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Abstract 
It is known that functions involving natural numbers are generalized to the 
real ones, for instance the gamma function can be viewed as a generalization 
of the factorial operator. In this paper, we propose to generalize the repetition 
of an operation over a function (composition, derivatives and integrals) to-
ward the field of reals. It means repeating q times an operation over a func-
tion, where q is a real number. As a result, it is explained what functional and 
analytical dimensional extensions are and it is given a proof to theorems re-
lated to the indeterminate terms. The main finding is that every real number 
is expressible as a bijection of an infinite sum of elements whose coefficients 
are real numbers and their main values are either an indeterminate value or 
an infinite value. The concept of series of indeterminate values becomes rele-
vant, as a novelty to operate with infinite, zero and indeterminate terms, 
which cannot be deductible from the non-standard analysis. 
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1. Introduction 

The fact in Mathematical Analysis of the supposed impossibility of operating 
with indeterminate terms is known. The following article introduces a series of 
concepts that allow formulating and proving theorems that states that under 
certain conditions, operations with indeterminate terms give an ordinary real 
value. In the study of calculus, some derivation and integration methods are 
learned, as well as the great importance that these mathematical tools have in 
science and engineering. This is what we know as ordinary or integer integral 
and differential calculus. Here some questions arise: Why should n be 1, 2, 3? Is 
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there a possibility that n is a real number? [1]. Mathematicians who have pro-
posed different definitions for the fractional calculation (keeping in mind n as a 
fraction) have been, among others: Lacroix, Euler, Riemann, Caputo etc., each 
with their own reasoning [1] [2]. In this work, we focus on generalizing the de-
rivative of a power function to the field of reals and taking as reasoning that 
there is a set of mathematical functions expressible as an infinite sum of power 
functions, by means of the distributive property of the derivative with respect to 
the sum, we generalize the concept of continuous derivative to developable func-
tions as power series. Concepts like dimensional analytical extension arise natu-
rally. Then we use the sine function, because it is developable as a series of pow-
ers and at the same time, due to its properties of periodicity and complementar-
ity with the cosine function, it has an extra generalization for its development as 
a continuous derivative. This double definition for the sine function is a bridge 
that allows us to arrive at the quasi-paradoxical result of the ind-series (series of 
zero, indeterminate and infinite terms). 

2. The Continuous Derivative Operator 
2.1. The Exponential Function 

Let ( ) ekxF x =  where k ∈  and :F →  . Then 
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We can generalize the repetition of derivative operator to the field of reals 
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where q∈ .  

2.2. The Power Function 

Let ( ) kF x x=  where k ∈  and :F →  . Then 
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We can generalize the repetition of derivative operator to the field of reals 
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where q∈   
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− Γ − +

  

3. Functional and Analytical Dimensional Extensions 
3.1. Functional Extension 

Let ( )F x  such that :F →   then: ( ),eF x y  such that 2:eF →   is a 
functional extension of ( )F x  if: there exists at least one value of y, whereby it 
is true that: 

( ) ( ),e iF x y y F x= =   

3.2. Analytical Dimensional Extension 

As a consequence of the expressed above, let ( )F x  be continuously operable 
by an integral or derivative operator along  . 

In case of the derived function, we have ( ) ( )
,

q

a q

F x
F x q

x
∂

=
∂

. 

So ( ),aF x q  is a special case of functional extension, that we can call analyt-
ical dimensional extension of ( )F x . 

It is true that ( ) ( ), 0aF x q F x= = .  

4. Application of the Concept to Another Functions 
4.1. Development in Power Series 

Note that 

( ) ( ) ( )q q q

q q q

F G x F x G x
x x x

∂ + ∂ ∂
= +

∂ ∂ ∂
  

So, it is followed that all function expressible by a power series have real deriva-
tive, and consequently a-d extension.  

4.2. The Sine Function 

Using the Taylor development formula, we can express the sine function as fol-
lows: 
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On the other hand, we use another generalization, trough the following basic 
property: 

( )sin
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So 
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At the right side of the equality we observe that appears 0a , that in some cas-
es could be equal to ∞ , but by intuition we try to avoid a situation where the se-
ries term were indeterminate or infinite. 

Concepts such as infinite or infinitesimal are based on the hyper-real numbers. 
The infinitesimals would be numbers smaller than any conventional real number, 
and their respective inverses would correspond to “infinite” or “unbounded” 
numbers.  

Therefore:  

If 
22 1 0xi + −
π
<  then 1

22 2 xi
π

= ∞
 Γ + − 
 

 and consequently  

22 2 0xi
π

 Γ + − = 
 

.  

But by its own definition the Γ  function never equals zero. 
Consider for one instance that ∞  is a number. Then we have a series with 

terms whose values are zeroes, infinite and minus infinite and the series equals a 
real ordinary number.  

Let’s call them the ind-series or ( )IS x . As sin function takes values in the 
[ ]1,1−  interval, and the same is bijectable to the   numbers (through a reci-
procal function, for example). Then we are in conditions to prove some theorems: 

5. Formal Proof 

Definition 1 (Continuous Derivative of power function). 
Be ( ) kF x x=  
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where q∈ . Is the Continuous Derivative of ( )F x  of q order.   
Lemma 1 (Continuous Derivative of a function developable by power se-

ries). 
Be ( )F x  developable by power series as 0lim n i i

n ii a x→∞ =∑ . 

( ) ( )
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1
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1

q
n i i q

n iq i
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i qx
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=
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where q∈  and ia ∈ . And it is called the Continuous Derivative of ( )F x  
of q order.   

Proof of Lemma 1.  
Using the distributive property of the derivative operator respect to the sum of 

functions and the Definition 1, the lemma is proved.                     □ 
Lemma 2 (Symmetry of values of sine function). 
Be ( ) ( )sinF x x=   

sin sin
2 2

x x   − = +   
  

π
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3 3sin sin
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π



π   

Proof of Lemma 2.  
Using the properties of the sine function is proved.  

( ) ( )sin sin cos cos sin
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( )sin cos
2

x x − = 
 

π   
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The same way,  

( ) ( )3 3sin cos sin cos
2 2

x x x xπ π   − = − + = −   
   

           □ 

Definition 2 (Functional extension). 
Be  

( ) :F x F →   

( ) 2, :e eF x y F →    

is a functional extension of ( )F x  if: 

( ) ( )0 0: ,ey F x F x y∃ ∈ =   

Property 1 (Derivative or zero order). 
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Proof of property 1.  
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Using Definition 1 and 0q = , the property is proved.                 □ 
Definition 3 (Analytical-dimensional extension or a-d extension). 

( ) ( )2: ,
q

a a q

F x
F F x q

x
∂

→ =
∂

    

is called a-d extension of ( )F x . And it is a special case of functional extension 
because: 

( ) ( ),0aF x F x=  (by Property 1)  

i.e.: 
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Definition 4 (Alternate a-d extension of sine function). 
Using the ordinary derivative definition and basic properties of sine function: 

easily ( )sin
sin

2
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where q∈ . So using a process of generalization to q∈  
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We take as true that: 

( ) ( )sin sinq q

q q

x x
x x

∗∂ ∂
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Given particular values 0x x=  and 0q q= . You can compute both a-d exten-
sions and it is verifiable the coincidence of both outcomes.  

Definition 5 (Ind-series). 

( ) ( )
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0

0lim 1
22 2

xi
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n iIS x
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π
+ −

→∞ =
=


−

Γ + − 
 π 

∑   

It is called ind-series.  
Theorem 1 (the ind-series Theorem). 
Every real number y is expressible as a reciprocal value of ind-series  
( )2iIS x n+ π  and ( )2jIS x n+ π  where 0n∈ , whose core domain is [ ]0,2π   

and ix  and jx  are symmetric respect to the ordinates 
2
π  if ix  and jx  are 

in the [ )0,π  interval and 3
2
π  if both of them are in the [ ], 2π π  interval.  

Proof of Theorem 1.  

( ) ( )sin ,0 sinx x=  (by Property 1)  
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( ) ( )sin sin 0x x= +   
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 (By Definition 5)  

3 3sin sin sin sin
2 2 2 2

y yα α α α π π π π   
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 (By lemma 2)  

[ ]sin : 0,1→  so [ ]0,1y∈ .   

Be ( )
[ ]
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1 1 0,1

1 1 1,0

x
xI x

x
x

 − ∈= 
 + ∈ −


.  

Then ( )sin :o I →  .  

The steps above prove the Theorem.                                  □ 

5.1. Analysis of Terms in Series of Indeterminate Values 

If 
22 1 0xi + −
π
<  then the general term is ( )1 i

iα− ∞  

If 
22 1 0xi + −
π

=  then the general term is ( ) 01 0i
iα−  

If 
22 1 0xi + −
π

>  then the general term is ( )1 0i
iα−  

where ( ) ( )2 2 2 1
22 2

i

i i
xi

α
Γ +

 
 π

Γ +

Γ


=
−


+

. 

So at first sight you probably observe that, for instance  
00 0 0 0 iy−∞ +∞ −∞ +∞ + + + + + = ,  

where iy ∈ .  
It seems to break the axioms of arithmetic, but you have to take into account 

that you are operating with infinite amount of terms. 
Besides, you have to make another analysis on the set of real numbers where 

the Γ  function is not defined. 
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Remember that the indeterminate are: 

0 000 , ,0 , , ,
0

∞
∞−∞ ∞ ∞

∞
  

5.2. Components of the Series 

Based on Section 7, we can express the ind-series to its eventual and deeper 
analysis as follows:  

( ) ( ) ( ) ( )inf indet zeroIS x IS x IS x IS x= + +   

where:  

( )infIS x  is the partial sum where 
22 1 0xi + −
π
<  (∞  component) 

( )indetIS x  is the partial sum where 
22 1 0xi + −
π

=  (00 component) 

( )zeroIS x  is the partial sum where 
22 1 0xi + −
π

>  (0 component) 

Therefore we can offer a notation for real numbers, called trienial. 
Be 0y ∈  then: 0y  could be expressible for the following possibilities: 

α i  
β j  

γ k  

α β+i j  

β γ+j k  

α γ+i k  

α β γ+ +i j k   

where i  represents the ∞  components, j  the 00 component, and k  the 0 
component. And , ,α β γ  belongs to  . 

5.3. A Last Point to Analyze 

Perhaps an issue pending analysis is to investigate the correspondence between a 
polynomial series ( )P x  and a polynomial series ( )( )f xQ x . 

In this case we can carry out a similar analysis as Section 6. 
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5.4. Example of the Method 

sin 1
2

  = 
 

π   
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5.5. Conclusion 

The facts that this class of series is not directly computational and any conver-
gence criterion cannot be applied to them, stand out and give relevance to those 
above mentioned theorems.  

The approaches offered by the non-standard analysis and the way it is showed 
to operate with the “unbounded” and “infinitesimal” numbers do not lead to 
some outcome [3]. 
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