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ABSTRACT 

Although the application of Symmetrical Components to time-dependent variables was introduced by Lyon in 1954, for 
many years its application was essentially restricted to electric machines. Recently, thanks to its advantages, the Lyon 
transformation is also applied to power network calculation. In this paper, time-dependent symmetrical components are 
used to study the dynamic analysis of asymmetrical faults in a power system. The Lyon approach allows the calculation 
of the maximum values of overvoltages and overcurrents under transient conditions and to study network under 
non-sinusoidal conditions. Finally, some examples with longitudinal asymmetrical faults are illustrated. 
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1. Introduction 

The general Fortescue Symmetrical Components Transf- 
ormation (SCT) [1,2] is formalized in phasor terms. It can 
only be used to study steady-state conditions that follow 
the fault transient condition. The maximum values of 
overvoltages and overcurrents can only be calculated in 
an approximate way by means of corrective factors [3]. 

Recently, the space-vector transformation – used in 
machine vector control – has been applied to power sys-
tem analysis, too [4,5]. Currently, network theory and 
complex transformation suggest that the study of asym-
metrical faults can be carried out by means of instanta-
neous sequence components [6–9]. 

As a matter of fact, by using the same topological ap-
proach of the SCT, it is possible to directly analyze the 
faulty network by differential equations that represent the 
faults not only in steady-state conditions but also under 
transient conditions. 

As shown by W. Lyon [10,11], the formal aspects of 
the procedure can be summarized by the following 
points: 

1) the phasors that represent phase- and sequence- 
variables, are substituted by time-dependent functions, so 
that the concept of Fortescue sequences can be general-
ized to the concept of instantaneous sequences; 

2) the Fortescue matrix [ ]S  remains the same, and 

hence the method confirms the SCT topological and mo-
dal-analysis approach [11,12]; 

3) the phasor operator j is replaced by the derivative 
operator /p d dt . Under this assumption, differential 

analysis is required and depends on the Cauchy initial 
conditions; and 

4) the sequence impedances are converted form 
( )Z j  to generalized form z(p), maintaining the same 

circuital and topological meaning. 
This time-domain analysis is characterized by three 

fundamental features. The first is an applicative one, 
which regards the ability to calculate - without the use of 
corrective coefficients – the maximum values of overvol- 
tages and overcurrents during the transient conditions. 
This is very important for circuit-breaker sizing and the 
evaluation of the electro-dynamic force between busbars 
and in transformer windings. The second characteristic 
concerns the possibility of studying not only sinusoidal, 
but also non sinusoidal sources. The last characteristic 
regards the formal and methodological aspects introduc- 
ed by using the Lyon approach. By means of the Lyon 
approach, the procedures of dynamic analysis of the 
network can be unified. In addition, by substituting the 
SCT with the Lyon approach, fault analysis can be car-
ried out by using the state equations that can be inte-
grated by classic procedures based on system analysis 
and the graph approach. The state-equation solutions, can 
be expressed in literal form by means of analytical for-
mulations if the network is linear and time-invariant. 

The relations between real and complex transformati- 
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ons, steady-state phasors and well-known sequence net-
works are given and illustrated through the use of an 
example with an asymmetrical fault in [6]. The use of 
dynamic phasors together with space-vectors – incorpor- 
ating the frequency information – in power system analy-
sis is presented in [7] and [8]. To complete these studies 
in the following, a systematic analysis of the asymmetri-
cal faults is developed and deeper investigated both from 
the theoretical and applicative points of view, giving 
some important observations that are very useful to 
achieve the numerical analysis and to better understand 
the results obtained by using industrial software pack-
ages. 

The Lyon approach to study transient and steady-state 
conditions of transversal and longitudinal faults is de-
veloped in terms of the following scheme: in Section 2, 
the Lyon Transformation is recalled and its link with 
SCT is investigated. In Section 3, the application of the 
Lyon method to the study of asymmetric transversal and 
longitudinal faults is formalized and some remarks con-
cerning the connection conditions and the use of 
state-equation approach are put in evidence; furthermore 
the equivalent model of each fault is calculated. Finally, 
in Section 4, some numerical examples emphasize the 
validity of the proposed approach by comparing the ob-
tained results with those derived by the SCT method. 

2. The Lyon Transformation 

Considering an arbitrary time function three-phase set 
{wa(t), wb(t), wc(t)}, the Lyon transformation gives the 
following decomposition (where exp( 2 / 3) j  ): 

 
 
 

 
 
 

 
 
 

2

2

1 1 1
1

1
3

1

a o

b

c

w t w t w t

w t w t S w t

w t w t w t

 
 

 



      
                  
            

o



(1) 

from which it is possible to observe that the matrix 
 S  is formally the same for both SCT and Lyon 
transformation. On the other hand, the functions sub-
jected to the Lyon Transformation assume a generic 
time trend. 
Taking into account that  
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Therefore, it is possible to define, starting from a 
generic three-phase set in time domain, the instanta-
neous symmetric components named, respectively. 

zero-, positive-, and negative-sequences. The zero- 
sequence component  0w t  is always real. The nega-

tive-sequence component  w t  is the complex con-

jugate of the positive sequence component  w t .  

Analyzing Equations (1) and (2) we can see that the 
Lyon method suggests, time by time and referring to a 
generic waveform in time domain, the same topologi- 
cal procedures just used with SCT. Moreover, the 
Lyon transformation, applied to a generic sinusoidal 
three-phase set, gives the same results provided by the 
SCT. 

Furthermore, the positive Lyon vector satisfies the 
following identity: 

       2 2 j t
dqw t w t w t e 

           (3) 

and hence it is linked to both Clarke ( )w t and Park 

( )dqw t  vectors, except for a trivial proportionality 

factor. 
The Lyon transformation, in the context of the modal 
analysis procedure of the actual three-phase theory, 
unifies all transformations normally used for dynamic 
analysis of power networks. In particular – as 

( ) ( )w t w t
   – the real and complex pair of time 

functions  and 0 ( )w t ( )w t  is totally representative 

of the generic three-phase set of real time functions 
{wa(t), wb(t), wc(t)}.  
The instantaneous power, in terms of the Lyon com-
ponent, is [13]: 
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     (4) 

3. Lyon Approach to the Study of  
Asymmetrical Faults 

Lyon decomposition in instantaneous sequence compon- 
ents allows the use of the SCT topological procedures for 
studying asymmetrical faults that can occur in a power 
network, by using the Substitution Theorem and the Su-
perposition Principle as in SCT [12-14]. 

Some fundamental remarks about the application to 
the fault analysis of the Lyon method rather than the SCT 
are discussed in the following sections. 

3.1 Fault Equivalent Networks 

In aggreement with Fortescue SCT, the instantaneous 
sequence networks connection corresponding to the  
analysed fault configuration starting from the phase cir-
cult fault conditions calculation is necessary. 

The Lyon transformed fault conditions show how to 
handle both real- and complex- time functions, while this 
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is not possible using Fortescue analysis. Consequently, it 
is important to verify that the connection conditions ob-
tained starting from the real conditions are coherent with 
respect to the definition of an instantaneous sequence 
components given by (2). 

As an example, in the case of a single-phase-to-ground 
fault, the following relationa are obtained: 
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where zf (p) is the fault impedance. The first line of (5) 
shows that the two current Lyon vectors, which are con-
jugates, have to be real in order to obtain the 
zero-sequence current. Moreover, from the second line of 
(5): 
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Equation (6) confirms that v0(t) is a real time function, 
too. Similar observations can be applied to the other fault 
conditions. 

The equivalent sequence networks for each fault type 
are reported in Table 1. Examination of Table 1 reveals 
that the instantaneous sequence networks connections for 
the different fault types are equal to that obtained by us-
ing Fortescue SCT. This is in agreement with the fact 
that the Lyon and Fortescue transformations use the same 

transformation matrix  S . In the time-differential do-
main it is possible to use the same phasor expression 
only by substituting the j  factor with the p operator. 

The complex impedance ( )Z j  becomes the real imp- 

edance  [15]. Nevertheless, the Lyon transformati-  z p

on is of greater generality than the Fortescue transforma- 
ation: Lyon acts on the time domain, not only in the 
phasor domain. The SCT can be considered as a particu-
lar case of the more general instantaneous sequence 
components approach. 

The results shown in Table 1 and the listed remarks 
complete the study presented in [6] and [8] analyzing in a 
systematic way all the asymmetrical faults and presenting 
the equivalent models of the faults. 

Furthermore, Table 1 data together with the aforemen- 
tioned remarks are very important not only from the 
theoretical point of view, but, as a matter of fact, these 
results can be very useful also to the power system ana-
lyst to verify the results obtained by using industrial 
software packages. 

3.2 The State-Matrix Approach 

The Lyon dynamic analysis of asymmetrical faults can 
be performed by using the state-matrix approach. It is 
divided into three distinct stages. In the first step the 

power system is represented by the appropriate equival- 
ent sequence networks. The corresponding Lyon state 
variables (voltages across the capacitors and current 
flowing in the inductors) are deduced and collected in the 
Lyon state-vector [x]. 
 

Table 1. Instantaneous sequence networks connection 
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In the second step, by means of the system and topo-
logical procedures of network theory [14], the mathe-
matical model of the dynamics of the fault is deduced. 
Assuming the constitutive relations linear and time- in-
variant, it is a priori formalized as: 

         
         

d
x A x B u

dt
y C x D u

    

    

           (7) 

where the input [u(t)] and the network variables [y(t)] 
Lyon vectors are present. The [y(t)] vector can be re-
garded as the output of the system. 

The solution of (7) is well-known and can be obtained 
in closed form. In fact, knowing the initial values of state 
variables (at time t=t0), it is possible to assume the fol-
lowing expression [14-16]: 
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0
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where the first term represents the solution with zero 
inputs and the second term represents the zero state solu-
tion. This last term is calculated considering the general 
sources [u(t)] expressed in the time domain. In the par-
ticular case of sinusoidal inputs, it corresponds to the 
results also obtained in the phasor domain with SCT 
when the transient is finished. 

The dynamics of the fault depends on the state fault 
matrix [A], and its elements depend on the sequence pa-
rameters related to the type of fault that occurs in the 
considered power network, and on the initial conditions 
[x(t0)] analyzed in the following paragraph. The eigen-
values of the fault matrix [A] depend on the type of fault 
and characterize the dynamic of the power system during 
the fault. 

Finally, in the third stage of the study, the network 
variables [y(t)] are calculated from the second line of (7). 
The network variables are usually Lyon voltages [v(t)] 
and currents [i(t)] expressed in the time domain. Equa-
tion (1) allows the derivation of the fault dynamics ex-
pressed in phase quantities. 

Regarding the role of initial conditions, the zero-state 
network represents the simpler case for a dynamic analy-
sis. In fact, in this case, the inductances and the capaci-
tances are in zero-state conditions. 

If the fault occurs in a non-zero state network, the state 
variables assume a non-zero initial state [x(t0)]=[x0]; in 
this case, the voltage vC(t) across a capacitor C and the 
current iL(t) flowing in an inductor L result to be: 
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Figure 1. Method that can be used to include the initial 
condition of the state variables in the proposed approach; 
case of the capacitance (a) and of the inductance (b). It is 
represented in the general case, and it is valid for all the 
instantaneous sequence (+, − and 0) 

 
The reactive elements can be considered in the dy-

namic analysis with an initial zero state condition simply 
by linking them with a generator that represents the ini-
tial conditions (see Figure 1). 

In this way, the capacitor must be connected in series 
with a voltage generator (equal to VC0) and the inductor 
must be connected in parallel with a current generator 
(equal to IL0). The new state variables are represented by 
the voltage  '

Cv t  across the capacitor C and the current 

 '
Li t  flowing in the inductor L, respectively. 

Equation (8) becomes: 

         
0

''( ) ' '( )
t

A t

t
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where [A’], [B’] and [u’(t)] are calculated considering the 
new network. 

This method is particularly important and useful in the 
analysis of power networks where some inductances 
(capacitors) are connected in series (in parallel) with dif-
ferent initial conditions. 

4. Applicative Case 
The Lyon approach to studying power system faults pre-
sented in this paper is now applied to investigate the cur-
rent fault in two different power systems. The first power 
system is represented by a classic three-phase line consi- 
dered by other Author [15]. This example can be  
considered to validate the Lyon method. The second ex- 
ample regards the fault analysis in a real network used in 
Italy. 

4.1 Transient Fault Analysis of a Basic Power 
System 

The network shown in Figure 2 is composed of a gen-
erator A, a transformer T2 to elevate the voltage, a three- 
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phase line L, and a transformer T1. The system has no 
load when the fault occurs. No information about the 
grounding connection of the neutral conductor of the 
generator and transformers is reported in [15], conseque- 
ntly only the three-phase and two-phase faults are ana-
lyzed because they are independent to the grounding 
connection. 

The corresponding positive- and negative- instantane- 
ous sequence networks are reported in Figure 3; the 
quantities indicated are deducted from the data reported 
in Figure 2 [5]. The analysis of the previously indicated 
fault types does not require the zero-sequence instantane- 
ous network. 

The Lyon quantities  0w t , ( ),  ( )w t w t   are be ex-

pressed as follows: 
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Three-phase fault analysis: in this case the positive- 
and negative- instantaneous sequence networks are 
short-circuited at the point of the fault. 
where 0  represents the a phase angle (respect to the 

real axis) in which the fault occurs. 
The corresponding state equations are: 
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Figure 2. Power system under analysis 
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Figure 3. Positive- and negative- instantaneous sequence net 
works for the analysis of three-phase and two-phase faults 
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(12) 
where r and l are the pu resistances and impedances re-
spectively. 

The line phase currents calculated during the fault are 
shown in Figure 4. Figure 4 shows the transient move-
ment considering φ0=0 and φ0=π/4 respectively, where φ0 
represents the phase angle a in the fault instant. 

The steady state (sinusoidal condition) values match 
those calculated by using STC. The maximum value in 
the steady state condition of the phase fault currents is 
equal to 0.5208 pu. Under transient conditions the phase 
currents calculated by using Lyon or STC are instead 
different. The maximum value reached by the currents 
during the entire transient depends on φ0. In fact, during 
the first period of the transient with φ0 = 0, two phase 
currents reach the value of 0.8 pu, while with φ0 = π/4 the 
phase b reaches 0.83 pu. 

In Figure 5, the vector  i t is depicted in the comp- 

lex plane. By using a complex vector and its polar repre-
sentation the vector magnitude can easily be depicted [5]. 
The initial magnitudes correspond to the initial condition 
equal to zero. During the first fault transient instant the 
current reaches its instantaneous maximum value. At the 
end of the transient, under steady-state and symmetric 
condition, the current  i t  describe a perfect circle. 

Two-phase fault analysis: in this case the instantaneo- 
us sequence networks are connected in parallel. The cor-
responding state equation is: 

       
   

2 1

2 1

2

2

T L T

A T L T

e t e t r r r i t

l l l l pi t

  



    

    
      (13) 

Figure 6 shows the line phase currents during the en-
tire transient fault calculated with 0 0   and 

0 4   respectively. The maximum value of the currents 

at the end of the transient (sinusoidal steady-state condi-
tion) is 0.451 pu equal to that calculated by using SCT. 

Whit φ0 = 0, the b and c phase fault currents reach, 
during the first period, a maximum value equal to 
0.7317 pu. With φ0 = π/4, the maximum value is 0.64 pu. 

In this case the real part of the current vector  i t  is 

approximately zero. In accordance with (2), the vector 
only moves along the imaginary axis of the complex 
plane starting from 0. 

 

4.2 Transient Fault Analysis of an Existing 
Power System 

The Lyon approach to study power system faults pre-
sented in this paper is now applied to perform transversal 
fault analysis in an Italian exiting power network (Figure 
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7). The network under analysis is constituted by a high 
voltage external grid EG, a transformer T, a line L, and a 
medium voltage load LD. The faults occur on the me-
dium voltage busbars. 
 

 
(a) 

 
(b) 

Figure. 4. Three-phase fault: phase currents transient with 
(a) φ0=0 and (b) φ0=π/4 
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Figure 5. Three-phase fault: Lyon time vector  i t  with 

0 4   

 
(a) 

 
(b) 

Figure 1. Two phase fault: phase currents transient with (a) 
φ0 = 0 and (b) φ0 = π/4 
 

EG T

10 km

15 kV LDL

132 kV

 

Figure 7. One line diagram 
 

To set up the network circuit, the line L is represented 
by a “Γ” cell, while the transverse parameters of the tran-
sformer T are neglected. Furthermore, the transformer is 
shell core type, which means that the zero-sequence flux 
component flows in the low reluctance core. Consquently, 
the zero-sequence impedance is very high. The load is 
represented by a simple set of impedances. The neutral 
condition of the external high voltage grid EG is-
grounded, while the medium voltage side is not grounded. 
The network data are reported in Table 2. 

Sequence networks and initial conditions. The instan-
taneous sequence networks are shown in Figure 8, 
where the quantities indicated are the pu parameters 
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Table 2. Numerical parameters of the network in Figure 7 

Elements Data 

Nominal voltage 132 kVnV   

Short-circuit current (HV side)  3 12 kAkHVI   E
G

 

Short-circuit power factor  cos 0.1k   

Connection 0Y y  

Nominal power 25 MVAnA   

Nominal voltage (HV side) 132 kVnHVV   

Nominal voltage (MV side) 15 kVnMVV   

Short-circuit voltage 15 5scv  . %  

Short-circuit power 35 kWscP   

No-load current 0 1%i   

T
ra

ns
fo

rm
er

 

No-load power 0 26 kWP   

Nominal voltage 15 kVnV   

Length 10 kmL   

Resistance 1 0.226 Ω/kmr   

Inductance 1 0.35Ω/kmx   

Capacitance 1 9.65 nF/kmc   

Zero-sequence resistance 0 0.371Ω/kmr   

Zero-sequence inductance 0 1.536Ω/kmx   

L
in

e 

Zero-sequence capacitance 0 4.51 nF/kmc   

Nominal voltage 15 kVnV   

Active power 9 MWcP   L
oa

d 

Reactive power 3.5 MVArcQ   

 

, ( )e t+-

, ( )i t+-

, ( )v t+-

EGr
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Lr Ll LDr LDl
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0v

0i

0c 0Lr 0Ll

 

 
Figure 8. Positive-, negative-, and zero-sequence instantane- 
neous sequence networks for the transversal fault analysis 
of the network depicted in Figure 7 
 

network is composed only by the line zero-sequence pa-
rameters. 

The computation of the initial condition is performed 

calculated starting from the data reported in Table 2. 
Based on the hypothesis about the type of load and the 
neutral point connection, the instantaneous zero-sequence 

fault occurs. The state quantities result: 
considering the network under the sinusoidal condition 
before the 

0.165 0.0921 pu

0.1649 0.0923 pu

EG T

L LD

I I j

I I j

  

         

0.5619 0.02685 puCV j 

 (14) 

Single-phase-to-ground fault. The seque
are connected in series. The fault does not change the 
line current values very much: no more than a very small 
tra

 transient - sinusoidal 
an

 zero-instantaneous sequence network is open  
 

nce networks 

nsient in the first instants of the fault transient is pre-
sent. The fault current (see Figure 9) instead presents in 
the first instant high frequency oscillations superimposed 
to the fundamental network frequency (50 Hz). These 
oscillations with high amplitude decay very rapidly. 
Nevertheless, the fault current is very low because the 
network is not grounded: the unique path to the ground is 
represented by the line capacitors. 

Table 3 shows the maximum value of the line currents 
and voltages calculate by using Fortescue SCT and Lyon 
ISCT, which are – at the end of the

d equal. 
Two-phase fault. In this case, the positive- and nega-

tive-instantaneous sequence networks are connected in 
parallel, the

Table 3. Comparison between maximum value evaluated by 
SCT and ISCT 

 Fortescue [pu] Lyon [pu] 

 max Li  0.2673 0.2673 

 max av  0.1236 0.1236 

 max bv  1.2543 1.2545 

 max cv  1.3219 1.322 

 max Fi  2.  9.  648·10-4 827·10-3

 

 

Figure. 9. Fault current in the first instant of the fault 
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as shown in Figure 10. Figure 11 shows the line current 
movement during the fault transient calculated consider-
ing φ0 = 0. A high peak in the considered quantities can 
be observed. In particular, the phases b and c show a 
peak in the first instants equal to 1.5141 pu and 1.3826 

0v

0i

0c 0Lr 0Ll

( )e t+

( )i t+

( )v t+
EGr

EGl

Tr Tl

Lc

Cv +

Lr Ll
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LDl
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Ti + Li +

( )e t-

EGr
Lc

EGl

Tr Tl

Cv -

Lr Ll

EGi -

Ti - Li - ( )i t-

( )v t-

LDr

LDl

LDi -

 

Figure. 10. Instantaneous sequence networks connection for 
the analysis of two-phase fault 
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  Li t  Figure 12. Two phase fault: Lyon time vector wit

Table 4. Current maximum values as a function of φ0 

h 

φ0 = 18° 
 

 0       max  puLa b ci t, ,    max La b c LMaxi t I, , /

-90 1.2859 4.8109 
-80 1.3126 4.9108 
-60 1.372 5.1331 
-40 1.4323 5.3587 
-20 1.4841 5.5525 
-10 1.5027 5.6221 
0 1.5141 5.6647 

10 1.5168 5.6748 
20 1.5094 5.6471 
40 1.4577 5.4537 
60 1.3505 5.0526 
80 1.2619 4.7212 

 
Table 5. Current maximum value as a function of  φ0

 0       max  puLa b ci t, ,    max La b ci t LMaxI, , /

-80 1.6685 1.2429 
-60 1.6365 1.2191 
-40 1.6515 1.2303 
-20 1.6685 1.2429 
-10 1.6597 1.2364 
0 1.6365 1.2191 

10 1.6290 1.2135 
30 1.6654 1.2406 
50 1.6597 1.2364 
70 
90 1.6654 

1.6290 1.2135 
1.2406 

pu respectively: th  values cann lculated 
by usi Fortescue . 

In t kind of fau ne currents ass e values 
in the nstant ult. The max alue de- 
pends on the phase angle φ . I  Table IV the maximum val-

ues

ese peak ot be ca
ng analysis
his lt, the li ume larg
 first i of the fa imum v

0

 reached by the line phase currents (

n

 max i t, , 
and the ratio between this value and the m

under the pre-fault sinusoidal condition (

La b c ) 

aximum value 

2Figure 11. Two phase fault: line phase currents transient 
calculated with φ0=0 

LMax LI I  ) 

calculated for different phase angles 0  ar ted. Thee repor  
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max  value hed for φ0=18°: the ratio imum is reac

(   max La b c t I, , /

Fig  12 shows 

LMax ) is i close to 5.70. 

vector ure the Lyon  Li  e com-
rst fault transient instant the 

ous maximu . At the 
eady-state but metric 

t  in th
plex plane. During
curre s its instantane
end o he transien
condition, the curren

 the fi
nt reache m value
f t t, in st

t 
 in asym

 L

ha

i t  describes an ellipse. 

an ungrounded network that 

lt case, Table V

The two-phase-to-ground fault analysis leads to very 
similar results. It depends on 

s a very high neutral to ground impedance. 
Three-phase fault. In this case the instantaneous se-

quence networks are short-circuited at the point where 
the fault occurs. As for the two-phase fau  
shows the maximum values reached by the line phase 

currents (   max La b ci t, , ) and the ratio between this 

value and the maximum value under the pre-fault sinu-

soidal condition ( 2LMax LI I  ) calculated for differ-

ent phase angles 0 . In this case, the peak value 

achieved in the first instants meis 1.24 ti he maximum 
value of the current in the final steady-state condition. 

5. Conclusions 

The use, in the time-doma n analysis, of Lyon transform- 
ation of asymmetric transversal faults is shown.

s t

i  

st. 

na

 character

y employed for fault analysis, ca
rticular case of the more gene

[2]

port D’Energie Electrique, Dunod, ” Paris, 1966. 

lculations,” 

[7] A. M. Stankovi sis of asymmetri-
cal faults in p namic phasors,” 

anced and 

in 

cas, 

. Williams, J. J. DiStefano, Schaum's, 

 The 
proposed approach allows the derivation of the Lyon 
state model of the faulted network and of the transient 
and steady state voltages and currents of intere

Thanks to the Lyon approach, the peak values reached 
in the first instants of the fault by the network voltages 
and currents can be calculated. Furthermore, the complex 
vectors allow the use of the state equations approach to 
perform th mic analysis and provide sim-
ple relations to steady-state phasors and their rms values. 
The Lyon approach can also be used for derivation of 
equivalent circuits ize the different faults 
and – thanks to the state-matrix approach – its eigenval-
ues. These information can be very useful to the power 
system analysts before starting their analysis by software 
package simulations. 

e network dy

 that

nall
 pa

The SCT, traditio
be considered as a

n 
ral 

 three-wire, three-phase systems,” 
L’Energia Elettrica, Vol. 81, No. 5–6, pp. 51–56, 2004. 

[14] W. Lyon, “Application of the method of symmetrical compo-
nents,” Mc Graw-Hill Book Company, New York, 1937. 

instantaneous sequence components approach proposed 
by Lyon. 

Finally, the examples here presented confirm that the 
use of time-dependent symmetrical component in net-
work calculations has several advantages with respect to 
the SCT and simulation software: the Lyon transforma-
tion allows transient calculations; the simple relation 
with their steady-state phasors facilitates the interpreta-
tion of the results by the well-known steady-state phasor 
theory and by using complex plane diagrams. 

Finally, it is important to underline that network com- 
ponent data are usually available in these coordinates. 
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