V
m

m
φ

φ
φ

= = ⋅

π
π

= =

⇒ =

              (54) 

IMO the inflaton mass is 2.746356 times Planck Mass, and this is a starting 
value of inflaton mass at t = 3.9776 Planck time. We should compare the inter 
relationship of this inflaton mass, in a volume of space with the results of Equa-
tion (50). The interrelationship of this inflaton mass, at a given time t ~ 3.997 
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Planck time, as compared Equation (50) for the breakup of black holes, and with 
the information given in Equations (8) and (9) of this document. 
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