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Abstract 
In this paper, we analyze the quasi-stationary distribution of the stochastic 
SVIR (Susceptible, Vaccinated, Infected, Recovered) model for the measles. 
The quasi-stationary distributions, as discussed by Danoch and Seneta, have 
been used in biology to describe the steady state behaviour of population 
models which exhibit discernible stationarity before to become extinct. The 
stochastic SVIR model is a stochastic SIR (Susceptible, Infected, Recovered) 
model with vaccination and recruitment where the disease-free equilibrium is 
reached, regardless of the magnitude of the basic reproduction number. But 
the mean time until the absorption (the disease-free) can be very long. If we 

assume the effective reproduction number 1pR <  or 1pR β
δ

> + , the qua-

si-stationary distribution can be closely approximated by geometric distribu-
tion. β  and δ  stands respectively, for the disease transmission coefficient 
and the natural rate. 
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1. Introduction 

Measles is a highly contagious viral infection that manifests as a rash associated 
with signs of respiratory infections. It is caused by a virus of the paramyxovirus 
family whose reservoir is exclusively human [1] and is transmitted by direct 
contact with secretions from the nose, throat and through the air [2] [3]. The 
virus primarily infects the respiratory tract. Upon infection, the patient passes 
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through a latent period of 6 to 9 days, followed by 6 to 7 day infective period [4]. 
The infection results in either death or full recovery of the host. In the last case, 
the host develops lifelong immunity. However, immunity can also be acquired 
by vaccination before infection, hence its essential role in any measles control 
initiative. 

The children under 5 years remain the most affected. 90% who die have less 
than 5 years. In developing countries, like Niger where children under one year 
old represent 4.32%, those under 5 years old 19.73% and those under 15 years 
51.18%. The measles remains one of the main causes of infant mortality [2] [5] 
[6] [7]. 

Our stochastic model is a stochastic SVIR (Susceptible, Vaccinated, Infected, 
Recovered) model for the measles [8], where the process ( ) 0

,t t t t
X S I

≥
=  is a 

continuous-time Markov chain resulting from a set of transient states 0E  
which evolves until it escapes to a set of absorbing states corresponding to dis-
ease-free equilibrium. ( ) ( ),S t I t  denote respectively the number of susceptible 
and infected. When the process reaches the set of absorbing states, it remains 
there permanently. However, before the instant of absorption (which is relatively 
long), the process passes through a quasi-stationary state. 

To understand this phenomenon, we study the long time behavior of the 
process conditioned on non extinction, which leads us to consider the qua-
si-stationary distribution introduced by Danoch and Seneta in biology. It allows 
to describe the steady state behaviour of population models which exhibit dis-
cernible stationarity before to become extinct [9]. The term quasi-stationarity 
refers to the distribution of the Markov chain by conditioning on the event that 
absorption has not occurred yet [10]. It gives a good measure of the behavior 
before absorption when the absorption time is very long. But this measure has a 
number of flaws. Indeed if the set of transient states is finite and irreducible, it is 
well known that the quasi-stationary distribution exists [11]. But if this set is in-
finite, the existence of a quasi-stationary distribution is not guaranteed, and even 
if it does exist, it is practically impossible to determine it explicitly. 

For the continuous time SVIR model under some conditions on the effective 
reproduction number [12], the quasi-stationary distribution of the number of 
infected exists and can be closely approximated by geometric distribution. 

The main results are stated in theorem 4 and theorem 5. Precisely, let pR  be 
the effective reproduction number. In theorem 4, we prove that, if 1pR < , the 
quasi-stationary distribution of the number of infected can be closely approx-
imated by geometric distribution with parameter 1 pR− . However in theorem 5,  

we note that if 1pR β
δ

> +  this latter distribution is approximatively geometric  

with parameter *1 eI , where β , δ  and *
eI  stands respectively, for the dis-

ease transmission coefficient, the natural death rate and the endemic equilibrium 
point, for the number of infected. 

The rest of the paper is organized as follows: The Section 2 describes the de-
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terministic SVIR model by a system of differential equations. The equilibrium 
points of the system of differential equations are also given. In Section 3, we use 
the continuous time Markov chains model to form our stochastic SVIR model 
[8]. Section 4 is devoted to the study of the quasi-stationary distribution of the 
stochastic SVIR model, followed by numerical simulations in the fifth section. 
Finally, in the last section, we discuss our stochastic approach and scientific con-
clusions. 

2. The Deterministic SVIR Model  

In what follows, ( ) ( ) ( ), ,S t I t R t  denote respectively the number of susceptible, 
infected and immunized (susceptible vaccinated and recovered patients) at time 
t. 

In this model, the new susceptible (newborns) are introduced at a constant 
rate n. A fraction, pn, of newborns has acquired immunity by vaccination. The 
other fraction ( )1 p n−  remains susceptible. p is the probability that a newborn 
will acquire immunity after being vaccinated. In addition, we assume that: 
● the natural death rate is δ  for each compartment.  
● infectious patients recover at the rate of γ .  
● infectious patients have an additional µ  death rate from measles.  
● we consider the standard incidence ( ),f I S SIβ= , β  is the disease 

transmission coefficient. β  is the average probability of an adequate con-
tact (contact sufficient for transmission) between an infected and a suscepti-
ble per unit of time.  

The compartment diagram of the transitions in the SVIR model is in Figure 1.  
The dynamics of a well-mixed population can be described by the following 

system of differential equations: 

( )

( )

d 1
d
d
d
d
d

S n p SI S
t
I SI I
t
R np I R
t

β δ

β δ µ γ

γ δ

 = − − −

 = − + +



= + −

                     (1) 

Remark.   
 

 
Figure 1. Compartment diagram of model SVIR. 
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1) In the case of equilibrium without disease, the system (1) admits an equili-

brium point (
* * *

0 00 , ,S I R ) with  

 
( )* * *

0 00

1
, 0 and

p n npS I R
δ δ
−

= = =                  (2) 

( )0
nR β

δ δ µ γ
=

+ +
 is the basic reproduction number [13] and the effective  

reproduction number is defined by ( ) 01pR p R= −  [12]. Recall that 0R  is de-
fined as average number of secondary infections produced when one infected 
individual is introduced into a host population where everyone is susceptible [14] 
[15]. If 1pR <  this equilibrium point is asymptotically stable [13]. In addition, we  

have 0pR R<  and 1pR <  if and only if 
0

11p
R

> − . We say that 
0

11cp
R

= −  

is the critical vaccination coverage of newborns. 

2) If 1pR > , an endemic equilibrium point appears (
* * *

, ,e eeS I R ) asymptoti-
cally stable [13], where  

 
( ) ( )* * *1 1

, etp p
e ee

R np R
S I R

δ β γδδ µ γ
β β δβ

− + −+ +
= = =        (3) 

3. The Continuous Stochastic SVIR Model  

Let ( ) ( )( ) 0
,t t

X S t I t
≥

=  be a continuous-time homogeneous Markov chain on 
the denumerable state space { }22 0,1, 2,=  . First, assume that t∆  can be 
chosen sufficiently small such that at most one change in state occurs during the 
time interval t∆ . In particular, there can be either a new infection, a birth, a 
death, or a recovery. From of state ( ){ },tX s i= , only the following states are 
accessible:  

( ) ( ) ( ) ( ) ( ), ; 1, ; , 1 ; 1, ; 1, 1 .s i s i s i s i s i+ − − − +  

corresponding to the possible transitions starting from the state ( ),s i  (see 
Figure 2). tX  has an absorbing set corresponding to disease-free equilibrium 
states ( ){ }0 , , 0; 0E s i s i= ≥ = . 

Let ( ),s iV  be the set of neighbors of state ( ),s i : 

( ) ( ) ( ) ( ) ( ){ }, 1, ; 1, 1 ; 1, ; , 1s iV s i s i s i s i= + − + − −  

Setting ( ) ( ) ( ), 1s i n p is s iτ β δ µ δ γ= − + + + + + , the transition rates are defined 
by: 

( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

, , ,

1 , 1, , 0, 0
, 1, 1 , 1, 0
, 1, , 1, 0
, , 1 , 0, 1

s i k l

n p k l s i s i
is k l s i s i
s k l s i s i

i k l s i s i

β
τ

δ
µ δ γ

 − = + ≥ ≥
 = − + ≥ ≥=  = − ≥ ≥
 + + = − ≥ ≥

       (4) 

The transition probabilities of ( ) ( )( ),tX S t I t=  are defined by  

( ) ( ) ( ) ( ) ( ){ }, , , , / ,t t ts i k lP t X k l X s i+∆∆ = = =  
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Figure 2. States transition. 

 
We have 0s∀ ≥ ,  

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,

, , , ,

,0 , ,0

0, if ,

1 if , ,

0, 1

s i k l s i

s i k l s i

s s

i t o t k l V

P t t o t k l s i

i P t

τ

τ

∀ > ∆ + ∆ ∈
∆ = − ∆ + ∆ =

∀ = ∆ =

      (5) 

The distribution of tX  is ( ), 0s iP t =  if 0s <  or 0i <  and  
( ) ( ){ }, ,s i tP t X s i= =  if 0, 0s i≥ ≥ . Therefore, the marginal distributions are 

given by: 

( ){ } ( ) ( ){ } ( ), ,
0 0

ands i s i
s i

I t i P t S t s P t
≥ ≥

= = = =∑ ∑   

From the Equations (5), we obtain the Kolmogorov Forward equations, for all 
0s ≥  and 0i ≥  

( ) ( )( )

( ) ( ) ( )

,
1, , 1, 1 ,

, 1 , 1, ,

d
1 1 1

d
1 1

s i
s i s i s i s i

s i s i s i s i

P
n p P P s i P siP

t
i P iP s P sP

β

µ γ δ δ

− + −

+ +

   = − − + + − −   

   + + + + − + + −   

    (6) 

Hence the system of differential equations verified by the mathematical expecta-
tions: 

( )

( )

d 1
d
d
d
d
d

SI

SI

S p n S I S cov
t
I S I I cov
t
R np I R
t

β δ β

β µ δ γ β

γ δ


= − − − −




= − + + +



= + −


               (7) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

, ,
0 0 0 0

,
0 0 0

,

and

s i s i
s i s i

SI s i
s i r

S t sP t I t iP t

cov t siP t S t I t R t r R t r

+∞ +∞ +∞ +∞

= = = =

+∞ +∞ +∞

= = =

= =

= − = =

∑∑ ∑∑

∑∑ ∑ 
 

In the previous article, see [8], we established the following result:  
Theorem 1. Let ( ){ }0 inf 0, 0T t I t= ≥ =  with inf ∅ = +∞ . Then, for all 

*i∈ , [ ]0 1i T < +∞ =  and ( )lim 0 1t i I t→+∞ = =   . 
Theorem 2. Let ( ){ }0 inf 0, 0T t I t= ≥ =  with inf ∅ = +∞  and  

(
( )*

0

1 p n
S

δ
−

= , 
*

0 0I = , 
*

0
npR
δ

= ). 

If 1pR ≤ , then (1) [ ]0T < +∞  and (2)  

( ) ( ) ( )( )
* * *

0 00lim , , , ,
t

S t I t R t S I R
→+∞

 =  
 

. 

Theorem 3. Let ( ){ }0 inf 0, 0T t I t= ≥ = , inf ∅ = +∞  and (
*

eS δ µ γ
β

+ +
= , 

( )* 1p
e

R
I

δ

β

−
= , 

( )* 1p
e

np R
R

β γδ

δβ

+ −
= ) 

If 1pR > , then (1) [ ]0T = +∞  and (2) ( ) ( ) ( )( )
* * *

lim , , , ,e eet
S t I t R t S I R

→+∞

 =  
 

  

Unlike the deterministic approach, we note that the epidemic is extinguished 
independently of the threshold pR  with a probability equal to 1. More precisely, 
if 1pR ≤  extinction occurs in a time of finite mean, and if 1pR >  the disease 
eventually disappears in a time of infinite mean. However, before the instant of ab-
sorption (which is relatively long) the process passes through a quasi-stationary 
state. To understand this phenomenon, we study the long time behavior of the 
process conditioned on non extinction, which leads us to consider the qua-
si-stationary distribution introduced by Danoch and Seneta in biology. 

4. Quasi-Stationary Distribution  

The term quasi-stationarity refers to the distribution of the Markov chain by 
conditioning on the event that absorption has not occurred yet [10]. It gives a 
good measure of the behavior before absorption when the absorption time is 
very long. In all the following x  refer to the probability measure conditional 
on 0X x=  and ( ) xx xα α= ∑   for any probability measure α . x  and 

α  are the corresponding expectations 
Definition 4.1. A probability distribution π  on the set of transient states TE  

is called a quasi-stationary distribution for the process ( ) 0t t
X

≥
 if for all 0t ≥  

and any measurable set A E⊂  we have ( ) ( )0/tA X A T tππ = ∈ >  [10].  
Remark   
1) Equivalently, π  is the unique limiting conditional probability distribution 

such that 0t∀ ≥ , TA E∀ ⊂  { } ( )lim /t tX A T t Aα π→+∞ ∈ > =  independently 
of initial distribution α  [10].  

2) If the set of transient states is finite and irreducible, it is well known that the 
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quasi-stationary distribution exist. But if this set is infinite the existence of qua-
si-stationary distribution is not guaranteed, furthermore even if it exist, it is typ-
ically impossible to evaluate it explicitly. One is therefore lead to consider itera-
tive methods [16] or asymptotic solutions by diffusion processes [17] [18] for the 
quasi-stationary distribution.  

Theorem 4. Let *
,s iQ  be the quasi-stationary distribution of the process 

( ) 1t t
X

≥
 and * *

. ,
0

i s i
s

Q Q
≥

= ∑  the marginal distribution of the number *I  of in-
fected in a quasi-stationary regime. If 1pR < , for all 1i ≥ , ( )* 1

. 1 i
i p pQ R R −≈ −  

Proof. For all , 1i j ≥ , setting  

 
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

, , / ,

, , , /
s

I

P i j t I t t j S t s I t i

P i j t t I t t j I t i

 ∆ = + ∆ = = =


∆ = + ∆ = =




          (8) 

we have  

( ) ( )( ) ( )
0

, , , , ,I s
s

P i j t t S t s P i j t
≥

∆ = = ∆∑               (9) 

and according to the process definition ( ) 0t t
X

>
,  

( )
( )

( ) ( )
( ) ( )

if 1
, , if 1

1 if
s

is t o t j i
P i j t i t o t j i

is i t o t j i

β
µ γ δ

β µ γ δ

 ∆ + ∆ = +


∆ = + + ∆ + ∆ = −
 − + + + ∆ + ∆ =  

    (10) 

we deduce that  

 ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

if 1

, , , 1 if 1

1 if

I

i t o t j i

P i j t t iS t i t o t j i

iS t i t o t j i

µ γ δ

β µ γ δ

β µ γ δ

 + + ∆ + ∆ = +  ∆ = − + + + ∆ + ∆ = −  


 − + + + ∆ + ∆ =  

  (11) 

As in the case of disease-free equilibrium, ( ) ( )*

0

1
lim

t

n p
S t S

δ→+∞

−
= = , thanks 

to the Equation (11), we have  

 ( )
( )

( ) ( )

( ) ( )

*

0

*

0

if 1
if 1, , ,

1 if
I

i S t o t j i
i t o t j iP i j t t

i S i t o t j i

β
µ γ δ

β µ γ δ

 ∆ + ∆ = +
 + + ∆ + ∆ = −∆ = 
  − + + + ∆ + ∆ =   

   (12) 

thus asymptotically the process ( )I t  is a linear birth-death process with infini-
tesimal generator: 

( ) ( )
1if 1

where and
if 1ij

n pi j i
q

i j i
βλ

λ ν µ γ δ
ν δ

−= +
= = = + + = −

    (13) 

In this case, under the condition λ ν< , it is well known [16] there is a unique 
quasi-stationary distribution for the process which follows the geometric law  

with parameter 1 1 pRλ
ν

− = − . Hence if 1pR <  for all 1i ≥ , we obtain:  

 ( )* 1
. 1 i
i p pQ R R −≈ −  or * *

. ,
0

i s i
s

Q Q
≥

= ∑                  (14) 
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The proof is completed for the theorem 4.                              □ 
Remark. Under the condition 1pR ≤ , the irreducible Markov chain ( ) 0t t

X
>

 
is positive recurrent. Then an unique invariant probability measure π  exists 
and  

( )
( ) ( ) ( ){ },

,,

1, where inf 0 / , .s i t
s is i

s i t X s iπ τ
τ

= = > =


 

Thus, the theorem 4 simply states that for all 1i ≥ ,  
( ) ( ) 1

0 , 1 i
i p ps s i R Rπ π −

≥
= ≈ −∑  if 1pR < .  

Theorem 5. Let *
,s iQ  be the quasi-stationary distribution of the process 

( ) 1t t
X

≥
 and * *

. ,
0

i s i
s

Q Q
≥

= ∑  the marginal distribution of the number *I  of infected  

in a quasi-stationary regime. If 1pR β
δ

> + , for all 1i ≥ , 
1

*
. * *

1 11
i

i
e e

Q
I I

−
 

≈ − 
 

 

Proof. If 1pR > , we have ( )
*

lim et
S t S µ γ δ ν

β β→+∞

+ +
= = = . 

The approximation of the process ( )I t  by a birth-death process does not 
lead to a satisfactory result. In fact we will use the recursive method of Nåssell 
[17] and estimate the characteristics of quasi-stationary distribution of the 
process by those of a diffusion in stationary regime. 

Let ( ),s iQ t  the conditional distribution of ( ) ( )( ),tX S t I t=  given that the 
epidemic has not extinguished:  

 ( ) ( )
( ) ( ) ( ),

, . ,
0.0

et
1

s i
s i i s i

s

P t
Q t Q t Q t

P t ≥

= =
− ∑             (15) 

( ).iQ t  denotes the marginal distribution of ( )I t , conditional on non-extinction. 
From Kolmogorov forward equations (Equation (6)) we obtain the following 
system:  

 
( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, 1, 1, 1

, 1 1,

, .1 ,

1 1 1

1 1

,

s i s i s i

s i s i

s i s i

Q t n p Q t s i Q t

i Q t s Q t

s i Q t Q t Q t

β

µ γ δ δ

τ µ γ δ

− + −

+ +

′ = − + + −

+ + + + + +

− + + +

       (16) 

The quasi-stationary distribution is the stationary probability distribution 

{ }*
, 0, 0s i s i

Q
≥ ≥

 satisfying:  

 
( ) ( )( ) ( )( )
( ) ( ) ( )

* * *
1, 1, 1 , 1

* * * *
1, , .1 ,

0 1 1 1 1

1 ,
s i s i s i

s i s i s i

n p Q s i Q i Q

s Q s i Q Q Q

β µ γ δ

δ τ µ γ δ
− + − +

+

= − + + − + + + +

+ + − + + +
    (17) 

the recursive method of Nåsell [17] gives the following recursion relationship for 
*
.iQ :  

 ( ) ( )*
* * * *0
. 1 . .1 .

1
1 1

i

i i kS
k

R
i Q iQ e i Q Q

n
δ

+
=

 + = + − 
 

∑             (18) 

where ( )*

*
,
*

0 .

s i
S

s i

Q
e i s

Q≥

= ∑  is the conditional expectation of *S  given that *I i= .  

Let denote *S  the expectation of *S , by summing the Equation (18) over 
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1i ≥  we obtain:  

 
( )* *

* *0
.1 *

,
1

cov S IR
Q S

n I

δ  
 = − +
 
 

                (19) 

It follows that the marginal distribution *
.iQ  satisfies the recursion relationship  

 

( )

( )

*

*
* * *0 .1
. 1 . .

1

* *
* *0
.1 *

1
1 1

,
1

i

i i kS
k

R QiQ Q e i Q
n i i

cov S IR
Q S

n I

δ

δ

+
=

  = + −  + +  
  
  = − +    

∑
            (20) 

Let denote ( )* *ˆ ,e e eX S I=  the endemic equilibrium point in Equation (3) and 

µ γ δα
δ

+ +
= . We approximate the process ˆ

t eX X−  by a diffusion process 

with drift matrix eA  and covariance matrix ecov   

 
( ) ( )

( ) ( )
2 11

et
1 0 1 2 1

p pp
e e

p p p p

R RR n p
A cov

R R R R

α
δ

 − −− − −   = = −  − − −   
  (21) 

its stationary distribution is approximately bivariate normal with mean 0 and 
covariance matrix [17]:  

 
( )
( )

2
2

1

1

p p

p
p pp

R R
n p

R
R RR

α

δ
α

+ − 
−  Σ =  − − + 

 

              (22) 

from Equation (18) we approximate ( )* *,cov S I  by 
( )

12 21

1

p

n p
Rδ
−

Σ = Σ = −  and 

( )* *,S I  by ( )* *,e eS I , thus we obtain *
.1 *

1

e

Q
I

= . 

In other hand since the stochastic means are close to equilibrium points in 
stationary regime we have set ( )*

*
eS

e i cS=  where c is a constant, and from the 
Equation (18) necessarily ( )*

.11c Q= − . It follows that the marginal distribution 
*
.iQ  satisfies the recursion relationship 

( )
*

* * * *.1
. 1 . .1 .

1

*
.1 *

1 1
1 1

1

i

i i k
k

e

QiQ Q Q Q
i i

Q
I

+
=

  = − + −  + +  

 =

∑
             (23) 

The only solution of which is 
1

*
. * *

1 11
i

i
e e

Q
I I

−
 

= − 
 

, pour tout 1i ≥ . The condition  

of the theorem ensures that * 1eI >  so the probability distribution ( )*
. 1i i

Q
≥

 is 
well defined. The proof of theorem 4 is complete.                        □ 

5. Simulation  

Two sample paths of ( )I t  in Figure 3 are simulated over the interval [ ]0,25 ,  
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Figure 3. Two sample paths of ( )I t  in quasi-stationary regime for the parameter values 0 100S = ; 

0.69β = ; 0.25δ = ; 0.02µ = ; 0.5γ = ; 3.5n = ; 0.51p = ; [ ]0,25t∈ . 6.1473pR = . All si-

mulations started from the quasi-stationary distribution (Equation (23)).  
 

 
Figure 4. approximations *

.iQ  and *
.iO  (dashed curve), for the parameter values 0.69β = ; 

0.25δ = ; 0.02µ = ; 0.5γ = ; 3.5n = ; 0.51p = . 6.1473p = .  

 
with initial distributions the quasi-stationary distribution estimated at Equation 
(23). In the case 1pR > , the approximation of the quasi-stationary distribution 
of I by a diffusion process gives a normal distribution whit mean Iµ  and va-
riance 2

Iσ  [17] [18].  

( )
( )

( )( )22
2

1
and 1 .I e I p p

p

n p
I R R

R
µ σ

δ

−
= = − +  

since 0I > , the approximation of this distribution is 
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*
. 0.5

I

I
i

I
I

I

i

O

µφ
σ
µσ
σ

 −
 
 =
 −

Φ 
 

. 

where φ  and Φ  denote the normal density function and the normal cumula-
tive distribution function respectively. Figure 4 gives *

.iQ  and *
.iO , for the val-

ues of { }1,2, ,100i∈  . 

6. Conclusion and Discussion 

The asymptotic analysis of our model identifies three regions in parameter space 
with qualitatively different behaviors of the quasi-stationary distribution. pR  is 
significantly greater or less than the deterministic threshold value 1 in the first 
region or the third region respectively and that pR  is in a second region can be 
the transition region close to the deterministic threshold value 1 namely  

1 1pR β
δ

≤ ≤ +  or 
( )0

1
1 1

R
p p

δ β
δ

+
≤ ≤

− −
. This result is analogous to that of  

Nåsell [17] for models SIS and SIR with finite population size N where the tran-
sition region is determined by a parameter ( )03 , 3N Rρ− < < . The fact that a 
given population belongs to one of these three regions is governed by the size N 
of the population and the number 0R . In our study, this is a function of  

( ), 1 βρ β δ
δ

= + . For example, for parameters 0.69β =  and 0.25δ =  the  

transition region corresponds to 1 3.76pR≤ ≤ , and if in addition 0.51p =  we 
have 02.04 7.67R≤ ≤ . As Nåsell [17] noted, the approximation of the qua-
si-stationary distribution in the transition region remains a relatively compli-
cated problem. 

Note that 1
δ

 is average life length in the target population. For measles the 

target group remains the children of 0 to 5 years. The mortality rate of children 
before five years of age in Niger is 280% [19]. This means that one in three 

children does not reach the age of five years and therefore we have 1 5
δ
<  years. 

The parameter β  in our model hardly exceeds 1. We see by this estimate that 
the transition region for pR  is in the interval [ [1,6  regardless of the size of the 
population. 

Another approach for understanding the dynamics of the system before absorp-
tion is the ratio of means approach. Given the initial state, the ratio of expectations 
distribution (RE) is defined as a ration between the time that the process spends at 
each transient state and the expected time to absorption (provided that the ex-
pected time to absorption is finite). Precisely let iT  be the time that the process 
( ) 0t t
X

≥
, starting from state j, spending in state i before absorption, the  

RE is defined by [10]: 
( )
( )

ˆ def j i
ji

j

T
Q

T
=



, where T denotes the absorption time.  
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If ( ) 0t t
X

≥
 is a birth and death process with state space { }0,1, , N  and infi-

nitesimal generator  

 
( )
( )

if 1
if 1ik

i k i
q

i k i
λ
µ
 = +=  = −

                    (24) 

we have [10]:  

 
( )

( ) ( )
( )

( )
( ) ( )

( )

min , 1

1 1
min , 1

1 1 1

1

ˆ , 1 ,
1

j i i

k n
ji j i iN

i k n

n
i n

Q i j N
n

i n

λ
µ µ

λ
µ µ

−

= =

−

= = =

= ≤ ≤
∑ ∏

∑ ∑ ∏
            (25) 

as N →∞  and ( ) 0t t
X

≥
 is a linear birth-death process with infinitesimal ge-

nerator given in Equation (13), It is easy to see that 
1

*
.

ˆ 1
i

ji iQ Qλ λ
ν ν

−
  = − =  
  

 

Indeed, the RE is a another natural measure of the behavior of absorbing 
Markov chains before absorption, but the approximation is good only if the 
convergence to quasi-stationarity is relatively fast [10]. This measure is useful in 
studying the steady state of outbreaks measles epidemic. 
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