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Abstract 
The electrical properties of magnetic sensing devices fabricated from aniso-
tropic materials are not easily extracted. Here we present a method for de-
termining the resistance matrix for an anisotropic device with multiple elec-
trical contacts placed in a perpendicular magnetic field. By using the methods 
developed by Van der Pauw and Wasscher, the analysis for the anisotropic 
system is reduced to the equivalent problem for an isotropic sample, which 
can then be solved using methods developed previously. As a result, the me-
thod works in the case of structures with an arbitrary number of asymmetric 
extended contacts at large magnetic field strength. In addition to the extrac-
tion of nonisotropic resistivities, the resistance matrix can be used to analyze 
the Hall effect for anisotropic plates. 
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1. Introduction 

The electrical resistivity of materials is a very important property in the charac-
terization of magnetic sensing devices. There is a large body of work devoted to 
the determination of the resistivity of isotropic materials dating back to the se-
minal work of van der Pauw [1] up through the very recent article by Oliveira, et 
al. [2]. For the case when the voltage drop and current along one direction do 
not directly yield the electrical resistivity along that path, but depend on the 
properties in other directions as well, the material is anisotropic and its study 
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becomes significantly more complicated. Anisotropic materials are used in a 
number of applications such as high-temperature superconductors [3], low di-
mensional metallic and organic conductors [4], anisotropic electoconductive 
textiles [5] and others. The crystal structure of the materials used in many thin 
plates and conductive films can yield anisotropic properties. 

Wasscher [6] [7] was the first to solve the problem of decoupling and mea-
suring the components of the resistivity tensor in the case of anisotropic mate-
rials. Another method for calculating the resistivity of anisotropic materials was 
introduced by Montgomery [8]; for more recent work see [9] [10] [11]. 

By using the affine transformation suggested by van der Pauw [12], Wasscher 
[7] in his thesis work analyzed both rectangular and circular anisotropic samples. 
For these geometries, he developed a method for analyzing the case of point 
contacts by transforming their position to the half-plane considered as the ca-
nonical domain (with a second transformation for the circular domain case). For 
both geometries, the mathematical solutions involved elliptical functions and 
formulas based on the van der Pauw method for point contacts and for specific 
positions of point contacts. These formulas were used by Wasscher and, subse-
quently, by Kyriakos et al. [13] to extract the anisotropic parameters of experi-
mental samples. 

In the absence of a magnetic field, Versnel [14] analyzed the electrical charac-
teristics of a circular Van der Pauw configuration with four equal finite length 
edge contacts that were symmetrical with respect to two orthogonal axes. A pro-
cedure was given for determining the specific resistivities 1 2,ρ ρ  of an aniso-
tropic semiconductor from two measured values 1R  and 2R . Shibata and Oide 
[15] analyzed a symmetrical structure within an anisotropic sample with two 
large contacts and two pointlike output contacts in a perpendicular magnetic 
field. 

For the case of isotropic semiconductors, Homentcovschi and Bercia [16] de-
veloped an analytical method for determining the resistance matrix for a Hall 
disk with multiple nonsymmetric contacts on the circular periphery and placed 
in an arbitrary, orthogonal magnetic field. The method was extended to the case 
of the half-plane [17] and to vertical Hall devices [18]. Ausserlechner [19] pre-
sented an alternative derivation to the results obtained by Homentcovschi and 
Bercia [16] based on conformal mapping arguments. By combining the results 
from [16] [17] [18] with the approach developed by Wasscher [7], we develop a 
method here for analyzing an anisotropic disk and rectangle with an arbitrary 
number of nonsymmetric contacts located on the domain periphery in an arbi-
trary magnetic field. By using a fifth contact and a resistance measurement, in 
addition to the Van der Pauw measurements, it is possible to extract the full 
in-plane resistivity tensor [20]. 

In this paper, the relationships relevant to the galvanomagnetic transport in 
two-dimensional anisotropic conductive structures (with multiple nonsymme-
tric contacts and at large magnetic field) are obtained as analytic formulas in-
volving the equivalent isotropic resistivity, the Hall mobility and some one-variable 
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integrals which can be evaluated numerically taking appropriate care of the 
point singularities at the ends of contacts in the original plane (see [21]). In the 
previous papers [16] [17] [18], we applied the basic relationships for the exten-
sion of the Van der Pauw method to isotropic samples having nonsymmetric, 
extended contacts. Here, we develop similar relationships for the nonisotropic 
sample and apply them to the case of small finite (nonzero dimension) contacts. 
The influence of contact size on the resistivity determination is an important 
subject. In many approaches the contacts are considered to be of zero dimen-
sions. For example in a Van der Pauw measurement the contacts for measuring 
the potential difference can be very sharp. On the other hand, the assumption of 
a very sharp contact where the current is injected (or extracted) from the sample 
will result in a very high current density beneath the contact inducing local 
heating in the sample which modifies the measurement. The optimal solution is 
to consider contacts with small but finite dimensions [22]. 

An important application of the resistance matrix is the determination of the 
Hall voltage in order to optimize the design of the Hall devices. In the last sec-
tion, we present as an example the determination of the Hall voltage in a square 
nonisotropic semiconductor plate under the influence of an arbitrary magnetic 
field. We note that anisotropy generated by piezoresistive effects is not analyzed 
here. This subject was addressed in the excellent paper by Ausserlechner [23]. 

2. The Basic Relationships for a Hall Plate with Finite  
Contacts 

We restrict ourselves to the cubic, tetragonal, hexagonal trigonal and orthor-
hombic crystallographic symmetries for which the resistivity tensor is diagonal 
and has three resistivity components 1 2 3, ,ρ ρ ρ  (along the 1x x= , 2x y= , 

3x z=  axes). For the treatment of an anisotropic cubic sample, having the edges 
aligned with the principal axes of the resistivity tensor (with edge length l ), van 
der Pauw [12] suggested the transformation 

3
1 2 3, wherei

i ix x
ρ

ρ ρ ρ ρ
ρ

′ = = ⋅ ⋅                 (1) 

and 

( )1,2,3i
il l i

ρ
ρ

′ = =  

such that the cube D  is transformed into an isotropic parallelepiped D′  of 
resistivity ρ  and dimensions 1 2 3, ,l l l′ ′ ′ . The transformation (1) preserves the 
voltage and current, therefore the domains D  and D′  will have the same re-
sistance R (see Miccoli et al. [10]). 

2.1. The Case of a Flat Rectangular Sample 

Consider in the physical domain a flat, anisotropic rectangular semiconductor 
sample with length 1l , the width 2l  parallel to the directions of the principal 
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resistivities 1 2,ρ ρ  and thickness δ  with its plane perpendicular to the prin-
cipal resistivity 3ρ . 

1 1

2

2 2
0

l X l
Y l

− < <
=  < <

  

As shown in Figure 1(a), the lower and upper base of the rectangle are each 
provided with two pairs of metallic contacts: A and D on the upper ( 2Y l= ), B 
and C on the lower 0Y = . According to the relationships (1), the sample is 
electrically equivalent to an isotropic sample with resistivity 3

1 2 3ρ ρ ρ ρ= ⋅ ⋅  
and the dimensions 1 1 1l lρ ρ′ = , 2 2 2l lρ ρ′ = , and thickness 3δ ρ ρδ′ = . 
The isotropic sample fills the rectangular domain ( E F G H′ ′ ′ ′ )  

1 1

2

2 2
0

l X l
Y l
′ ′ ′− < <

′ =  ′ ′< <
  

shown in Figure 1(b). In the domain ′ , the metallic contacts have the 
positions A D′ ′−  on the two bases, which is electrically equivalent to the phys-
ical domain. We have introduced the complex variable Z X iY′ ′ ′= + . 
 

 
Figure 1. Anisotropic rectangular sample with edges parallel to the principal directions of 
ρ  and four contacts on the bases; (a) the sample in the physical plane, (b) the sample 
transformed into an electrically equivalent isotropic sample, (c) the isotropic sample 
mapped into the half-plane ( )Im 0z >  with four contacts on the boundary. Note that 

the rectangle shown in Figure 2(c) extends to the entire upper half-plane. 
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The complex variable sine-amplitude function 

( )( )1 2 ,z sn l Z K m′ ′=  

conformally maps the interior of the rectangle with side lengths 1l′  and 2l′  in 
the ( Z ′ )-plane onto the upper half-plane ( )Im 0z > . Here, ( )K m  is the com-
plete elliptical integral of the first kind of the parameter m and ( ) ( )1K m K m′ = −  
is its associate (another parameter used in connection to the elliptical integrals is 
the modulus k m= ). Since ( ) ( ) 2 12K m K m l l′ ′ ′=  we introduce the “nome” 
( )q m  for the parameter m defined as follows: 

( ) ( )
( )

exp
K m

q m
K m

′ −
≡  

π


 
 

and the inverse nome 1q− , which for our case yields,  

( )( )1 1 2 2

1 1

2 lq q m m q
l

ρ
ρ

− −  
= = −


π 


                 (2) 

For more details on the computation of elliptic integrals using MATLAB see 
Batista [24] or Ausserlechner [25] utilizing Mathematica. We note the following 
properties of the sine-amplitude function:  

( ) ( ), 1; , 1sn K m sn K iK m m′= + =  

( ) ( ), , ; 1sn aK m sn aK m a− = − ≤                  (3) 

( ) ( )
1

,sn aK iK m sn aK m
−

 ′+ =    

From these relationships, we can calculate the extremities 1 1,a b  of the con-
tact A (similarly for B, C and D) in the z half-plane (see Figure 3(c)). The ma-
terial samples have Hall mobility Hµ  and lie in a magnetic field of induction B 
normal to the plate. The Hall angle is given by ( )arctanH H Bθ µ= , where the 
Hall mobility, Hµ , has the sign of the charge carrier and we introduce the 
quantity 2 H Bγ µ= −π π . 

Now we utilize the basic relationships for the upper half-plane ( )Re 0z >  
provided in Homentcovschi et al. [18].  

( )
( )

( )
( ) ( )

3 3

1 1
, 1, 2,3

cos

iso
sqr r

km m km m
m mH

R
B V C I k

θ= =

= =∑ ∑               (4) 

where 

( ) 1 2
3

iso
sqR

ρ ρρ ρ ρ ρ δ
δ δ

= = =
′

 

and  

( ) ( )
( ) ( )

1
1

dm

m

kar b
km b

a b

P t tA t
P t P t

γ
+

−

= ∫  

( ) ( )
( ) ( )

1

dm

m

kbr b
km a

a b

P t tB t
P t P t

γ −

= ∫  
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( ) ( ) ( )
3

, 1, 2,3 .r r
km kq

q m
C A k m

=

= − =∑  

where 

( ) ( ) ( ) ( )
4 4

1 1
and .a j b j

j j
P x x a P x x b

= =

= − = −∏ ∏  

The basic relationships (4) together with the equation for the conservation of 
currents  

1 2 3 4 0I I I I+ + + =                         (5) 

is a complete system for determining the electrical parameters of the device. The 
method can be easily extended for general positions of the contacts on the ani-
sotropic rectangular sample. 

2.2. The Case of a Circular Sample 

The configuration studied now (the physical domain) is a flat anisotropic circu-
lar sample of radius r and thickness δ  with its plane chosen perpendicular to 
the direction 3ρ  and having on the boundary four arbitrary perfectly conduct-
ing metallic contacts , , ,A B C D  (Figure 2(a)). We can write on the limiting 
circle 

cos
0 2

sin
X r
Y r

φ
φ

φ
=

≤ ≤ =
π                       (6) 

According to the above transformation the anisotropic circular sample gives 

1

2

cos

sin

X r

Y r

ρ ρ φ

ρ ρ φ

 ′ =


′ =
                        (7) 

which is an electric equivalent isotropic elliptic sample (of resistivity ρ ) with 
semi-axes 1a r ρ ρ=  and 2b r ρ ρ= , and thickness 3δ δ ρ ρ′ = ; we 
assume that 1ρ  is larger than 2ρ . By embedding the ellipse in the complex 
Z ′  plane we can write (Figure 2(b)) 

cos sin , 0 2Z a ibφ φ φ′ = + ≤ ≤ π                    (8) 

 

 

Figure 2. Anisotropic circular sample with four contacts on the boundary; (a) the physi-
cal domain, (b) the transformed sample into an elliptical electrically equivalent isotropic 
sample, (c) The isotropic sample mapped into the unit disk sample. We note that the an-
gle φ  is the same for (a) and (b). 
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Since the elliptic sample is isotropic, it can be conformably mapped into the 
unit circle in the complex plane (z) (see Figure 2(c)) by the function (see Nehari 
[26] p. 296)  

( ) ( ) 1

2 2

2
sin ,

K m Zz f Z m sn m
a b

− ′
′= = ⋅   − π

              (9) 

where the parameter m of the elliptical integrals ( ), , ,K sn cn dn  satisfies the Ja-
cobi’s nome equation  

( ) ( )
( )

2

1
1 2 1 2

1 2
2

1 2
1 2exp

K m
q m

K m
ρ ρ
ρ ρ

′π   −
≡ − =     +  

                (10) 

which determines the parameter as a function of 1 2ρ ρ . On the circle 1z =  
we obtain 

( )
( ) ( ) ( ) ( )

( )2

, , 1 ,
exp

1 ,

cn u m dn u m i m sn u m
z i

m sn u m
ψ

+ −
= =

−
          (11) 

where ( )2u K m φ= ⋅ π . The Formula (11) was used previously by Wasscher [6] 
and Versnel [14]. The difference from Versnel is that we use the very angle φ  
from the anisotropic circle. We denote by 1 2 3 4, , ,φ φ φ φ  the angles corresponding 
to the middle of the four contacts , , ,A B C D  on the anisotropic domain and by 

1 2 3 42 , 2 , 2 , 2θ θ θ θ  the angles corresponding to the length of contacts. In the 
plane z the contacts will be ( ),j ja b  where ( )expj ja iα=  corresponds to the 
angle j jφ θ−  and ( )expj jb iβ=  is obtained for j jφ θ+  for ( )1,2,3,4j = . 

When the magnetic field B is normal to the circular disk the Hall-Ohm law 
introduces the effective resistance  

( )2 2 21 cosB H HBρ ρ µ ρ θ= + =                  (12) 

The resistance matrix determined in the Homentcovschi et al. [17] has as a 
factor ( ) ( )cosef

sq HR θ . For the present case, 

( ) ( ) ( )
( )( )

( )1 2 3 1 2

3 1

1 3 1 2

1 21 3
2 3

cos
cos coscos

ef
sq H

H H
H

R
ρ ρ ρ ρ ρρθ

δ θ δ θδ ρ ρ ρ ρ θ

⋅ ⋅ ⋅
= = ≡

′ ⋅ ⋅
 (13) 

The basic relationships (19) from the paper [17] become  

( )
( )

( ) ( )
3 3

1 1
, 1, 2,3 .

cos

iso
sqc c

pj j pj j
j jH

R
B V C I p

θ= =

= =∑ ∑              (14) 

Here, ( ) ( )1 2
1 2

iso
sqR ρ ρ δ= ⋅  is the sheet resistance in the physical domain, 

and  

( ) ( )
( )( ) ( )( )

1

4

d

sin 2 sin 2
j

j

c
pj

p

h t t
A

t t
α

β β β
+=

− −
∫  

( ) ( )
( )( ) ( )( )4

d

sin 2 sin 2
j

j

c
pj

p

h t t
B

t t
β

α β β
=

− −
∫              (15) 
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( ) ( )
3

.c c
pj pq

q j
C A

=

= −∑  

where , 1, 2,3p j =  and we define  

( )
( )( )
( )( )

4

1

sin 2 1, .
2sin 2

j H

j j

t
h t

t

γ
β θ

γ
α=

−
= = −

− π∏             (16) 

The compatibility relationships (14) require the conservation equation for the 
currents for closure (5). In both cases considered in this section, the voltages of 
the contacts , ,A B C  are 1 2 3, ,V V V  and the terminal currents are 1 2 3, ,I I I , re-
spectively; the contact D is grounded ( 4 0V = ) and the current 4I  is obtained 
from (5). 

The basic system in the case of half-plane (4) and (14) for the unit circle) con-
tains the matrices pjB =   , pjC =   , the vector of terminal potentials 

[ ]T1 2 3, ,V V V=v , the vector of terminal currents [ ]T1 2 3, ,I I I=i  and the physical 
parameters sqR  and Hθ . These are the relevant relationships to the galvano-
magnetic transport in two-dimensional conductive structures with an arbitrary 
number of asymmetric extended contacts on the boundary in the case of small or 
large magnetic field. The basic system can be written using matrix notation as  

( )

( )cos

iso
sq

H

R
θ

⋅ = ⋅v i                       (17) 

hence, we can define the Resistance Matrix as 

( )
( )

( )
1,

cos

iso
sq

sq H
H

R
R θ

θ
−= ⋅                    (18) 

It is convenient to extract ( )iso
sqR  by defining the geometry matrix  ,  
( )( ) ( ) ( ), ,iso iso
sq H sq HR Rθ θ=                    (19) 

where 

( ) ( )( ) 1 1cosH Hθ θ
− −=    

which only depends on the location of the extremities of the contacts and the 
parameter ( )arctanH H Bθ µ= . We note that the two physical parameters Hµ  
and B appear in all of the results only as their product, which yields the Hall an-
gle Hθ . The reverse-magnetic-field reciprocity theorem given by Cornils and 
Paul [27] permit the relationship (18) to be written as  

( )( ),
A A

iso
B sq H B

C C

V I
V R I
V I

θ
   
   =   
      

                      (20) 

where 

( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

, , ,

, , ,

, , ,

, , ,

, , , ,

, , ,

iso iso iso
AD DA sq H BD DA sq H CD DA sq H

iso iso iso iso
sq H BD DA sq H BD DB sq H CD DB sq H

iso iso iso
CD DA sq H CD DB sq H CD DC sq H

R R R R R R

R R R R R R R

R R R R R R

θ θ θ

θ θ θ θ

θ θ θ

 
 
 = − 
 

− −  

 (21) 
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We denoted ( ) ( ),ij kl l k ijR V V I= − , where ijI  is the current which flows into 
the Hall plate at contact i and out at contact j. The off-diagonal elements in (21) 
are pairwise equal apart from the change of sign of their second arguments. 
Hence, there are six independent resistance functions of Hθ . Cornils et al. [28] 
have shown how to obtain the geometry of the problem (five contact extremities) 
and the sheet resistance by measuring the six resistance functions. The other two 
contact extremities can be chosen arbitrarily by means of the conformal map-
ping. In fact, they proved that it is possible to determine the sheet resistance 

( )iso
sqR  self-consistently without the need of knowing the geometry accurately by 

using only experimentally relevant (technologically realized) geometry parame-
ters. Since conventional resistors do not show a linear magnetoresistance, in 
order to determine ( )iso

sqR , we can set 0Hθ = . 

3. The Resistance Matrix 
3.1. Extraction of the Sheet Resistance 

In the case of point-wise contacts the geometry of the problem is described by 
one parameter such that, in this case, we need to measure two resistances, 
namely the two used by van der Pauw (in the case of point-like contacts) ,AB CDR  
and ,BC ADR . By taking A BI I I= − =  and 0CI = , we obtain from Equation 
(20),  

( ) [ ]
( )( ) ( )( )

,

, ,

0

,0 ,0

AB CD D C AB

iso iso
CD DB sq CD DA sq

R V V I

R R R R

= −

= −
            (22) 

Hence, 
( )( ) ( ) ( ) ( ), 23 13,0 0 0 .iso iso

AB CD sq sqR R R G G= −                (23) 

Similarly, 
( )( ) ( )( ) ( )( ), , ,, 0 ,0 ,0iso iso iso

BC DA sq BD DA sq CD DA sqR R R R R R= −  

and  
( )( ) ( ) ( ) ( ), 12 13,0 0 0iso iso

BC DA sq sqR R R G G= −                (24) 

In the case of finite contacts (non point-like contacts) these formulas will pro-
vide corrections for the sheet resistance. 

3.2. Maximizing the Hall Voltage 

To define the Hall voltage, we use  
( )( ) ( )( ) ( )( ), , ,, , ,iso iso iso

BD AC sq H CD DB sq H BD DA sq HR R R R R Rθ θ θ= − −  

from relationship (21), we have,  
( )( ) ( ) ( ) ( ), 32 12,iso iso

BD AC sq H sq H HR R R G Gθ θ θ= −               (25) 

This formula can be used for determining the Hall voltage for a certain bias-
ing. 
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4. Applications to the Extraction of Specific Resistivities in  
the Case of Small But Finite Contacts 

In [16] [17], we demonstrated that the method for determining the resistance 
matrix works in the case of large contacts. Here, we test the method for the case 
of very small contacts. For comparison, we use results given previously for the 
case of point-like contacts in anisotropic medium. Nader and Kouba [22] devel-
oped a different method for determining the resistivity of an anisotropic circular 
disk sample. They used a different affine transformation on an isotropic ellipse 
followed by a conformal mapping on a circle by means of the ratio of two Jacobi 
theta functions. Their analysis shows that even for the case when the opening 
angle of the current contact is small (≈a few degrees), its image in the isotropic 
case can be very large invalidating the solution for the isotropic disk. 

In the case of the method based on (11), we analyzed the images on the unit iso-
tropic disk of the uniform mesh on the original anisotropic sample. Figure 3 shows 
a 2π  discontinuity at φ = π . Hence, we have to consider ( )180 ,180φ ∈ −    and 
the contact D (corresponding to the potential 0V =  centered at φ = π . The 
contacts close to the axis of least resistivity will increase but not so badly as in 
the example presented above. However, the numerical evaluation of some inte-
grals along contacts requires stronger technique as the double exponential for-
mula [21]. 

The geometry of the problem is similar to that considered by Versnel: A cir-
cular disk of radius r and thickness d containing four perfectly conducting con-
tacts of the same size. The two lines, each of which connects the midpoints of the 
two opposite contacts are orthogonal to each other. The position of these lines is 
determined by the angle φ  with respect to the direction 1ρ . The size consi-
dered for all contacts equals 3˚. We can write 
 

 

Figure 3. Plot of the length of the subintervals on the isotropic circle corresponding to 
equal subintervals on the anisotropic disk showing a 2π  discontinuity at φ = π . This is 
in fact a plot of the angle ψ  (from Figure 2(c)) in terms of the angle φ  used in Figure 
2(a) and Figure 2(b). 
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( ) ( ) ( ) ( ) ( )1 , 12 130 0 0iso
BC DA sqR R R G Gφ = = −    

( ) ( ) ( ) ( ) ( )2 , 23 130 0 0iso
AB CD sqR R R G Gφ = = −    

Figure 4 shows the dependence of 1 2R R  on φ  for various vales of 

1 2ρ ρ . For the larger resistivity ratio, the new results extend those given by 
Wasscher [7] for the case of point-like contacts. He noted that this type of plot 
can be used to determine the directions of the principal axes by making mea-
surements rotating the contacts around the circumference of the sample at an-
gles 2π  apart. The maximum value of 1 2R R  occurs at 4φ = π . The plot of 
this ratio for the case of finite contacts (width 3˚) is given in Figure 5. For circu-
lar samples, the 45˚ positions of the contacts with respect to the resistivity axes 
and the small thickness of the contacts are not extremely critical. The results 
presented in Figure 5 are very close to those given by Versnel [14]. He gave re-
sults for point-like contacts and for four equal finite contacts (10˚ wide), all in 
the absence of a magnetic field. He gives a procedure, in practical situations, of  
 

 

Figure 4. Dependence of ( )1 2ln R R  (normalized with the value for 45φ =  ) on angle 

of rotation φ  for an anisotropic circular sample in the case of small contacts for various 

1 2ρ ρ . All of the contacts are 3˚ wide. 
 

 

Figure 5. Plot of the variation of ( )1 2 4R R φ = π  with the resistivity ratio 1 2ρ ρ . The 

contacts are 3˚ wide. Note that this figure can be compared with the results in Figure 2.11 
in Wasscher [7] for point-sized contacts. 
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how to determine the specific resistivities of the anisotropic semiconductor from 
the measured values 1R  and 2R . The same method is also described in the pa-
per by Nader and Kouba [22]. Here, the method goes beyond Wasscher and 
Versnel in so far as it treats the problem of extended contacts, which are respon-
sible for a change of the current density in response to the magnetic field. 

5. Application to the Hall Effect on a Square Anisotropic  
Sample with Four Finite Contacts 

As an application of the present results, we show how the resistance matrix can 
be used to determine the Hall voltage in an anisotropic sample with four termin-
als. The example chosen is a square semiconductor plate (as described in II.A) 
with four equal metallic terminals A QE= , B FR= , C SG= , D HP=  of 
length 0.1l, where l is the length of each side ( 1l =  here). Figure 6 shows the 
specific configuration. The semiconductor material has the mobility Hµ  
and the magnetic field B is normal to the plate. The resulting Hall angle is 

( )arctanH H Bθ µ= . Figure 7 gives the variation of the scaled Hall voltage 
( )Hall sq biasW V R I=  with Hall angle Hθ  for values of the resistivity ratios 2 1ρ ρ  

between 0.5 and 1. 
 

 

Figure 6. Anisotropic rectangular sample with four contacts used in the calculation of the 
Hall effect. All of the contacts have length 0.1. 
 

 

Figure 7. Variation of the ( )Hall sq biasV R I  with the Hall angle Hθ  for different values of 

the resistivity ratio. The voltages are not zero for 0Hθ =  due to the offsets caused by the 
anisotropic conductivity. Also, we point out the small initial offset for the isotropic case 
(see [25]). 
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6. Conclusions 

The resistance matrices for anisotropic Hall plates (square and circular) were 
developed by considering finite size, nonsymmetric, perfectly conducting, con-
tacts on the boundary. By using the Van der Pauw transforms, the anisotropic 
problem is reduced to the isotropic case. Subsequently, by using the Wasscher 
transformation to the canonical domain, the problems are then solved by apply-
ing the methods presented in Homentcovschi et al. [16] [17] [18]. 

As application examples, the methodology is applied to study the influence of 
finite contact dimensions on the determination of specific anisotropic resistivi-
ties, and to the study of the Hall effect for a square anisotropic plate with finite 
contacts in an arbitrary magnetic field. 
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