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Abstract 
The excitation of electrostatic surface waves on a semibounded quantum 
plasma-vacuum interface parallel to an applied magnetic field with elec-
tron-hole degeneracy is investigated. The wave equations of the electrostatic 
potential and both of the perturbed electron and hole plasma densities have 
been solved analytically. By using quantum hydrodynamic (QHD) model and 
the Poisson’s equation with appropriate boundary conditions, the general 
dispersion relation of these surface modes has been obtained. It is also solved 
and studied numerically for different cases of plasmas (magnetized or un-
magnetized, classical or quantum). We have found that the density ratio of 
hole-electron plasma plays essential role on the dispersion of the modes along 
the wavelength beside the quantum and magnetic field. 
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1. Introduction 

In recent years, the plasmas physics has been widely studied and different re-
search has been presented [1]-[6]. Recently, several studies of quantum plasmas 
have appeared in the literature [7]-[13]. Plasma can be regarded as quantum 
when the quantum nature of its particles significantly affects its macroscopic 
properties [14]. There has been a great interest in investigating physical proper-
ties of quantum plasmas since the quantum plasmas can be found in various 
nano-scale objects such as nano-wires, quantum dot, and semiconductor devices 
as well as in dense laser produced plasmas [15]. There are various models to 
study the quantum effects in plasma, for example, the Wigner-Poisson system 
which involves an integro-differential system and the popular QHD model. The 
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QHD model can be considered as an extension of the usual fluid model of plas-
ma [16]. The QHD includes the quantum forces involving Fermi electron tem-
perature and quantum Bohm potential [17]. Several authors incorporated the 
effect of the dispersion caused by the quantum Bohm potential in the study of 
electrostatic plasma waves [18] [19]. Moradi A. [19] investigated the propagation 
of surface electrostatic oscillations on an electron quantum plasma half space, 
taking into account the quantum effects. Misra A. [20] studied the propagation 
of surface electromagnetic waves along a uniform magnetic field in a quantum 
electron-hole semiconductor plasma. He has shown that the surface modes to be 
significantly modified in the case of high-conductivity semiconductor plasmas 
where electrons and holes may be degenerate. Besides, a hydrodynamic model 
describing steady-state and dynamic electron and hole transport properties of 
graphene structures has been developed by Svintsov, D., et al. [21] which ac-
counts for the features of the electron and hole spectra. They demonstrated its 
workability in some applications, in different structures and devices based on the 
standard semiconductors. 

In this paper, we have investigated the propagation of electrostatic surface 
waves at the electron-hole plasma-vacuum interface parallel to an applied mag-
netic field. It has been considered the degeneracy of the electron-hole due to the 
quantum tunneling effect associated with the Bohm potential.  

2. Model of Equations 

Let us consider a Cartesian geometry where the plane 0x =  separates the 
half-space 0x >  filled by a homogeneous magnetized quantum plasma con-
sisting of electrons and holes to be denoted respectively by α  (=e and h) and 
vacuum 0x < . Electrostatic surface waves are considered to propagate in com-
pletely degenerate dense plasma. So, the rate of particle collisions is limited due 
to the Pauli blocking mechanism which allows only degenerate particles with 
energies limited to a narrow range around the Fermi energy to interact, hence 
the plasma may be considered to be almost collisionless. We also assume that the 
electron and hole densities are, in general, not equal. In a uniform external 
magnetic field 0 ˆB B z=



, The dynamics of such a plasma is governed by follow-
ing quantum hydrodynamic equations: 
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The symbols here have their conventional meaning. Note that the degenerate 
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electron and hole pressure depend only on the electron and hole number density 
but not on their temperature. We now use the following normalization of the 
number density nα  and the velocity vα  for α-species are normalized by equi-
librium value onα  and sc , 0n n nα α α→ , sv v cα α→

  , (as in ref. [19]). Here, 

( )2s B Fe hc k T m=  is the Fermi velocity for relatively dense (electrons and 
holes) plasma. Moreover, the space and the time variables are normalized by 

ph scω  and phω  respectively. Also, the space derivative of the potential is 
normalized by h s phm c eω− , with 2

p o on e mα α αω ε=  is the plasma frequency 
and 0c pheB mα αω ω=  is the normalized cyclotron frequency. e hm m m=  is 
the electron to hole mass ratio and ho eon nδ = . 

By considering that, the basic Equations (1)-(4) can be rewritten in the fol-
lowing normalized form: 
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2
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where, 2pe B FeH k Tδ ω=   is quantum coupling parameter and  

( )2 3
Fh FeT T mσ δ= =  is the hole-electron temperature ratio related to the den-

sity ratio in which electrons and holes are degenerate with 1 3γ =  (for the 
Fermi pressure). 

By assuming that the amplitude of oscillation are small and any perturbed va-
riable depends as ( ) ( )exp y yx k e i tψ ψ ω= −

 , we can linearize and solve the sys-
tem of Equations (5)-(8). Thus, we obtain the following wave equations for the 
perturbed electron density, hole density and electrostatic potential: 

22 2 2 2 2
2

2 2 2

1ye ch
e y

y

kn m
Q n k

Q Qx m k x
ω ω φ φ

γγ

   ∂ − ∂
− − = −   ∂ ∂    

             (9) 

22 2 2 2
2

2 2 2

1yh ch
h y

y

kn
Q n k

Q Qx k x
ω ω φ φ

σ γσ γ

   ∂ − ∂′− − = −   ′ ′∂ ∂    
            (10) 

2
2

2
e

y h
n

k n
x
φ φ

δ
∂

− = −
∂

                         (11) 

with 
2 2

1
4

yH k
Q

γ
= +  and 

2 2

1
4

ymH k
Q

γσ
′ = + . 

Thus, by taking into account the very slow nonlocal variation (i.e.,  

( )2 2 2 2 2 2
y yk x x k− ∂ ∂ ∂ ∂  ), the Equations (9)-(11) give the following wave 

equations of the perturbed densities of the beam and plasma: 
2
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where, 
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It is noted that the surface waves can only excited under the condition  

( )2 2 2 2 2 2 21 1 1y ch y ceQ k Qk m
m
δσ γ ω ω δ γ ω ω  ′+ − + + − − >    

 

3. Dispersion Relations of Electrostatic  
Surface Modes 

In what follows, we will find solutions that represent the surface waves propa-
gating along the interface 0x = . To this end, Equation (12) has the following fi-
nite solution inside the quantum magnetized plasma: 

( )expn A xα α β= − , for 0x ≥                     (13) 

where, Aα  is an arbitrary constant. Now, it is possible to obtain the electrostat-
ic potential by solving the wave Equation (11): 

( )exp yk xνϕ ϕ= , for 0x ≤                      (14) 

( ) ( ) ( )2 2exp exp expe h
y y

y

A A
k x x k x
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δ
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−  = − + − − − −
, for 0x ≥    (15) 

νϕ  is the amplitude of the electrostatic potential in vacuum. The above Solu-
tions (13)-(15) have been obtained by applying the boundary conditions at in-
terface ( 0x = ):  
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Beside that 0ex hxv v= =  at 0x = , it can be obtained the amplitudes of the 
perturbed electron and hole densities as follows: 
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It has also been obtained the following dispersion relations of the electrostatic 
surface modes on degenerate plasma: 

( ) ( )1 3 1 4 2 32 0y yk kβ α α α α α α+ − + =                 (17) 
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4. Numerical Analysis and Discussions 

From the first sight, it is clear that the dispersion of the electrostatic modes (Eq-
uation (17)) depends on a lot of parameters (e.g., , , ,ch Hω δ  ). So, in this sec-
tion, we are going to study the above dispersion relations (17) numerically for 
different cases, magnetized or unmagnetized, classical or quantum plasma (with 
the parameters 1 3γ = , 0.25m =  and 1σ = ). 

First, the simplest form of the dispersion relation (17), in the case of the clas-
sical unmagnetized plasma, has two solutions (Figure 1). It is noticed that they 
have a starting common frequency ( 1.4 phω ω≈ ) of electrostatic oscillation at 

0zk = .  
In another case, unmagnetized quantum plasma, one of the solutions of the 

Equation (17) is studied in the Figure 2 with different electron-hole density ra-
tios. It is found that as the hole density is increased with respect to the electron 
density, the frequency of the surface mode has been increased with respect to the 
hole plasma frequency along the wave number but the phase velocity of the 
modes still unchanged for different densities ratios ( 0.1,0.3,0.5,0.9δ = ). 

The other case concerning the classical magnetized plasma is also investigated 
through two solutions of Equation (17) in Figure 3 for different magnetic fields 

0ch h pheB mω ω= . The first solution, Figure 3(a) investigates the dispersion of 
low frequency electrostatic surface modes ( phω ω< ). It is found that these mod-
es have been excited in the beginning with 0yk =  and 0ω =  for different 
magnetic fields ( 0.1,0.3,0.5,0.9chω = ) and the phase velocity of the mode in-
creased with increasing the external magnetic field.  

On the other hand, the second solution, Figure 3(b), displays the dispersion 
of high frequency surface modes ( phω ω> ). It investigates that excitation of the  
 

 
Figure 1. Dispersion relation of electrostatic surface modes for density ratios ( 0.1δ = ) in 
unmagnetized electron-hole classical plasma ( 0, 0ch Hω = = ). 
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Figure 2. Dispersion relation of electrostatic surface modes for different density ratios 
( 0.1,0.3,0.5,0.9δ = ) in unmagnetized quantum plasma ( 0, 0.1ch Hω = = ). 
 

 
Figure 3. Two dispersion relations of the surface modes for different magnetic fields 
( 0.1,0.3,0.5,0.9chω = ) in classical plasma ( 0H = ) with electron-hole density ratio  
( 0.1δ = ). 
 
modes started at 0yk =  with different frequencies for different values of mag-
netic field and their phase velocity decreased with the increasing the intensity of 
magnetic field.  

Figure 4 studied the case of unmagnetized quantum plasma with different 
quantum ratios ( 0.1,0.3,0.5,0.7,0.9H = ). It has been noticed that the excitation 
of the surface modes started with frequency emerge at 1.5 phω ω≈  for all quan-
tum effect parameters. The dispersion of these modes indicates that phase veloc-
ity during the propagation increases faster to infinity with increasing the quan-
tum effect. 

Finally, the general case of the excitation of electrostatic surface modes in 
magnetized quantum plasma is investigated in Figure 5 with 0.1chω =  and 

0.1δ = . It is clear that as the quantum effect increased the phase velocity de-
creases for small quantum effect and its sign is changed with large quantum ratio 
H. 
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Figure 4. Dispersion relation of the electrostatic surface modes for different quantum ra-
tios ( 0.1,0.3,0.5,0.7,0.9H = ) in unmagnetized quantum plasma with electron-hole den-
sity ratio ( 0.3δ = ). 
 

 
Figure 5. Dispersion relation of electrostatic surface modes with variation of quantum 
effect in magnetized electron-hole plasma with 0.1chω =  and 0.1δ = . 

5. Conclusion 

In this work, the dispersion properties of the excitation of electrostatic surface 
waves with degenerate electron-hole plasma are studied by using the quantum 
hydrodynamic equations. The quantum effects due to Bohm potential are taken 
into account. We have obtained an analytical expression of the dispersion rela-
tion for the surface wave oscillations with normalized parameters. It has been 
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solved numerically in different cases, magnetized or unmagnetized, classical or 
quantum plasmas. It is found that the quantum effects and the external magnetic 
field play a significant role on the dispersion of surface plasma modes where 
plasma energies of the system significantly modified. Besides, we have shown 
that the increase of electron-hole density make shift increase for the frequencies 
emerge. 
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