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Abstract 
This paper implements the analysis of volatility behaviour of the eight major 
cryptocurrencies (Bitcoin, Ethereum, Ripple, Litecoin, Monero, Stellar, Dash 
and Tether) for the period starting from October 13th 2015 to November 
18th 2019. The GARCH-type models with heavy-tailed distributions are fitted 
to filter the conditional volatility exhibited by cryptocurrencies. Extreme val-
ue analysis based on the peak over threshold approach is then used to model 
the extreme tail behaviour of the cryptocurrencies. The predictive perfor-
mance of the GARCH-EVT model in forecasting Value-at-Risk is evaluated at 
both 5% and 1% levels of significance. The backtesting results demonstrate 
the superiority of the GARCH-EVT model in both out-of-sample forecasts 
and goodness-of-fit properties to cryptocurrency returns and forecasting Val-
ue-at-Risk. Overall, the empirical results of this study recommend the heavy- 
tailed GARCH-EVT based model for modelling and forecasting the volatility 
of cryptocurrencies. 
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1. Introduction 

Cryptocurrencies have attracted a lot of attention since Bitcoin was first pro-
posed by Nakamoto [1]. They are highly volatile and show extreme tail move-
ments as compared to traditional financial markets and fiat currencies. This 
provides a new investment asset category to investors, practitioners, and poli-
cymakers in financial markets and portfolio management. Bitcoin is one of the 
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most traded and still, the largest cryptocurrency, representing about 62.24% of 
the total estimated cryptocurrencies capitalisation as of March 2021  
(https://coinmarketcap.com) [2]. As of March 28, 2021, the cryptocurrencies 
market capitalization was valued at about US $1517b. Remarkable growth has 
also been witnessed in other important digital currencies like Ethereum, Ripple, 
and Litecoin which are among the top ten cryptocurrencies by market capitaliza-
tion. Despite being largely unregulated by government institutions, cryptocur-
rency prices and exchanges exhibit most stylized facts from established exchanges 
[3]. Nevertheless, these cryptocurrencies are characterized by periods of high 
volatility, large shocks and extreme price jumps. 

Accurate forecasts of volatility and hence Value-at-Risk is important to inves-
tors, practitioners, and policymakers for making informed decisions and portfo-
lio risk management. It is also important to utilize a model capable of capturing 
the stylized characteristics and volatility dynamics of cryptocurrencies by com-
bining conventional and novel techniques [4]. The Generalized Autoregressive 
Conditional Heteroscedastic (GARCH) model and its variants are famous vola-
tility models for modelling traditional financial time series as well as for crypto-
currencies. The popularity of GARCH-type models for describing the dynamics 
of cryptocurrencies volatility is due to their deterministic dependence of the 
conditional variance on past observations. 

Several studies have employed variants of GARCH-type models for several 
cryptocurrencies to select the best volatility model or a superior set of models. 
Fakhfekh and Jeribi [5] applied various GARCH-type models with different er-
ror distributions to sixteen of the most popular cryptocurrencies and found that 
the TGARCH model with double exponential distribution provided the best fit. 
Ngunyi et al. [6] applied several GARCH-type models with different error dis-
tributions to eight of the most popular cryptocurrencies and found that the 
asymmetric GARCH models with long memory property and heavy-tailed in-
novations provided the best fit for all cryptocurrencies. Chu et al. [7] using 
GARCH models with different error distributions concluded that the IGARCH 
(1, 1) model estimates the Bitcoin volatility better than the competing models. 
Therefore, the selection of the appropriate distribution of cryptocurrencies re-
turns is also a major challenge in cryptocurrencies risk management. 

Alternatively, extreme value theory could be useful to better understand the 
characteristics of the extreme tail distribution of cryptocurrencies. However, 
only a few attempts have been made so far to examine extreme price movements 
of different cryptocurrencies. In the recent past, a limited number of studies have 
investigated the tail behaviour of cryptocurrencies using extreme value theory. 
Borri [8] modelled the conditional tail-risk in four major cryptocurrencies and 
the results showed that these cryptocurrencies are highly exposed to tail-risk 
within the crypto market contexts. Gangwal and Longin [9] presented an ex-
treme value analysis of the returns of Bitcoin and showed that the returns fol-
lowed a Frèchet distribution; Begušić et al. [10] also provided evidence that ex-
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treme prices of Bitcoin are considerably more frequent, implying that Bitcoin 
exhibits heavier tails than stock returns. Zhang et al. [11] utilized extreme value 
analysis to investigate the tail risk behaviour of the high-frequency (hourly) 
log-returns of the four most popular cryptocurrencies estimating value at risk 
and expected shortfall with varying thresholds. The empirical results found that 
Ripple was the riskiest cryptocurrency exhibiting the largest potential gain or 
loss for both positive and negative (hourly) log-returns at every percentile and 
threshold while Bitcoin was the least risky cryptocurrency. 

In a Value-at-Risk context, Gkillas and Katsiampa [12] apply extreme value 
theory to estimate Value at Risk and Expected shortfall as measures of tail risk 
for five cryptocurrencies. Likitratcharoen et al. [13] predicted the Value at Risk 
(VaR) of Bitcoin, Ethereum and Ripple using historical and Gaussian parametric, 
VaR. Their backtesting results show that the historical VaR model is suitable for 
measuring cryptocurrency risk over delta normal VaR only for a high confidence 
level of critical values. 

The objective of this study is twofold. First, a comprehensive in-sample vola-
tility modelling is implemented utilizing a variety of GARCH-type models to 
account for volatility clustering and leverage effects present in cryptocurrency 
returns. The probability distributions assumed for the standardized innovations 
include the Skewed Student-t, skewed Generalized error (GED), generalized 
hyperbolic (GHYP), Johnson’s SU distributions. Second, we apply the GARCH- 
EVT model that combines the conditional heteroscedastic model and extreme 
value theory to examine the tail behaviour of eight major cryptocurrencies. The 
GARCH models and GARCH-EVT model are then used to estimate the out-of- 
sample 1-day-ahead Value at Risk (VaR) forecasts. The forecasting performance 
is evaluated using unconditional and conditional coverage tests to backtest the 
accuracy of VaR forecasts. The accuracy of forecast estimates is evaluated to de-
termine which technique most accurately models extreme market risk on the 
eight cryptocurrencies. 

The research contributes to the literature in two ways. First, it fits GARCH- 
type models using heavy-tailed innovations distributions to account for volatility 
clustering, asymmetry and leverage effects present in cryptocurrency returns. 
Second, it provides more accurate results based on a hybrid model combining 
conditional heteroscedastic model and extreme value analysis, namely the gene-
ralized Pareto distribution (GPD). The GPD is the only non-degenerate distri-
bution that approximates asymptotically the limiting distribution of exceedances. 
We, therefore, consider only the relevant information of extremes providing 
more accurate risk estimates. The remaining part of the paper is organised as 
follows: Section 2 describes the methodology; GARCH modelling with selected 
innovations distribution, extreme value theory, value-at-risk estimation and 
backtesting procedures. Section 3 presents data description, empirical results 
and a discussion of the backtesting results. Finally, Section 4 concludes the 
study. 
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2. Methodology 
2.1. GARCH Modelling 

The generalized autoregressive conditional heteroscedastic (GARCH) model 
(Engle, [14]; Bolleslev, [15]) constitutes a benchmark in financial econometrics 
that is commonly used to estimate and forecast volatility of financial returns. 

Let tr  denote the daily log returns of the corresponding cryptocurrencies data 
series at time t for 1, ,t n= � , computed as the logarithm of prices at the end of 
day t divided by the price at the end of the preceding day 1t − , ( )1lnt t tr p p −= . 
The GARCH model can be specified as:  

t t t tr zµ σ= +                          (1) 

where tµ  denotes the conditional mean and tσ  denotes the volatility process, 
( 2

tσ  being the conditional variance). tz  the innovations, are independent and 
follow a distribution with zero mean and unit variance. For brevity, all selected 
GARCH models are restricted to a maximum order of one ( 1p q= = ). The par-
simonious GARCH (1, 1) models tend to be more flexible, efficient and signifi-
cant than higher order models in the out-of-sample analysis [16]. 

In this study, several GARCH-type specifications are considered namely the 
Standard GARCH (SGARCH), IGARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 
1), Asymmetric Power ARCH (APARCH) (1, 1), Threshold GARCH (TGARCH) 
(1, 1) and Component GARCH (CGARCH) (1, 1), to model the time-varying 
volatility of the selected cryptocurrencies. All of the GARCH-type models se-
lected follow the specification in Equation (1); however, they differ in the condi-
tional variance specification. 

The conditional variance for the standard GARCH (SGARCH) (1, 1) process 
is given by:  

2 2 2
1 1,t t tσ ω αε βσ− −= + +                      (2) 

where 0ω > , 0α ≥ , 0β ≥  and 1α β+ <  to ensure a uniquely stationary pro- 
cess and positive conditional variance. The GARCH (1, 1) model captures vola-
tility clustering in the data through the persistence parameter α β+ . However, 
if the persistence parameter α β+  equals 1, the GARCH model converges to 
the Integrated GARCH model, where the long term volatility bears an infinite 
process. 

The Integrated GARCH (IGARCH) model is a special version of SGARCH (1, 
1) model where, the persistence parameter (α β+ ) is equal to 1 and typically 
allows a unit root under the GARCH process. Thus, the conditional variance in 
the IGARCH (1, 1) is expressed in Equation (3), given that β  is set equal to 
(1 α− ) with parameter restrictions 0ω > , 0α ≥  and 1 0α− ≥ :  

( )2 2 2
1 11 .t t tσ ω αε α σ− −= + + −                     (3) 

In both the SGARCH and IGARCH models, the impact of positive and nega-
tive news on the conditional variance is assumed to be symmetrical. These mod-
els restrict all coefficients to be greater than zero and thus cannot explain the 
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negative correlation between return and volatility. Some long-memory GARCH- 
type models are also introduced to forecast cryptocurrencies price volatility by 
capturing some stylized facts such as asymmetry and fat tails in the cryptocur-
rency price return innovations and to provide better VaR’s computations. 

The exponential GARCH (EGARCH) model by Nelson [17], incorporates the 
asymmetric impact of positive and negative shocks on volatility whereby the lat-
ter is believed to produce greater levels of volatility, despite having the same 
magnitude. This model is specified in logarithmic form, which suggests that pa-
rameters are unrestricted, and are thereby allowed to take negative values while 
ensuring a positive conditional variance. In addition, the conditional variance is 
written as a function of past standardized innovations, instead of past innova-
tions. The volatility dynamics of an EGARCH (1, 1) can be expressed as: 

( ) ( )2 2
1 1 1 1 1 1 1log loge t t t t e tz z E zσ ω α γ β σ− − − −= + + − +          (4) 

where the coefficient 1α  captures the sign effect, and 1 0γ >  the size of the le-
verage effect. The persistence parameter for this model is 1β . 

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model by Glosten 
et al. [18] is similar to EGARCH (1, 1) in incorporating the asymmetric impact 
of positive and negative shocks. The conditional variance responds asymmetri-
cally via the use of an indicator function I. The volatility equation of a GJR- 
GARCH (1, 1) model is given as: 

2 2 2 2
1 1 1 1 1 1 1,t t t t tIσ ω α ε γ ε β σ− − − −= + + +                  (5) 

where 1γ  now represents the “leverage” term. The indicator function I takes on 
value of 1 for 1 0tε − ≤  and 0 otherwise. The persistence depends on the para-
meter 1γ , through 1 1 1α β γ κ+ + , where κ  denotes the expected value of the 
standardized residuals. 

The asymmetric power ARCH (APARCH) model of Ding et al. [19] allows for 
both leverage and the Taylor effect, named after Taylor [20] who observed that 
the sample autocorrelation of absolute returns were usually larger than that of 
squared returns. 

The APARCH (1, 1) model can be expressed as:  

( )1 1 1 1 1 1,t t t tz z
δδ δσ ω α γ β σ− − −= + − +                  (6) 

where Reδ +∈ , is a Box-Cox transformation of tσ , and 11 1γ− < <  is the 
coefficient in the leverage term. The persistence parameter is equal to 1 1 1β α κ+ , 
where 1κ  is the expected value of the standardized residuals under the Box-Cox 
transformation of the term, which includes the leverage parameter 1γ . 

The component standard GARCH (CS-GARCH) model of Engle and Lee [21] 
decomposes the component of the conditional variance so as to investigate the 
long and short-run movements of volatility. Let tq  represent the permanent 
component of the conditional variance, the component model can be written as 

( ) ( )2 2 2
1 1 1 1 1 1t t t t t tq z q qσ α β σ− − − −= + − + −                (7) 
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( )2
0 1 1 1t t t tq q zα ρ φ σ− − −= + + −  

where effectively the intercept of the GARCH model is now time-varying fol-
lowing first order autoregressive type dynamics. 

The Nonlinear GARCH (NGARCH) model of Higgins et al. [22] is given by  
2 2 2

1 1 1 1 1 1t t t tσ ω α ε γ ε β σ− − −= + + +                    (8) 

The Nonlinear Asymmetric GARCH (NAGARCH) model of Engle and Ng 
[23] is a model with the specification: 

( )22 2
1 1 1    t t t tσ ω α ε θσ βσ− − −= + − +                   (9) 

where 0, 0, 0α β ω≥ ≥ >  and ( )21   1α θ β+ + < , which ensures the non-nega- 
tivity and stationarity of the variance process. 

For stock returns, the parameter θ  is usually estimated to be positive; in this 
case, it reflects a phenomenon referred to as the “leverage effect”, signifying that 
negative returns increase future volatility by a larger amount than positive re-
turns of the same magnitude. 

For each GARCH-type model, the innovation process tz  is allowed to follow 
one of the following four skewed and heavy-tailed distributions: the Skewed 
Student-t, skewed Generalized error (GED), generalized hyperbolic (GHYP), 
Johnson’s SU distributions since the cryptocurrencies returns have heavier tails 
than the normal distribution. 

The skewed Student-t (SST) distribution by Azzalini and Capitanio [24], has a 
density given by  

( ) 1 2

1 1; , , , 2x xf x t T
x

ν ν
µ µ νδ ν µ β β

δ δ δ µ ν
δ

+

 
 

− − +    =         −  +    

    (10) 

where tν  is the density of standard Student t distribution with ν  degrees of 
freedom and 1Tν +  is the distribution function of the standard Student t distri-
bution with 1ν +  degrees of freedom. 

The skewed generalized error distribution (SGED) by Theodossiou [25] is 
given by  

( )
( )

SGED ; , , , exp
1 sign

k

k k k

xCf x k
x

µ δσ
µ σ λ

σ µ δσ λ θ σ

 − + = −
 − − +   

     (11) 

where  
11 ,

2
kC

kθ

−
 = Γ 
 

 

( )
1 1
2 2 11 3 ,S

k k
θ λ

−
−   = Γ Γ   

   
 

( ) 12 ,ASδ λ λ −=  
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( ) 2 2 21 3 4 ,S Aλ λ λ= + −  

and 
1 1
2 22 1 3 ,A

k k k

− −
     = Γ Γ Γ     
     

 

µ  and σ  are the mean and standard deviation parameters respectively, λ  is a 
skewness parameter, sign is the sign function, and ( ) 1

0
e dzz zαα

∞ −Γ = ∫  is the 
gamma function. The scaling parameter k and λ  satisfy the following constraints 

0k >  and 1 1λ− < < . The parameter k controls the height and tails of the densi-
ty function and the skewness parameter λ  controls the rate of descent of the 
density around the mode of the random variable x, where ( )mode x µ δσ= − . 

The generalized hyperbolic (GH) distribution by Barndorff-Nielsen [26] is 
given by  

( )
( ) ( )

( )
( )

( )( ) ( )

22 2 2

22 2

1 2 1

2

4

21 2

; , , , , 1
2

exp 1

x
f x

K

x
x K

λ λ λ

λ

λ

δ α β δα µ
λ α β µ δ

δδ δ α β

µ
β µ αδ

δ

− −

−

−  −
 = +
 −  

 − × − +


π


 

   (12) 

where Kλ  is the modified third-order Bessel function. The density is defined 
under the following parameter restrictions.  

0 and if 0δ β α λ≥ < >  

0 and if 0δ β α λ> < =  

0 and if 0δ β α λ> ≤ <  

The class of generalized hyperbolic distribution variants can be obtained by 
changing the values of the parameter λ ; hence, λ  is called the class-defining 
parameter. 

The Johnson system of distributions consists of families of distributions that, 
through specified transformations, can be reduced to the standard normal ran-
dom variable. A random variable X from the Johnson translation system is 
represented as a transformation of the normal distribution given by  

1 ZX r γξ λ
δ

− − = +  
 

 

where Z is a standard normal random variable, γ  and δ  are shape parame-
ters, ξ  is a location parameter, λ  is a scale parameter and ( )r ⋅  denotes one 
of the following normalizing transformations:  

( )

( )
( ) ( )

( )( ) ( )

( ) ( )2

for the normal family,
log for the lognormal family,
log 1 for the bounded family,

log 1 for the unbounded family

N

L

B

U

y S
y S

r y y y S

y y S



=  −

 + +
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where X ξ>  and 1λ =  for the LS  family; ξ  feasible combination of the 
skewness and kurtosis values. The cryptocurrency returns considered in this 
study have skewness and kurtosis values that correspond to Johnson’s US -dis- 
tribution. Thus, we only consider the US  family of the Johnson translation sys-
tem. The reparameterized Johnson SU distribution, as discussed in Rigby and 
Stasinopoulos [27], is a four-parameter distribution denoted by JSU ( ), , ,µ σ ν τ , 
with mean µ  and standard deviation σ  for all values of the skew and shape 
parameters ν  and τ  respectively. 

The parameters of all GARCH-type models are estimated using Maximum 
Likelihood, since it is generally consistent and efficient, and provides asymp-
totic standard errors that are valid under non-normality. The most appropriate 
GARCH-type model is the one that minimizes the Kullback-Leibler distance 
between the model and the observed values. The selection is based on informa-
tion criteria namely; the Akaike Information Criterion (AIC) and Bayesian In-
formation Criterion (BIC).  

2.2. Extreme Value Theory and the Peaks-over-Threshold Model 

In this section, we describe how to obtain the quantile qz  by applying EVT 
techniques to the distribution of GARCH-models filtered innovations. The 
Peak-over-threshold (POT) modelling approach is illustrated as follows. First, 
we fix a sufficiently high threshold u and assume that excess residuals over this 
threshold follow a generalized Pareto distribution (GPD) with tail index ξ . 

( )

1

,

1 1 if 0,

1 exp if 0,

y

G y
y

ξ

ξ β

ξ ξ
β

ξ
β

−
  − + ≠   = 

  
− − =  

 

               (13) 

where 0β >  is scale parameter and the support is 0y ≥  when 0ξ ≥  and  
0 y β ξ≤ ≤ −  when 0ξ < . ξ  is the shape parameter, which governs the tail 
behaviour of ( ),G yξ β . Consider a general distribution function F and the cor-
responding excess distribution above the threshold u defined by:  

( ) ( ) ( ) ( )
( )

Pr | , 0
1u

F u y F u
F y X u X u y

F u
+ −

= − ≤ > = ≥
−

       (14) 

For 0 y≤ , Balkema and De Haan [28] and Pickands [29] showed that for a 
large class of distributions F it is possible to find a positive measurable function 
( )uσ  such that  

( ) ( ) ( ),
0

lim sup 0
F F

u uu x y x u
F y G yξ β→ ≤ ≤ −

− =                 (15) 

The GPD is generalized in the sense that it subsumes several other specific 
distributions under its parametrization. When 0ξ > , the distribution function 

,Gξ β  is the parameterized version of a heavy-tailed ordinary Pareto distribution; 
when 0ξ =  we have a light-tailed exponential distribution and when 0ξ <  
we have a short-tailed Pareto type II distribution. 
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The tail of the underlying distribution is assumed to begin at the threshold u, 
with N the random variables of exceeding observations. For a random sample of 
size n the proportion of extremes is then N/n. Assuming that the uN  excesses 
over the threshold are independently and identically distributed (i.i.d) with exact 
GPD distribution, the parameters ξ  and β  are estimated by maximum like-
lihood. Smith [30] showed that maximum likelihood estimates ξ̂  and β̂  of 
the GPD parameters ξ  and β  are consistent and asymptotically normal as 

uN →∞  provided 1 2ξ > − . Even under the weaker assumption that the ex-
cesses are i.i.d from ( )uF y  which is only approximately GPD he also obtained 
unbiased and asymptotically normal results for ξ  and β  provided a sufficient 
rate of convergence. 

By setting x u y= + , the following equality holds for points x u>  in the tail 
of F obtained from Equation (14):  

( ) ( )( ) ( )( )1 1 1 uF x F u F x u− = − − −                (16) 

The first term, ( )( )1 F u− , can be estimated non-parametrically using the 
random proportion of the data on the tail N/n and we can also estimate the term 

( )1 uF x u− − , by approximating the excess distribution, ( )uF y  with a GPD 
fitted by maximum likelihood, to get the tail estimator:  

( )
1
ˆˆˆˆ 1 1 ,ˆ

uN x uF x
n

ξ
ξ

β

−
  −

= − +     
                 (17) 

For x number of observations in the tail is fixed to be N k= , this gives us a 
random threshold at the ( )1 thk +  order statistic. The GPD with parameter ξ  
and β  is fitted to the data ( ) ( ) ( ) ( )1 1 1, ,k k kZ Z Z Z+ +− −� , the excess amounts over 
the threshold for all residuals exceeding the threshold. The tail estimator for 

( )ZF z  is then given by  

( ) ( )
ˆ1

1ˆˆ 1 1 ,ˆ
k

Z

z zkF z
n

ξ

ξ
β

−

+ −  
 = − +      

                (18) 

For 1q k n> − , we can invert Equation (18) to get  
ˆ

1

ˆ 1ˆ 1ˆq k
qz z

k n

ξ
β
ξ

−

+

  − = + −    
                    (19) 

which is the q-th quantile of the data distribution.  

2.3. Measure of Value-at-Risk 

Value at Risk (VaR) is a measure of risk that determines the losses that may 
happen in extreme events for a given confidence level. The main parameters of 
VaR are the significance level (confidence level 1 α− ) and the risk horizon (h), 
which is the period of time in terms of trading days. 

Consider ( ),tX t Z∈  a strictly stationary time series representing daily ob-
servations of the negative log-return of a financial asset price. The dynamics of 

tX  is assumed to be given by:  
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t t t tX Zµ σ= +                         (20) 

where the innovations tZ  follow a strict white noise process, independent and 
identically distributed, with zero mean, unit variance and marginal distribution 
function ( )ZF z . We assume that tµ  and tσ  are both measurable with re-
spect to 1tF −  the information about the return process available up to time 

1t − . 
Let ( )XF x  denote the marginal distribution of ( )tX  and, for a horizon  

h N∈ , let ( )
1 |t t h FtX XF x
+ ++ +�  denote the predictive distribution of the return over 

the next h days, given information on returns up to and including day t. For 
0 ,1q< , the q-th unconditional quantile for the marginal distribution is denoted 
by:  

( ){ } ( ){ }inf : 1 inf : ,q Xx x P X x q x F x q= ∈ > ≤ − = ∈ ≥� �      (21) 

and a conditional quantile is a quantile of the predictive distribution for the re-
turn over the next h days denoted by  

( ) ( ){ }1 |
inf :

t t h Ft

t
q X Xx h x F x q

+ ++ += ∈ ≥��               (22) 

We are principally interested in estimating unconditional and conditional 
quantiles in the tails of negative log-returns for the 1-step predictive distribution. 
Since  

( ) { } 1
| 1 1 1

1

|
t

t
X t F t t t t Z

t

x
F x P Z x F F

µ
µ σ

σ
+

+ + + +
+

 −
= + ≤ =  

 
 

The quantile is denoted by t
qx  and simplify to  

1 1
t
q t t qx zµ σ+ += +                       (23) 

where qz  is the upper q-th quantile of the marginal distribution of tZ  which 
by assumption does not depend on t. Mathematically, VaR is the q-th quantile of 
the underlying distribution of returns. 

To estimate risk measure, VaR for the cryptocurrency market, our main in-
terest is on extreme value theory-based models: we consider only the conditional 
GPD approach and conventional GARCH models.  

The Peak over Threshold: Conditional GPD Approach 
Different approaches have been proposed in the literature to estimate risk meas-
ures. The unconditional GPD has the advantages that it focuses directly on the 
tail of the distribution. However, it doesn’t recognize the fact that returns are not 
i.i.d. The econometric models of volatility such as the GARCH-process under 
different innovation’s distributions yield VaR estimates which reflects the cur-
rent volatility dynamics. The weakness of this GARCH modelling approach is 
that it focuses on modelling the whole conditional return distribution as time- 
varying, and not only the tail distribution that is of interest. This approach may 
sometimes fail to accurately estimate risk measures like VaR. 

In order to overcome the drawbacks of each of the above methods, McNeil 
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and Frey [31] proposed to combine ideas from these two approaches. By first fil-
tering, the returns with a GARCH model is that we get essentially i.i.d. series on 
which it is straightforward to apply the EVT technique. The advantage of this 
GARCH?EVT combination lies in its ability to capture conditional heterosce-
dasticity in the time series through the GARCH framework, while simulta-
neously, modelling the extreme tails behaviour through the EVT method. The 
conditional GPD produces a VaR, which reflects the current volatility back-
ground. The combined approach denoted conditional GPD, may be presented in 
the following three steps:  

Step 1: Fit a GARCH-type model to the return data by quasi-maximum like-
lihood. Estimate 1tµ +  and 1tσ +  from the fitted model and extract the standar-
dized residuals tz .  

Step 2: Consider the standardized residuals computed in Step 1 to be realiza-
tions of a white noise process, and estimate the tails of the innovations using ex-
treme value theory. Next, compute the quantiles of the innovations.  

Step 3: Construct VaR from parameters estimated in steps 1 and 2.  
Assuming that the volatility dynamics of log-returns can be represented by 

Equation (2). Given the 1-step forecasts 1tµ + , 1tσ +  and the estimate quantile of 
standardized residuals series, ( )1VaR t Z+ , using the Equation (19) the VaR for 
the return series can be estimated as:  

�
1 1 1ˆ ˆ ˆVaRq

t t t qzµ σ+ + += +                     (24) 

2.4. Statistical Backtesting of Model-Based VaR Forecasts 

To back-test the accuracy for the estimated VaRs, we computed the empirical 
failure rates. By definition, the failure rate is the number of times returns (in ab-
solute values) exceed the forecasted VaR. If the model is correctly specified, the 
failure rate should be equal to the specified VaR’s level. In this study, the back-
testing VaR is based on the Kupiec’s [32] and Christoffersen [33] for uncondi-
tional and conditional coverage tests. 

For purposes of implementing VaR forecast tests, the first step is to define the 
“hit sequence” of VaR violations:  

1 1
1

1 1

1 if VaR
0 if VaR

t t
t

t t

r
I

r

α

α
+ +

+
+ +

 < −= 
≥ −

                  (25) 

where 1VaR t
α
+  is the VaR prediction at time 1t +  for risk quantile level α . 

Under the null hypothesis of correct specification the hit sequence should be an 
independent Bernoulli distributed variable.  

( )0 1: ,tH I Bernoulli α+                     (26) 

( ) ( ) 1 11
1, 1 .t tI I

tf I p p p+ +−
+ = −                   (27) 

The accuracy and reliability of VaR methodology are tested by evaluating the 
out-of-sample performance of the estimated VaR forecasts. The backtesting 
procedure consists of comparing the out-of-sample VaR estimates with actual 
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realized loss in the next period. For a VaR forecast model to be accurate in its 
predictions, then the average hit sequence or hit ratio or the failure rate over the 
full sample should be equal α  for the ( )1 %α−  quantile VaR (i.e., for 95% 
VaR). As expected, the closer the hit ratio is to the expected value, the better the 
forecasts of the risk model. If the hit ratio is greater than the expectation, then 
the model underestimates the risk; with a hit ratio smaller than ( )1 %α− , the 
model overestimates risk. 

The unconditional coverage (UC) test uses the fraction/ratio of observed vi-
olations for a particular risk model π  and compares it with p. For this purpose 
the likelihood Bernoulli function is required and is given by:  

( ) ( ) ( )1 01 111 1t tI TI TL π π π π π π+ +−= − = −               (28) 

where 0T , 1T  are the number of 0 s and 1 s in the sample ( )0 1T T T= + . The 
maximum likelihood estimator is 1ˆ T Tπ = . The null hypothesis can be tested 
by means of the following likelihood ratio test: 

( )
( )

2
12 ln

ˆuc

L
LR

L
α

χ
π

 
= −   

 
                     (29) 

Under the null hypothesis that the VaR model is correct ucLR  is asymptoti-
cally chi-square distributed with one degree of freedom. However, this test fo-
cuses only on the number of exceptions. 

In practice, situations arise when the VaR model passes the unconditional 
coverage test but all violations are clustered. To reject a VaR model with clus-
tered violations, a test of independence of the hit sequence is required. Suppose 
the hit sequence is assumed to exhibit time dependence and follows a first-order 
Markov sequence with the following transition probability matrix:  

01 01
1

11 11

1
1

π π
π

π π
− 

=  − 
                       (30) 

where ( )1Pr |ij t tI j I iπ += = = , 01π  is the probability of getting a violation 
tomorrow given no violation today, 11π  is the probability of getting a violation 
tomorrow given today is also a violation. Then the corresponding likelihood 
function is given as:  

( ) ( ) ( )00 1001 11
1 01 01 11 111 1 ,T TT TL π π π π π= − −               (31) 

where ijT  is the number of observations with a j following i. If the hit sequence 
is independent over time, the probability of a violation tomorrow does not de-
pend on today having a violation or not. Hence, the null hypothesis in the inde-
pendence test is 0 01 11:H π π π= = . The transition probability matrix will take 
the form:  

ˆ ˆ1
ˆ

ˆ ˆ1
π π

π
π π

− 
=  − 

                       (32) 

Then, independence can be tested using a likelihood ratio test statistics de-
fined as follows: 
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( )
( )

2
1

1

ˆ
2 ln .

ˆind

L
LR

L
π

χ
π

 
= −   

 
                   (33) 

Ultimately, VaR users are interested in being able to test simultaneously wheth-
er the hit sequence is independent and the average number of violations is cor-
rect. The conditional coverage (CC) test jointly examines whether the percentage 
of exceptions is statistically equal to the one expected and the serial indepen-
dence of the exception indicator. A sequence of VaR forecasts at-risk level α  
has the correct conditional coverage if ( ){ }; 1, ,tI t Tα = �  is an independent 
and identically distributed sequence of Bernoulli random variables with para-
meter α . In this test, the null hypothesis takes the form: 0 01 11:H π π α= = . To 
test this hypothesis a joint test of independence of the hit sequence and the un-
conditional coverage of the VaR forecasts is required. Thus, under the null hy-
pothesis of the expected proportion of exceptions equals α  and the failure 
process is independent, the appropriate likelihood ratio test statistic is of the 
form: 

( )
( )

2
2

1

2 ln
ˆcc

L
LR

L
α

χ
π

 
= −   

 
                   (34) 

Under the null hypothesis the likelihood ratio statistic, ccLR , is asymptotical-
ly Chi-square distributed, with two degree of freedom. Note also that  

cc uc indLR LR LR= + . 

3. Data Description and Empirical Results 
3.1. Data Description 

In this study, the data set consists of daily closing prices (in US dollars) of the 
eight largest cryptocurrencies in terms of market capitalization traded from Au-
gust 8, 2015, to September 16, 2020 (1859 observations). The data are publicly 
available online at https://coinmarketcap.com/coins/. We only considered cryp-
tocurrencies with no missing values, which resulted in eight cryptocurrencies: 
Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), Monero (XMR), 
Stella (XLM), Dash (DASH) and Tether (USTD). Figure 1 presents time series 
plots for the cryptocurrency daily trading prices for the given period of August 8, 
2015, to September 16, 2020. The sample period covers both relatively volatile 
and stable periods, with phases of price fluctuations and occasional extreme price 
jumps. All the cryptocurrencies display visible patterns of volatility clustering 
dynamics over time.  

In order to expressively visualize some features for each cryptocurrency data, 
daily returns were computed by ( )1lnt t tr p p −=  with tp  denoting daily clos-
ing price in time (t). The data adjustment procedure is applied to obtain statio-
nary time-series for the returns of the cryptocurrencies considering heterosce-
dasticity. Figure 2 presents the dynamic evolution of log return series for all 
cryptocurrencies and illustrates the stylized feature of leptokurtosis that arises 
from a pattern of time-varying volatility clustering in the cryptocurrencies where 
periods of high (low) volatility are followed by periods of high (low) volatility.  
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Figure 1. Daily prices of the eight major cryptocurrencies for the period starting from August 8, 
2015 to September 16, 2020. 

 

 
Figure 2. Daily logarithmic returns of the eight major cryptocurrencies for the period starting 
from August 8, 2015 to September 16, 2020. 
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Table 1 reports summary statistics of cryptocurrencies and statistical test re-
sults. All cryptocurrencies record a negative mean which is close to zero except 
for Tether while standard deviation values are all slightly above zero value. Ex-
cept for Bitcoin, all the other cryptocurrencies are significantly negatively skewed. 
Additionally, all series have excess-kurtosis implying fat-tails and non-normally 
distributed. Concerning the normal distribution, the Jarque-Bera test suggests 
that all the cryptocurrencies are not distributed normally. To test stationarity in 
cryptocurrencies return series, the Augmented Dickey and Fuller (ADF) test is 
used. The results of the ADF test accepted the null hypotheses, meaning that all 
the series were non-stationary at all levels. The significant autoregressive condi-
tional heteroscedasticity (ARCH) confirmed the presence of ARCH effects in all 
the cryptocurrencies studied. The Ljung-Box Q statistics on lag (20) of squared 
returns confirmed the significant ARCH effects.  

 
Table 1. Descriptive statistics and statistical test results for eight cryptocurrencies for the period starting from August 8, 2015 to 
September 8, 2020. 

Stat. BTC ETH XRP LTC XMR XLM DASH USTD 

Obs. 1858 1858 1858 1858 1858 1858 1858 1858 

Min −0.2251 −0.4102 −1.0274 −0.5103 −0.5846 −0.7231 −0.4377 −0.0572 

Max 0.4647 0.5507 0.6163 0.4490 0.4942 0.4099 0.4593 0.0492 

Mean −0.0197 −0.0033 −0.0018 −0.0014 −0.0026 −0.0019 −0.0017 0.0000 

Std.Dev 0.0398 0.0628 0.0662 0.0550 0.0639 0.0735 0.0577 0.0062s 

Skew 0.9545 −0.0725 −2.9354 −0.7616 −0.6839 −1.9885 −0.6287 −0.2846 

Kurt. 13.8551 7.9767 45.7677 13.0484 9.7859 18.6155 8.8248 16.3052 

JB 15,183.00 4942.10 165,208.00 13,396.00 7579.80 28,121.00 6169.00 20,660.00 

ADF −11.474* −10.896* −10.604* −11.732* −11.148* −10.552* −10.689* −14.547* 

Q(5) 3.9460 7.7223 35.873 5.8803 17.31 17.831 10.465 248.71 

p-value (0.5572) (0.1722) (0.0000) (0.3180) (0.0039) (0.0032) (0.0631) (0.0000) 

Q2(5) 37.428* 169.730* 236.510* 74.070* 88.279* 478.840* 69.495* 344.870* 

Q(10) 16.262 9.542 55.307 22.717 39.446 29.572 18.686 253.800 

p-value (0.0924) (0.4816) (0.0000) (0.0118) (0.0000) (0.0010) (0.0444) (0.0000) 

Q2(10) 63.62* 203.93* 269.56* 114.10* 190.46* 488.06* 112.89* 396.68* 

LM(5) 31.424* 121.37* 174.76* 61.27* 74.34* 325.03* 54.04* 327.29* 

LM(10) 49.982* 132.00* 194.42* 87.308* 141.63* 329.20* 81.378* 344.88* 

Note: Std Dev (Standard deviation), J.B. (Jarque-Bera), ARCH (autoregressive conditional heteroscedasticity), ADF (augmented Dickey and Fuller), the 
value of J.B., ADF, ARCH(5), ARCH(10), and Q(5), Q(10), Q2(5), Q2(10) Ljung are statistically significant for * at 1%.  
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3.2. Parameter Estimates of GARCH-Type Models 

In this section, results from the estimated GARCH-type models are presented. 
The sampled period is divided into two sub-sample periods: the in-sample pe-
riod extending from October 13th 2015 till December 3rd 2018, and the out-of- 
sample period covering the period from December 4th 2018 till November 18th 
2019. In-sample returns are used to estimate the parameters of the selected mod-
els, subject to the assumptions and constraints of each model. Accordingly, the 
calculated in-sample parameters are applied to forecast the volatilities for both 
the in-sample and out-of-sample periods. First, we estimate GARCH, EGARCH, 
GJRGARCH, APARCH, CSGARCH, NGARCH and NAGARCH models con-
cerning long memory test results to account for the long memory properties of 
our cryptocurrency returns. 

Table 2 presents BIC values of the fitted GARCH-type specifications: GARCH, 
EGARCH, GJRGARCH, APARCH, CSGARCH, NGARCH and NAGARCH 
under different error distributions. The skewed generalized error distribution 
has minimum BIC values for Bitcoin, Ethereum, Ripple and Litecoin. Skewed- 
Student’s-t distribution, which accounts for both asymmetry and heavy tails, is 
selected as the most suitable distribution for modelling this data set. Thus, the 
results deduce that the use of fat-tailed distribution to describe innovations dis-
tribution is justified. 

Table 3 (Panel A) reports the estimation results of the NGARCH model with 
selected innovations distribution. The mean parameters are not significantly 
different from zero for all eight cryptocurrency price returns indicating that the 
GARCH components are covariance stationery. The GARCH (1, 1)-type model 
results reveal that the lagged conditional volatility for each cryptocurrency is sta-
tistically significant. In addition, the shock squared term in the variance equa-
tion is statistically significant, which means the lagged volatility and current 
news immediately reflect in the price of the cryptocurrencies. It is observed that 
under different distributional assumptions, the parameters vary, implying that the 
distributional assumption does have a certain effect on the estimation process. 
The skewness parameter, having a very low p-value, is quite significant. Moreover, 
the shape parameters for both the Student’s-t and skewed-t distributions are sig-
nificantly high, confirming the presence of heavy tails in the series. The results 
further show that the p-values of the GARCH parameters are very low except for 
LTC and ETHM, indicating that these parameters are also highly significant. 

For the goodness-of-fit test (Panel B), the diagnostic results reveal that the 
NGARCH specifications filter the serial autocorrelation, conditional volatility 
dynamics and leverage effects present in cryptocurrencies return series. The 
Box-Pierce and ARCH-LM tests do not reject the null hypothesis of a correct 
model specification and show the power of the NGARCH model to take into 
account the major stylized facts of time series prices behaviour. However, the 
NGARCH model fails to capture extreme events normally experienced in the 
cryptocurrency markets. The standardized residuals of the NGARCH model are 
closer approximately independently and identically distributed (i.i.d) which is a 
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standard requirement for extreme value theory to be applied. Therefore, we can 
apply successfully EVT methods to i.i.d residual series. Obviously, in what follow 
we choose the NGARCH-EVT approach to compute the one-day-ahead VaR for 
all cryptocurrencies. The forecast performance of this model should be evaluated 
for the out-of-sample period and using more accurate performance criteria. 

 
Table 2. The Bayesian Information Criterion (BIC) for GARCH model selection. 

Dist. BTC ETH XRP LTC XMR XLM DASH USTD 

Skewed Student t distribution 

GARCH −4.1179 −3.1004 −3.5211 −3.5104 −2.9913 −2.9936 −3.2543 −9.3414 

EGARCH −4.1395 −3.1103 −3.5448 −3.5620 −3.0071 −3.0091 −3.2616 −4.0378 

GJRGARCH −4.0966 −3.0975 −3.5201 −3.5127 −2.9896 −2.9944 −3.2503 −9.3405 

APARCH −4.1434 −3.1085 −3.3154 −3.5816 −3.0135 −3.0144 −3.2577 −9.6565 

CSGARCH −4.0905 −3.0927 −3.5126 −3.5039 −2.9842 −2.9898 −3.2498 −9.1919 

NGARCH −4.1608 −3.1125 −3.5578 −3.5851 −3.0162 −3.0171 −3.2617 −9.3486 

NAGARCH −4.0962 −3.0964 −3.5184 −3.5087 −2.9896 −2.9906 −3.2502 9.3369 

skewed Generalized error distribution 

GARCH −4.1345 −3.1201 −3.5694 −3.5374 −2.9931 −3.0198 −3.2564 −6.1006 

EGARCH −4.1585 −3.1286 −3.5666 −3.5702 −3.0046 −3.0152 −3.2617 −6.1105 

GJRGARCH −4.1325 −3.1173 −3.5513 −3.5367 −2.9899 −3.0038 −3.2524 −5.7956 

APARCH −4.1708 −3.1254 −3.5739 −3.5885 −3.0091 −3.0190 −3.2577 −6.0873 

CSGARCH −4.1266 −3.1123 −3.5424 −3.5312 −2.9859 −2.9980 −3.2488 −7.1108 

NGARCH −4.1770 −3.1293 −3.5758 −3.5925 −3.0124 −3.0211 −3.2617 −6.0965 

NAGARCH −4.1312 −3.1160 −3.5494 −3.5344 −2.9903 −2.993 −3.2525 −6.0838 

Generalised Hyperbolic Distribution (GHYP) 

GARCH −4.1515 −3.1165 −3.5493 −3.5344 −2.9934 −3.0011 −3.2568 −9.0120 

EGARCH −4.1555 −3.1252 −3.5644 −3.5700 −3.0067 −3.0149 −3.2629 −8.7340 

GJRGARCH −4.1287 −3.1139 −3.5491 −3.5339 −2.9909 −3.0030 −3.2528 −9.0356 

APARCH −4.1610 −3.1223 −3.5719 −3.5885 −3.0122 −3.0191 −3.2591 −8.9999 

CSGARCH −4.1228 −3.1088 −3.5401 −3.5283 −2.9864 −2.9975 −3.2512 −8.9256 

NGARCH −4.1745 −3.1262 −3.5739 −3.5921 −3.0143 −3.0212 −3.2631 −9.0081 

NAGARCH −4.1274 −3.1125 −3.5470 −3.5315 −2.9913 −2.9986 −3.2528 −9.0071 

Johnson’s SU-distribution 

GARCH −4.1152 −3.1078 −3.5368 −3.5237 −2.9944 −2.9989 −3.2579 −9.6638 

EGARCH −4.1458 −3.1168 −3.5553 −3.5690 −3.0094 −3.0136 −3.2648 −8.4328 

GJRGARCH −4.1119 −3.1048 −3.5358 −3.5257 −2.9926 −3.0001 −3.2539 −9.6581 

APARCH −4.1524 −3.1148 −3.5646 −3.5881 −3.0156 −3.0186 −3.2610 9.6621 

CSGARCH −4.1060 −3.1002 3.5284 −3.5170 −2.9875 −2.9954 −3.2505 −9.5075 

NGARCH −4.1696 −3.1188 −3.5677 -- −3.0180 −3.0211 −3.2650 −9.6682 

NAGARCH −4.1114 −3.1037 −3.5340 −3.5219 −2.9927 −2.9960 −3.2538 −9.6584 
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Table 3. Estimation results of NGARCH (1, 1) models with selected innovations distribution. 

Par. BTC ETH XRP LTC XMR XLM DASH USTD 

Distribution sged sged sged sged jsu ghyp jsu jsu 

µ  −0.0008 −0.0013 0.0019 −0.0000 −0.0013 −0.0028 −0.0001 0.0000 

 () () () () () () () () 

ω  0.0109 0.0079 0.015 0.0139 0.0206 0.0164 0.0043 0.0000 

1α  0.1461 0.2094 0.2773 0.1655 0.1672 0.2568 0.1865 0.0500 

1β  0.8509 0.7834 0.7241 0.8309 0.8057 0.7232 0.8149 0.9001 

λ  0.3554 0.7598 0.5420 0.3518 0.3852 0.5929 0.8867 1.996 

skew 1.0389 0.9319 0.9475 0.9950 −0.299 −0.0268 −0.0924 0.0064 

shape 0.8817 0.9672 0.8614 0.8855 1.3893 0.5999 1.2326 0.9991 

ghlambda      0.3947   

Diagnostic checks 

Log likelihood 3906.733 2933.499 3348.302 3363.79 2830.046 2836.835 3059.544 9008.062 

AIC −4.1978 −3.1502 −3.5758 −3.6133 −3.0388 −3.0450 −3.2858 −9.6890 

BIC −4.1770 −3.1293 −3.5758 −3.5925 −3.0180 −3.0212 −3.2650 −9.6682 

LQ(5) 10.67 9.730 16.84 14.45 20.63 18.79 12.47 55.74 

p-value (0.0059) (0.0108) (0.0000) (0.0006) (0.0000) (0.0000) (0.0021) (0.0000) 

LQ2(5) 2.9197 2.497 21.360 4.690 3.1178 6.666 8.106 0.0005 

p-value (0.4219) (0.5064) (0.0000) (0.1796) (0.3859) (0.0625) (0.0277) (1.0000) 

LM(5) 2.6130 0.9699 1.0839 1.6695 3.4978 3.5470 1.1665 0.0077 

p-value (0.3511) (0.7419) (0.7082) (0.5489) (0.2253) (0.2197) (0.6842) (0.9997) 

3.3. Parameter Estimates of the GARCH-EVT Model 

In Extreme value theory (EVT) modelling, Peak over threshold (POT) approach 
is normally used to estimate the parameters of the generalized Pareto distribu-
tion (GPD). The POT method generally depends on the selection of the thre-
shold. In this study, an optimal threshold value is set at 90% quantile of the total 
observations to estimate the GPD parameters for both left and right tails. Table 
4 presents parameter estimates of the fitted GPD with their corresponding stan-
dard errors enclosed in brackets for both the left and right tails of the cryptocur-
rencies standardized residuals. The shape parameter (ξ ) is positive and signifi-
cantly different from zero for all cryptocurrencies indicating heavy-tailed distri-
butions and a finite variance. This also implies that the tail distribution of cryp-
tocurrencies belongs to Frechet class which is heavy-tailed. However, the shape 
parameter is negative except for Ethereum on the left tail. The scale parameters 
are also positive and significant for all cryptocurrencies both for the left and 
right tails. 

3.4. Forecasting Performance Analysis 

To evaluate the out-of-sample performance of the VaR forecast models, we used  
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Table 4. Parameter estimates of the Generalized Pareto model for selected u for the daily log returns of the eight crypto- 
currencies. 

Par. BTC ETH XRP LTC XMR XLM DASH USTD 

Right Tail (positive) 

Obs. 1858 1858 1858 1858 1858 1858 1858 1858 

u 1.0760 1.0462 1.0560 1.0288 1.1421 1.0879 1.0558 1.0421 

n.exceed 186 186 186 186 186 186 186 186 

Shape ( ξ ) 0.1222 0.0444 0.0256 0.1918 0.0811 0.0102 0.0619 0.1346 

(s.e) (0.0849) (0.0824) (0.0733) (0.0903) (0.0791) (0.0688) (0.0761) (0.0703) 

Scale ( β ) 0.6974 0.6748 0.6733 0.6525 0.6089 0.6584 0.6181 1.4611 

(s.e) (0.0779) (0.0744) (0.0698) (0.0753) (0.0656) (0.0662) (0.0652) (0.1477) 

Left Tail (negative) 

u 1.1107 1.1381 1.1143 1.1076 1.1447 1.1880 1.0980 0.9902 

n.exceed 186 186 186 186 186 186 186 186 

Shape ( ξ ) 0.0842 −0.0899 0.0918 0.0165 0.0659 0.0236 0.0464 0.1676 

(s.e) (0.0860) (0.0823) (0.0831) (0.0774) (0.0746) (0.0842) (0.0805) (0.0518) 

Scale ( β ) 0.6663 0.8812 0.7926 0.7645 0.6119 0.7125 0.7355 1.2986 

(s.e) (0.0752) (0.0969) (0.0877) (0.0815) (0.0639) (0.0795) (0.0800) (0.1155) 

 
a rolling windows scheme with a window size of 1358 days and 500 days are re-
served for the out-of-sample forecast period. The evaluation is based on the 
one-step-ahead forecast that is produced from a series of rolling sample size with 
an estimation window of 1358 observations kept constant and simply rolled 
forward after every 25 days. The advantage of a rolling window procedure is 
two-fold: to assess the stability of the model over time and the accuracy of the 
forecasting. Stability amounts to examining whether the coefficients are time- 
invariant. The one-day ahead VaR is calculated at 95% and 99% confidence le-
vels. Both levels of confidence are used for out-of-sample backtesting of VaR, 
following Basel II Backtesting Requirements, which stipulates that backtesting of 
VaR needs to be done on confidence levels other than 99%. Backtesting is used 
to evaluate the relative performance of conventional GARCH models and the 
GARCH-EVT approach to forecast value at risk. Kupiec’s unconditional cover-
age and Christoffersen’s conditional coverage tests are used at two different le-
vels of significance of 95% and 99% which are considered to reflect extreme 
market conditions. 

Table 5 presents VaR forecast violation percentages and p-values in paren-
theses of unconditional coverage tests for GARCH (1, 1), EGARCH (1, 1), 
APARCH (1, 1), NGARCH (1, 1) and GARCH (1, 1)-EVT models with skewed-t 
distribution for eight cryptocurrencies returns. The exceedances involve count-
ing the number of actual realized returns that exceed the VaR forecast and com-
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paring this number with the expected number of exceedances. The closer the 
observed number of exceedances is to the hypothetically expected number, the 
more preferable the model is for estimating accurate forecasts. More exceed-
ances indicate that the model underestimates Value at Risk and fewer exceed-
ances indicate that the model overestimates Value at Risk. The expected ex-
ceedances are 25 for the 95% confidence level and 5 for 99% confidence level. 
The null hypothesis of Kupiec’s unconditional coverage test assumes that the 
probability of occurrence of variations equals the expected level of significance. 
Under the null hypothesis, a good model should be the one that does not reject 
the null hypothesis. Hence, the test with a p-value greater than 0.05 for the un-
conditional coverage test indicates that the number of violations is statistically 
equal to the expected. These backtesting results demonstrate that GARCH-EVT 
clearly outperforms GARCH benchmark VaR predictors.  

 
Table 5. VaR forecast violations of the cryptocurrencies in terms of actual and expected 
exceedances and Unconditional Coverage (UC) results. 

α  5% 1% 

Tails: Left Tail Right Tail Left Tail Right Tail 

BTC 

GARCH 3.4% 5.0% 1.2% 0.4% 

UC: p -value (0.082) (1.000) (0.663) (0.125) 

EGARCH 4.2% 5.0% 1.2% 0.4% 

UC: p-value (0.399) (1.000) (0.663) (0.125) 

APARCH 4.2% 4.6% 1.2% 0.2% 

UC: p-value (0.399) (0.678) (0.663) ** 

NGARCH 4.2% 4.8% 1.2% 0.2% 

UC: p-value (0.399) (0.836) (0.663) ** 

GARCH-EVT 2.8% 4.8% 1.0% 0.4% 

UC: p-value ** (0.836) (1.000) (0.125) 

ETH 

GARCH 4.8% 7.0% 0.8% 1.2% 

UC: p-value (0.836) (0.052) (0.641) (0.663) 

EGARCH 4.8% 6.8% 1.0% 1.0% 

UC: p-value (0.386) (0.079) (1.000) (1.000) 

APARCH 5.0% 6.6% 1.0% 0.8% 

UC: p-value (1.000) (0.117) (1.000) (0.641) 

NGARCH 4.8% 6.8% 0.8% 1.0% 

UC: p-value (0.836) (0.079) (0.641) (1.000) 

GARCH-EVT 5.0% 6.8% 0.6% 1.2% 

UC: p-value (1.000) (0.079) (0.331) (0.663) 
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XRP 

GARCH 3.8% 3.6% 0.8% 0.8% 

UC: p-value (0.199) (0.131) (0.641) (0.641) 

EGARCH 3.8% 4.2% 0.4% 0.8% 

UC: p-value (0.199) (0.399) (0.125) (0.641) 

APARCH 4.4% 4.0% 0.4% 0.8% 

UC: p-value (0.530) (0.288) (0.125) (0.641) 

NGARCH 4.4% 4.0% 0.4% 0.8% 

UC: p-value (0.530) (0.288) (0.125) (0.641) 

GARCH-EVT 4.8% 3.4% 1.0% 0.8% 

UC: p-value (0.836) (0.082) (1.000) (0.641) 

LTC 

GARCH 5.0% 3.4% 1.2% 0.8% 

UC: p-value (1.000) (0.082) (0.663) (0.641) 

EGARCH 4.4% 3.6% 2.2% 0.6% 

UC: p-value (0.530) (0.131) ** (0.331) 

APARCH 5.0% 4.2% 2.0% 0.8% 

UC: p-value (1.000) (0.399) ** (0.641) 

NGARCH 5.0% 3.4% 1.8% 0.6% 

UC: p-value (1.000) (0.082) (0.106) (0.331) 

GARCH-EVT 4.8% 2.4% 1.4% 0.4% 

UC: p-value (0.836) ** (0.397) (0.125) 

XMR 

GARCH 5.2% 5.4% 0.8% 1.6% 

UC: p -value (0.838) (0.685) (0.641) (0.215) 

EGARCH 4.8% 4.6% 0.6% 1.6% 

UC: p-value (0.836) (0.678) (0.331) (0.215) 

APARCH 4.4% 5.0% 0.6% 1.4% 

UC: p-value (0.530) (1.000) (0.331) (0.397) 

NGARCH 4.2% 5.4% 0.6% 1.6% 

UC: p-value (0.399) (0.685) (0.331) (0.215) 

GARCH-EVT 3.4% 4.8% 0.8% 1.8% 

UC: p-value (0.082) (0.836) (0.641) (0.106) 

XLM 

GARCH 4.2% 4.0% 0.8% 1.2% 

UC: p -value (0.399) (0.288) (0.641) (0.663) 

EGARCH 4.4% 4.2% 0.8% 0.8% 

UC: p-value (0.530) (0.399) (0.641) (0.641) 

APARCH 4.6% 4.8% 1.0% 1.0% 
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UC: p-value (0.678) (0.836) (1.000) (1.000) 

NGARCH 5.0% 4.6% 1.0% 1.0% 

UC: p-value (1.000) (0.678) (1.000) (1.000) 

GARCH-EVT 5.8% 3.6% 1.4% 0.8% 

UC: p-value (0.423) (0.131) (0.397) (0.641) 

DASH 

GARCH 3.4% 5.2% -- 0.8% 

UC: p -value (0.082) (0.838) -- (0.641) 

EGARCH 3.5% 5.0% -- 0.8% 

UC: p-value (0.082) (1.000) -- (0.641) 

APARCH 3.6% 5.0% -- 1.0% 

UC: p-value (0.131) (1.000) -- (1.000) 

NGARCH 3.4% 5.0% -- 0.8% 

UC: p-value (0.082) (1.000) -- (0.641) 

GARCH-EVT 4.0% 4.4% -- 0.8% 

UC: p-value (0.288) (0.530) -- (0.641) 

USTD 

GARCH 3.6% 1.6% 2.6% 1.2% 

UC: p -value (0.131) ** ** (0.663) 

EGARCH 2.2% 2.0% 1.4% 1.0% 

UC: p-value ** ** (0.397) (1.000) 

APARCH 1.8% 1.4% 1.6% 1.4% 

UC: p-value ** ** (0.215) (0.397) 

NGARCH 1.8% 1.4% 1.8% 1.4% 

UC: p-value ** ** (0.106) (0.397) 

GARCH-EVT 0.2% 0.4% -- 0.4% 

UC: p-value ** ** -- (0.125) 

 
Table 6 also presents test statistic and p-values in parentheses of conditional 

coverage tests for GARCH (1, 1), EGARCH (1, 1), APARCH (1, 1), NGARCH (1, 
1) and GARCH (1, 1)-EVT models with skewed-t distribution. For the condi-
tional coverage test, likewise, a good model should accept the null hypothesis, 
that is, correctly identifying the number of violations and being independent. 
The null hypothesis of the conditional coverage test indicates that the probability 
of occurrence of the violations equals the expected significance level and the vi-
olation is independently distributed through time. The empirical results suggest 
that the combined GARCH-EVT model performs best in estimating out-of- 
sample VaR forecasts in the specified backtesting period and this makes it rela-
tively better in forecasting VaR. The superior performance is attributed to the 
combined approachability to appropriately capture the statistical features of the 
data.  
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Table 6. Conditional Coverage (CC) results of backtesting. 

α  5% 1% 

Tails: Left Tail Right Tail Left Tail Right Tail 

BTC 

GARCH 3.294 0.060 0.336 2.369 

CC: p-value (0.193) (0.970) (0.845) (0.306) 

EGARCH 1.874 0.060 0.336 2.369 

CC: p-value (0.392) (0.097) (0.845) (0.306) 

APARCH 1.874 2.396 0.336 4.817 

CC: p-value (0.392) (0.302) (0.845) (0.090) 

NGARCH 1.874 2.469 0.336 4.817 

CC: p-value (0.392) (0.291) (0.845) (0.090) 

GARCH-EVT 6.728 2.469 0.101 2.369 

CC: p-value ** (0.306) (0.951) (0.291) 

ETH 

GARCH 0.615 3.897 0.282 0.336 

CC: p-value (0.735) (0.142) (0.869) (0.845) 

EGARCH 0.615 3.296 4.480 0.101 

CC: p-value (0.735) (0.192) (0.106) (0.951) 

APARCH 0.426 2.778 4.480 0.282 

CC: p-value (0.808) (0.249) (0.106) (0.869) 

NGARCH 0.615 3.296 5.679 0.101 

CC: p-value (0.735) (0.192) (0.058) (0.951) 

GARCH-EVT 0.426 3.133 0.979 0.336 

CC: p-value (0.808) (0.209) (0.613) (0.845) 

XRP 

GARCH 3.347 3.624 0.282 0.282 

CC: p-value (0.188) (0.163) (0.869) (0.869) 

EGARCH 1.750 0.727 2.369 0.282 

CC: p-value (0.417) (0.695) (0.306) (0.869) 

APARCH 1.334 1.176 2.369 0.282 

CC: p-value (0.513) (0.555) (0.306) (0.869) 

NGARCH 1.334 1.176 2.369 0.282 

CC: p-value (0.513) (0.555) (0.306) (0.869) 

GARCH-EVT 0.066 4.221 0.101 0.282 

CC: p-value (0.967) (0.121) (0.951) (0.869) 
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LTC 

GARCH 0.060 3.294 0.336 0.282 

CC: p-value (0.970) (0.193) (0.845) (0.869) 

EGARCH 2.424 2.453 5.915 0.979 

CC: p-value (0.298) (0.293) (0.052) (0.613) 

APARCH 2.638 0.727 4.323 0.282 

CC: p-value (0.267) (0.695) (0.115) (0.869) 

NGARCH 0.060 3.294 2.943 0.979 

CC: p-value (0.970) (0.193) (0.230) (0.613) 

GARCH-EVT 2.469 9.329 0.918 2.369 

CC: p-value (0.291) ** (0.632) (0.306) 

XMR 

GARCH 0.344 3.255 0.282 1.799 

CC: p-value (0.842) (0.196) (0.869) (0.407) 

EGARCH 0.066 2.396 0.979 1.799 

CC: p-value (0.967) (0.302) (0.613) (0.407) 

APARCH 0.395 0.426 0.979 0.918 

CC: p-value (0.821) (0.808) (0.613) (0.632) 

NGARCH 2.557 0.366 0.979 1.799 

CC: p-value (0.279) (0.833) (0.613) (0.407) 

GARCH-EVT 4.220 2.469 0.282 2.943 

CC: p-value (0.121) (0.291) (0.869) (0.229) 

XLM 

GARCH 2.557 2.797 0.282 0.336 

CC: p-value (0.279) (0.247) (0.869) (0.845) 

EGARCH 0.395 0.727 0.282 0.282 

CC: p-value (0.821) (0.695) (0.869) (0.869) 

APARCH 0.177 0.066 0.101 0.101 

CC: p-value (0.915) (0.967) (0.951) (0.951) 

NGARCH 0.426 0.177 0.101 0.101 

CC: p-value (0.808) (0.915) (0.951) (0.951) 

GARCH-EVT 4.223 3.624 0.918 0.282 

CC: p-value (0.121) (0.163) (0.632) (0.869) 
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DASH 

GARCH 4.221 2.901 -- 0.282 

CC: p-value (0.121) (0.234) -- (0.869) 

EGARCH 4.221 0.060 -- 0.282 

CC: p-value (0.121) (0.970) -- (0.869) 

APARCH 3.624 0.060 -- 0.101 

CC: p-value (0.163) (0.970) -- (0.951) 

NGARCH 4.221 0.060 -- 0.282 

CC: p-value (0.121) (0.970) -- (0.869) 

GARCH-EVT 2.797 2.424 -- 0.282 

CC: p-value (0.247) (0.297) -- (0.869) 

USTD 

GARCH 22.024 16.631 23.788 0.336 

CC: p-value ** ** ** (0.845) 

EGARCH 21.493 12.552 3.805 0.101 

CC: p-value ** ** (0.149) (0.951) 

APARCH 21.344 19.051 9.760 0.918 

CC: p-value ** ** ** (0.632) 

NGARCH 21.344 19.051 9.813 0.918 

CC: p-value ** ** ** (0.632) 

GARCH-EVT 42.759 37.001 -- 2.369 

CC: p-value ** ** -- (0.306) 

4. Conclusion 

Cryptocurrencies unlike conventional financial assets such as currencies ex-
change rates and stock prices are characterized by high volatility and extreme 
price movements. This paper employed GARCH-type models and extreme value 
theory to model the volatility and tail behaviour of the cryptocurrencies returns. 
Modelling the tail behaviour of the returns of cryptocurrencies is of utmost im-
portance for both investors and policy-makers. The GARCH-EVT approach is 
implemented in modelling the tail distribution of cryptocurrencies return series 
and forecasting out-of-sample value at risk. The back-testing results demonstrate 
the superiority of the heavy-tailed GARCH-EVT models in forecasting out-of- 
sample value at risk. Overall, the model provides a significant improvement in 
forecasting value-at-risk over the widely used conventional GARCH models. This 
study can be extended by considering intra-day cryptocurrencies data and more 
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robust models such as the GARCH-EVT-Copula model that can also capture the 
dependence structure of between cryptocurrencies.  
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