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Abstract 
In this paper, we introduce trade costs into the spatial AK model of economic 
growth and investigate the effects of trade costs on the spatio-temporal dy-
namics. We formulate an optimal control problem and obtain the evolution 
of the capital distribution along the optimal consumption trajectory via dy-
namic programming and semigroup theory. We also consider the conver-
gence of the physical capital in the long-run and derive a value range for the 
cost coefficient that guarantee the convergence of the detrended capital across 
the location. Finally, we perform numerical simulations to support the ana-
lytical results and illustrate the spatiotemporal dynamics generated by the 
model. 
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1. Introduction 

With the development of new economic geography, capital flows and trade costs 
in line with the economic reality have attracted extensive attentions of research-
ers. Many studies have shown that trade costs play a crucial role in explaining 
some important economic phenomena by way of empirical analysis, see [1]-[6] 
and so on. In this paper, we explore the impacts of trade costs from the perspec-
tive of spatial economic growth model. 

The spatial economic growth model reconcile the growth and geography eco-
nomics by merging the continuous spatial dimension with the standard eco-
nomic growth model, and it is an effective way to study the long-run structure of 
the spatial distribution of the capital stock. The motion law of physical capital in 
a spatial setting is described by a parabolic partial differential equation in [7], 
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which lays a foundation for the following study of spatial economic growth. More 
recent contributions in the same stream are the study of the Benthamian case in 
[8], Camacho et al. propose a numerical algorithm to analyze the spatial Ramsey 
model [9]. Boucekkine et al. study the spatial AK model and show that the con-
vergence of the detrended capital across space due to spatio-temporal dynamics 
by means of dynamic programming and generalize it to heterogeneous space, see 
[10] [11]. Ballestra deals with the same model in [10] by using the Pontryagin 
maximum principle with Michel-type transversality condition [12]. Juchem Ne-
to and Claeyssen induced labor migration in a spatial Solow model and analyze 
stability of the spatially homogeneous equilibrium [13], then further consider 
capital transport cost in [14]. Xepapadeas and Yannacopoulos [15] develop a 
spatial growth model where saving rates are exogenous. Fabbri investigates the 
role of geography in the evolution of a spatial growth model [16]. A wider lite-
rature on spatial dynamics refers to [17]. As far as we concerned, most of the re-
lated literatures focus on how to solve the economic growth model with spatial 
variables and analyze the effect of spatial factor on consumption or the dynamics 
of capital accumulation across space. Trade costs like transportation costs, tariff 
and non-tariff barriers or any other mobility frictions have always been ignored. 
Therefore, the combination of trade cost and spatial economic growth model is 
our literature contribution. 

Considering the importance of trade costs, we make a modification of the trade 
balance presented in [10] and incorporate trade costs into the spatial AK model. 
The main contribution of the present paper is to analyze the effects of trade costs 
on the spatio-temporal dynamics and the convergence of the physical capital in 
the long-run. Through solving an auxiliary optimal control problem, we obtain 
the evolution of the physical capital distribution along the optimal consumption 
trajectory and derived the value range of the cost coefficient that guarantees the 
convergence. In addition, we carry out numerical illustrations to show the dy-
namics of the detended capital with different trade costs. 

The rest of the paper is organized as follows. Section 2 presents the spatial AK 
model with trade costs. Section 3 shows the analytical results on spatial-temporal 
dynamics. Section 4 provides complementary numerical illustrations. Section 5 
concludes.  

2. The Spatial AK Model with Trade Costs 

Following [10], we assume that population is non-growing and evenly distri-
buted on the unit circle which denoted by  . Using polar coordinates,   can 
be described as the set of spatial parameters θ  in [ ]0,2π . The law of motion of 
capital in time and space refers to [7]. At a given point ( ) [ ), 0,t θ ∈ ∞ × , not 
taking into account capital depreciation, physical capital ( ),k t θ  evolves ac-
cording to  

( ) ( ) ( ) ( )
,

, , ,
k t

y t c t t
t
θ

θ θ ν θ
∂

= − −
∂

                (1) 
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with capital endowments ( ) ( )00,k kθ θ= . We consider the AK production struc- 
ture, which means that the production function ( ),y t θ  satisfies  

( ) ( ), , ,y t Ak tθ θ=                        (2) 

where constant 0A >  stands for technology level, and ( ),c t θ  and ( ),tν θ  re- 
present consumption and trade balance at ( ) [ ), 0,t θ ∈ ∞ ×  respectively. Dif-
ferent from [10], we consider the adjustment and transportation costs when cap-
ital moving from a location to another. Then the trade balance ( ), tν θ  at re-
gion iΘ ∈  could be described as  

( ) ( ) ( ) ( )
, ,

, d , ,
i

i i ik t k t
t bk t

θ θ θ
ν θ θ θ

θ θΘ

 ∂ + ∆ ∂
= − − − ∂ ∂ 

∫         (3) 

where b ( 0b > ) is the barrier measure of the capital ( ),k t θ . 
Using the fundamental theorem of calculus yields  

( ) ( ) ( ) ( )2

2

, , , ,
d d .i i

i i

i i ik t k t k t k tθ θ

θ

θ θ θ θ θ
θ θ

θ θ θ θ θ
+∆

Θ

∂ + ∆ ∂ ∂ ∂∂
− = =

∂ ∂ ∂ ∂ ∂∫ ∫    (4) 

Thus the trade balance (3) can be written in the form  

( ) ( ) ( )
2

2

,
, d d , ,

i i

k t
t bk t

θ
ν θ θ θ θ

θΘ Θ

∂
= − −

∂∫ ∫              (5) 

which derives  

( ) ( ) ( )2

2

, ,
, .

k t k t
t b

θ θ
ν θ

θθ
∂ ∂

= − −
∂∂

                 (6) 

Substituting (2) and (6) into Equation (1), the dynamic of the physical capital 
accumulation is represented by a general parabolic partial differential equation  

( ) ( ) ( ) ( ) ( ) ( )2

2

, , ,
, ,

k t k t k t
A t k t c t b

t
θ θ θ

θ θ
θθ

∂ ∂ ∂
= − + +

∂ ∂∂
          (7) 

with nonnegative initial capital distribution ( ) ( )00,k kθ θ= . The term  

( ) ( )2

2

, ,k t k t
b

θ θ
θθ

∂ ∂
+

∂∂
 in Equation (7) captures capital mobility across space and 

( ),k t
b

θ
θ

∂
∂

 represents trade costs like adjustment costs, institutional barriers or 

other mobility frictions in the trade balance. This term make a difference with 
[10] and it is the key to discuss the spatial dynamics of the growth model with 
trade costs. 

To complete the model, we impose a nonhomogeneous Dirichlet boundary 
condition  

( ) ( ),0 , 2k t k t= π                       (8) 

as in [10]. It is clear that the value of the capital stock ( ),k t θ  must be non- 
negative everywhere and in any moment of time. In addition, the initial distribu-
tion of capital ( )0k θ  is assumed to be known, bounded and continuous, ( ),c tθ  
is smooth, bounded and concave. Putting all these pieces together, our model 
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becomes the following partial differential system  

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) [ )

2

2

0

, , ,
, , ,

0, , ,

,0 , 2 , 0, .

k t k t k t
b Ak t c t

t
k k

k t k t t

θ θ θ
θ θ

θθ
θ θ θ

∂ ∂ ∂
= + + −

∂ ∂∂
 = ∈
 = π ∈ +∞

          (9) 

Comparing system (9) with the model analyzed in [10], the difference is the 
term ( ),bk tθ θ , which models trade costs. The present work aim to discuss how 
this term affects the spatial dynamics of the economic model. We consider a 
centralized economy in which a central planner finds a flow of optimal distribu-
tions of consumption, subject to a spatial-temporal capital accumulation budget 
constraint. The problem of optimal growth in dynamic spatial economy is that 
the social planner maximizes a sum of utilities of all regions,  

( )( ) ( )( )2
0 0 0
, , : e , d d ,tJ k c U c t tρ θ θ

+∞ − π
⋅ ⋅ = ∫ ∫              (10) 

where 0ρ >  is the rate of time preference and ( )( ) ( )1,
,

1
c t

U c t
σθ

θ
σ

−

=
−

 is the  

instantaneous utility function, subject to an initial and boundary problem of the 
parabolic partial differential system (9). Our main work is to find the optimal 
consumption strategy and discuss the spatial impact of trade costs on the dy-
namics of capital growth. 

We claim that the functions ( ) ( ), , ,k c⋅ ⋅ ⋅ ⋅  involved in this paper are regular 
enough. For all [ )0,t∈ +∞ , ( ) ( ), , ,k t c t⋅ ⋅  of the space variable can be consi-
dered as elements of the Hilbert space ( )2L   whose elements are functions. 
The scalar product of f and g in ( )2L   is defined as  

( ) ( )2

0
, : df g f gθ θ θ

π
= ∫                   (11) 

and ( )2 2

0
df θ θ

π
< +∞∫ . The norm in ( )2L   is given by  

( ) ( )2

11 2 222
0

: , d .Lf f f f θ θ
π = =   ∫

               (12) 

This allows us to apply dynamic programming approach and solve Hamil-
ton-Jacobi-Bellman equation in ( )2L  . Furthermore, we could find the optimal 
control in feedback form. 

3. Spatio-Temporal Dynamics: Analytical Results 

Before solving the optimization problem (10), we consider an auxiliary problem 
in the following Lemma. 

Lemma 1 (Auxiliary Problem) Let ( ),z t θ  be a positive function defined in 
( )2L  , and the objective function  

( )
( )

( ) ( ) 1
2

0 0 0ˆ ,

ˆ ,
sup e d d ,

1
t

c

u c t
J z t

σ

ρ θ θ
θ

σ
π

−
+∞ −

⋅ ⋅

  =
−∫ ∫            (13) 

subject to  
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( ) ( ) ( ) ( )

( ) ( )
( ) ( ) [ )

2 2

2

0

, ,
ˆ, , ,

4

0, , ,

,0 e , 2 , 0, .b

z t z t bA z t c t
t

z z

z t z t t

θ θ
θ θ

θ

θ θ θ
− π π

∂ ∂  
= + − −  ∂ ∂  

 = ∈
 = ∈ +∞


          (14) 

There exists ( )u θ  make system (14) equivalent to system (9) where  
( ) ( ) ( )1ˆ , ,c t u c tθ θ θ−= .  

Proof Suppose ( ) exp
2

bu θθ  = − 
 

. For all ( ) [ ), 0,t θ ∈ +∞ × , let  

( ) ( ) ( ), , ,k t z t uθ θ θ=                     (15) 

we have  

( ) ( ) ( )
, ,

,
k t z t

u
t t
θ θ

θ
∂ ∂

=
∂ ∂

                   (16) 

( ) ( ) ( ) ( ) ( )
, ,

, ,
2

k t z t bu z t u
θ θ

θ θ θ
θ θ

∂ ∂
= −

∂ ∂
             (17) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 2

, , ,
, .

4
k t z t z t bu b u z t u

θ θ θ
θ θ θ θ

θθ θ
∂ ∂ ∂

= − +
∂∂ ∂

     (18) 

Then  

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 2

, , ,
, , .

4
k t k t z t bb Ak t A z t u

θ θ θ
θ θ θ

θθ θ
 ∂ ∂ ∂  

+ + = + −  ∂∂ ∂   
  (19) 

Plugging Equations (15-19) into the first equation of system (9), and divide 
both sides by ( )u θ , we get  

( ) ( ) ( ) ( ) ( )
2 2

1
2

, ,
, , ,

4
z t z t bA z t u c t

t
θ θ

θ θ θ
θ

−∂ ∂  
= + − − ∂ ∂  

        (20) 

denote ( ) ( ) ( )1 ˆ, ,u c t c tθ θ θ− = . Furthermore, we have  

( ) ( ) ( ) ( ) ( )1 1
00, 0, ,z u k u kθ θ θ θ θ− −= =              (21) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1,0 0 ,0 0 ,2 0 2 ,2 .z t u k t u k t u u z t− − −π π= = π=     (22) 

Thus, the initial and boundary conditions  

( ) ( ) ( ) ( ) ( )1
0 0 , ,0 e , 2bz u k z t z tθ θ θ π− −= = π             (23) 

are verified. Then system (14) is proved to be equivalent to system (9).   
Note that if we choose 0b = , there will be no trade costs in the economy. In 

this case, the auxiliary problem is exactly the system considered in [10]. The next 
step is to analyze the auxiliary problem, from which we can solve the original 
optimization problem. 

We define the value function of problem (13) starting from 0z  as  

( )
( )

( )( )0 0
ˆ ,

ˆ: sup , , .
c

V z J z c
⋅ ⋅

= ⋅ ⋅                   (24) 

Define the operator G in ( )2L   in the form of  
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( )
2

2 ,fG f
θ
∂

=
∂

                       (25) 

denote the domain of G as ( )D G , which is a subset of ( )2L  . Given an initial 
distribution of capital ( ) ( )2

0k Lθ ∈  , which is a function of the space variable  

θ . From Lemma 1, we have ( ) ( )2
0 0e

b

z k
θ

θ θ= , thus ( ) ( )2
0z Lθ ∈  . Referring  

to [10], we know that the expression ( ) ( )2
0etG z Lθ ∈   for all 0t ≥  and  

( )0etG z θ  is the unique solution of  

( ) ( ) ( )( )
( ) ( )
( ) ( )

2

2

0

, ,
, ,

0, , ,

,0 e , 2 , 0b

z t z t
G z t

t
z z

z t z t t

θ θ
θ

θ
θ θ θ

− π

∂ ∂
= =

∂ ∂
 = ∀ ∈
 = π ∀ ≥

                (26) 

at time t. That is, for a fixed t the expression ( )0etG z θ  is a function of the space 
variable θ  and ( ) ( )0e ,tG z z tθ θ= , where ( ),z ⋅ ⋅  satisfies system (26). Further- 
more, for ( )0z D G∈ ,  

( ) ( ) ( ) ( ) ( ) ( )0 0

0 0

, , , e e
: lim lim .

t h G tG

h h

z t z t h z t z z
t t t
θ θ θ θ θ+

→ →

∂ + − −
= =

∂
    (27) 

Since ( ) ( )0, etGGz t G zθ θ= , we have  
( ) ( ) ( ) ( )0 0

00

e e
lim e , 0.

t h G tG
tG

h

z z
G z t

t
θ θ

θ
+

→

−
= ∀ ≥            (28) 

i.e.  

( ) ( )0
0

de
e .

d

tG
tGz

G z
t
θ

θ=                     (29) 

Hence, the expression etG  is said to be generated by G and satisfies “semi-
group property”: for all ( ) ( )2

0z Lθ ∈   and , 0s t ≥ , ( ) ( )0 0e e et s G sG tGz z+ = . 
Combining with the definition of the operator G, the state Equation in (14) 

can be rewritten as an evolution equation in ( )2L  , namely,  

( ) ( ) ( ) ( )

( )

2

0

ˆ ,
4

0 ,

bz t Gz t A z t c t

z z

  
= + − −  

  
 =

�
               (30) 

where ( )z ⋅�  is time derivative. Note that ( )z t , ( ) ( )2ˆ , 0c t L t∈ ∀ ≥ , that means 

( )z t  and ( )ĉ t  are functions of space, i.e. ( )( ) ( ),z t z tθ θ≡ ,  

( )( ) ( )ˆ ˆ ,c t c tθ θ≡ . The set of admissible controls is  

( )( ) ( )( ) ( )( ) ( ){ }0

2 2ˆ ˆ: ; : , 0, ,z locc L L c t z t tθ θ θ+ += ∈ ≥ ∀ ∈ ×� �  . Accordingly, 

the value function rewrite as ( ) ( ) ( )( )
0

0 0ˆ ˆ: sup ,
zcV z J z c⋅ ∈= ⋅ . 

We define function 1l : →   as the constant (in the space variable) equal 
to 1, i.e. ( )1l 1θ ≡ . Then the optimization problem (13) transformed into  

( )( )
( )

( ) ( )( )0 0ˆ
ˆ ˆ, , sup e 1l, d ,t

c
J z c U u c t tρ θ

+∞ −

⋅
⋅ ⋅ = ∫            (31) 
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where ( ) :U f →   is the function ( )( ) ( )1

1
f

U f
σθ

θ
σ

−

=
−

 for a given  

( )2f L∈  , subject to system (30). 

Applying the dynamic programming approach, the corresponding Hamil-
ton-Jacobi-Bellman(HJB) equation of problem (31) is written as  

( ) ( ) ( )

( )
( )

2

2

2

ˆ ,

, ,
4

ˆ ˆsup , 1l, e ,
b

c L

bv z z G v z A z v z

c v z U c
θ

ρ

+

−

∈

 
= ∇ + − ∇ 

 
   + − ∇ +    

    

         (32) 

where ∇  represents Gàteaux derivative, and we can write ( ),z G v z∇  in-
stead of ( ),Gz v z∇ , because G is self-adjoint. Note that ( )2:v L →  , i.e. 
for every ( )2z L∈  , ( )v z  is a real number, being z in itself a function from 
  to  . According to the optimal control theory, we need to find the solution 
( )v z  of Equation (32) and prove it equals to the value function ( )0V z . 
Lemma 2 Given a positive function ( )2

0z L∈  , suppose that  

2 2 ,
1

A b Aρ
σ

− < <
−

                   (33) 

and let  

( )
2

1
4

: .
2

bAρ σ
η

σ

 
− − − 


π
=                    (34) 

Provided that the trajectory ( )* ,z t θ , driven by the feedback control (con-
stant in θ )  

( ) ( )2* *
0

ˆ , , d ,c t z tθ η ϕ ϕ
π

= ∫                    (35) 

remains positive, ( )*ˆ ,c t θ  is the unique optimal control of the problem (14). 
The value function of the problem (14) is written explicitly in the form  

( ) ( )( )12
0 00

d ,V z z
σ

α θ θ
π −

= ∫                    (36) 

where  

( )

( )

2

1
4

.
2 2 1

bA
B

σ

ρ σ
α

σ σ

−
  

− − −  
  = ⋅  −

 
 

π



π
              (37) 

Proof Firstly, we look for a solution of Equation (32) in the form of  

( ) 1,1l ,v z z σα −=                        (38) 

where α  is a positive coefficient to be determined, so that  

( ) ( )1 ,1l 1l .v z z σα σ −∇ = −                    (39) 

Substituting ( ) ( ),v z v z∇  into Equation (32), we obtain  
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( ) ( )

( )
0

2
1

2

ˆ

,1l 1 ,1l , 1l 1 ,1l ,1l
4

ˆ ˆsup 1 ,1l ,1l 1l, e .
z

b

c

bz z z G A z z

z c U c

σ σ σ

θ
σ

ρα α σ α σ

α σ

− − −

−−

∈

 
= − + − − 

 
   + − − +    

   

(40) 

Denote  

( ) ( )
0

2

ˆ
ˆ ˆ ˆsup 1 ,1l ,1l 1l, e .

z

b

c
H c z c U c

θ
σα σ

−−

∈

   = − − +    
   

       (41) 

By the definition of scalar product (11), we get  

( ) ( )2

0
ˆ ˆ ˆ,1l d 2 ,c c t c tθ

π
π= =∫                   (42) 

( )

( )
( )

( )( )

1

2

2
2

0

1
1

ˆe
ˆe ,1l d

1

ˆ 2 e 1 .
1 1

b

b

b

c t
U c

c t
b

σθ

θ

σ
σ

θ
σ

σ σ

−
−

− π

−
− − π

 
 

   =   − 

 
= − − 

− −  

∫          (43) 

Take the first-order condition of Equation (41) with respect to ( )ĉ t , we ob-
tain  

( ) ( )
( )( ) ( )12 ˆ2 1 ,1l e 1 0,

1
bz c t

b
σ σσα σ

σ
− −− π− 

− − + − − = 
−  

π       (44) 

from which we have  

( ) ( )
1

2ˆ 1 ,1l 1l,c t z
B

σ
α σ

−
 = −  

π                    (45) 

where 
( )

( )( )12 e 1
1

bB
b

σ

σ
− π−= − −

−
. So ( )ˆH c  attains the supremum when ( )ĉ t  

satisfies Equation (45). 
Substituting Equation (45) into Equation (40), observing that 1l 0G = , we 

have  

( )

( ) ( )

( )

2
1 1

1

11
1

,1l 1 ,1l
4

22 1 ,1l 1 ,1l

2 1 ,1l .
1

bz A z

z z
B

B z
B

σ σ

σσ

σ σ

ρα α σ

α σ α σ

α σ
σ

− −

−
−

−
−

 
= − − 
 

 − − −  

 + − −  

π
π

π

       (46) 

Simplified Equation (46), we obtain  

( ) ( )
1

2 21 2 1 ,
4
bA

B
σ

ρ σ σ α σ
−π

π
   = − − + −     

            (47) 

from which we know that there exists a solution of Equation (32) when  
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( )

( )
2

1
4

.
2 1 2

bA
B

σ

ρ σ
α

σ σ

−
  

− − −  


π π
 =  −

 
  

              (48) 

Secondly, the feedback control provided by the solution (38) is  
( ) ( ) ( )2 2:z L Lφ →  , we have  

( )
( )

( )

( )

2
2

ˆ

1

ˆ ˆ: arg max 1 ,1l ,1l 1l, e

2 1 ,1l 1l

,1l 1l,

b

c L
z z c U c

z
B
z

θ
σ

σ

φ α σ

α σ

η

−−

∈

−

   = − +    
   

 = −  
=

π



     (49) 

where ( )
( )

2
1 1

42 1
2

bA

B
σ

ρ σ
η α σ

σ

−

 
− − − 

   = − =
π

  π . 

The related trajectory ( )z t  satisfies the following integral equation  

( )
( )

( )
2 2

4 4
0 0

e e ,1l 1ld .
b bt A G t s A Gt

z t z z s sη
   
   − + − − +   
   = − ∫           (50) 

Though we can not get the exact expression, there exists a unique solution 
( )*z t  of Equation (50) (see for [18]). The control that we want to prove to be 

admissible is ( ) ( )( )* *ˆ : , 0c t z t tφ= ∀ ≥ . Since hypothesis ( )( )*z t θ  remains pos-
itive, then ( )( )*ĉ t θ  remains positive too and then it is admissible. 

Thirdly, ( )*ĉ ⋅  is an optimal control if for any other admissible control ( )c ⋅� , 
we have ( )( ) ( )( )*

0 0ˆ, ,J z c J z c⋅ ≥ ⋅� . For an admissible control ( )ĉ ⋅ , the related 
trajectory ( )z ⋅  satisfies Equation (30). ( )z t  is the solution of  

( ) ( ) ( ) ( )
2

0, 0 .
4
bz t Gz t A z t z z

 
= + − = 

 
�               (51) 

By the comparison theorem, for any ( ),t θ ∈Ω , we have ( ) ( )z z t⋅ ≤ . In par-

ticular, ( ) ( ),1l ,1lz t z t≥ , 0t∀ ≥ . ( )z t  can be expressed as  

( )
2

4
0e e

bt A
tGz t z

 
 − 
 = , so that ( )

2

4
0,1l e ,1l

bt A

z t z
 
 − 
 = . This means that for every 

choice of ( )ĉ ⋅ , we have  

( )( ) ( )

( )
2

1

1

1

4 1
0

e e ,1l

e ,1l

e e ,1l .

t t

t

bt A
t

v z t z t

z t

z

σρ ρ

σρ

σ

σρ

α

α

α

−− −

−−

−
 
 −  −−  

=

≤

 
 =  
  

          (52) 

When 2 2
1

A b Aρ
σ

− < <
−

,  
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( )( )e 0.tt v z tρ →∞− →                     (53) 

Let us call ( )z ⋅�  the trajectory relating to the admissible control ( )c ⋅�  and 
denote ( ) ( ), : e tw t z v zρ−= . We have  

( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( ) ( )( )

0

0

2

0

,

d, 0 , , d
d

e , d .
4

T

T t

v z w T z T

w t z w T z T w t z t t
t

bv z t Gz t A z t c t v z t tρ ρ−

−

= − = −

  
= − + − − ∇  

   

∫

∫

�

� � �

�� � � �

   (54) 

Passing to the limit in Equation (54) as t →∞  and using (53), we have  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
2

0 0
e , , d .

4
t bv z v z t A z t c t v z t z t G v z t tρ ρ

+∞ −
  

= − − − ∇ − ∇  
   

∫ �� � � � � (55) 

Recalling HJB Equation (32), we have  

( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

( )
( ) ( )( ) ( )

( ) ( )( ) ( )

2

0 0

2

0

2

2
0

ˆ ,

2

,

e , ,
4

, 1l, e d

ˆ ˆe sup , 1l, e

, 1l, e d

t

b

b
t

c L

b

v z J z c

bv z t A z t v z t z t G v z t

c t v z t U c t t

c t v z t U c t

c t v z t U c t t

ρ

θ

θ
ρ

θ

ρ

+

+∞ −

−

−+∞ −

∈

−

− ⋅

  
= − − ∇ − ∇  

  
 

+ ∇ −      
    = ∇ −        

 
+ ∇ −      

∫

∫

�

� � � � �

� ��

�

� ��

 

0.≥

(56) 

Inequality (56) shows that ( ) ( )( )0 0 ,v z J z c≥ ⋅� . Since ( )*ĉ ⋅  is defined by feed- 
back control (49), we have ( ) ( )( )*

0 0 ˆ, 0v z J z c− ⋅ = . Hence, for all admissible 
( )c ⋅� , by ( ) ( )( ) ( ) ( )( )*

0 0 0 0 ˆ, 0 ,v z J z c v z J z c− ⋅ ≥ = − ⋅� , we get  
( )( ) ( )( )*

0 0 ˆ, ,J z c J z c⋅ ≤ ⋅� , which implies that ( )*ĉ ⋅  is optimal. In particular, 
since ( ) ( )( )*

0 0 ˆ, 0v z J z c− ⋅ =  and *ĉ  is an optimal control, ( )0v z  is the val-
ue function at 0z .   

Theorem 3 Under the same assumptions of Lemma 1 and 2, the optimal tra-
jectories ( )* ,c t θ  could be expressed as  

( ) ( )* 2, e 0
b t

c t Z
θ β

θ η
− +

=                    (57) 

where  
2

4
bA ρ

β
σ

 
− − 

 =                      (58) 

and ( ) ( )2
00

0 : dZ z θ θ
π

= ∫ . Along the optimal trajectories ( )* ,c t θ , the aggregate 

capital ( )K t  is  
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( ) ( )
2

4e 0 ,
bA t

K t K
 
 − 
 =                      (59) 

where ( ) ( )2
00

0 : dK k θ θ
π

= ∫  is the initial level of aggregate capital.  
Proof At the time t, the aggregate capital is equal to the sum of all the capital 

amounts distributed in  ,  

( ) ( ) ( )2

0
: , ,1l , d .K t k t k tθ θ θ

π
= = ∫                 (60) 

From Lemma 1, There is a corresponding relationship between ( ),k t θ  and 
( ),z t θ . The aggregate capital ( )*K t  along the optimal trajectory ( )*c t  is de-

fined by  

( ) ( )
( ) ( )

( )

( ) ( )

* *

*

2 * 2
0

2
2* *2 2
0

0

, ,1l

, ,1l

, e d

2 , e e d , .

b

b b

K t k t

z t u

z t

z t z t
b

θ

θ θ

θ

θ θ

θ θ

θ θ

−

− −

π

π
π

=

=

=

 
 = − −
  

∫

∫

          (61) 

Since ( )* ,z t θ  solves the mild Equation (50), we have  

( )
( )

( )

( )
( )

2 2

2 2

4 4* *
0 0

4 4 *
0 0

ˆe e d

e e ,1l 1ld .

b bt A G t s A Gt

b bt A G t s A Gt

z t z c s s

z z s sη

   
   − + − − +   
   

   
   − + − − +   
   

= −

= −

∫

∫

        (62) 

Note that e 1l 1lGt = , 
2

0
1l,1l 1d 2θ

π
π= =∫ . Taking the scalar product of both 

sides of Equation (62) with ( )21l L∈  , we obtain  

( ) ( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

2 2

2 2

2 2

* *

4 4 *
0 0

2

4 4 *
0

2

4 4

0

,1l

e ,e 1l e ,1l 1l,e 1l d

1
4

e 0 e 2 d
2

4
e 0 e

b bt A t s At t s GtG

b bt A t s At

b bt A t s At

Z t z t

z z s s

bA
Z Z s s

bA
Z

η

ρ σ

σ

ρ

   
   − − −    −   

   
   − − −   
   

   
   − − −   
   

=

= −

 
− − − 
 = −


− −

=

 
 
 π π
 
 

−



∫

∫

∫
( )

( )*

1
d .Z s s

σ

σ


− 

 

  (63) 

Equation (63) is a standard one-dimensional ordinary differential equation of 
( )*Z t  in integral form. One can prove by inspection that Equation (63) has a 

unique solution  

( ) ( )* 0 e tZ t Z β=                      (64) 

with 

2

4
bA ρ

β
σ

 
− − 

 = . Therefore, ( ) ( ) ( )* ,1l 0 e sz s Z s Z β= = , which im-
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plies that 
( )

( )
2

4 *
0
e ,1l 1ld

bt s A Gt
z s sη

 
 − − + 
 ∫  is constant with respect to θ . By Eq-

uation (15), we obtain  

( ) ( )

( ) ( )

( ) ( )

2

2

2

4*

4 1

4 2 2

d , e d 0,

e d 0,

e 0, de e d 0, .

bt A G

bt A G

b b bt A G

z t z

k u

k k
θ θ

θ θ

θ θ

θ θ

 
 − + 
 

 
 − +  − 

 
 − + 
 

=

 =  

 
= + 

 

          (65) 

Recall that ( ) ( ),0 e , 2bz t z t− π= π , ( )
2

2

0

, e 0
b

z t
θ

θ
−

π

= , we have  

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )

2

2

2

2

2* 2
0

2 42 2 2
0

2 24

0 0

4
0 0

4

2 e d ,

2 e e 0, de e d 0,

2 e 0, d d 0,
2

e 0, ,1l 2 0

e 0 .

b

bb b bt A G

bt A G

bt A G

bt A

K t z t
b

k k
b

b k k
b

k k k

K

θ

θ θ θ

θ

θ θ

θ θ θ

θ

−

 
 − +−  
 

 
 − + 
 

 
 − + 
 

 
 − 
 

π

π

π π

=

 
= + 

 

 = +  

= + −

=

π

∫

∫

∫ ∫         (66) 

The optimal aggregate capital stock grows at the rate 
2

4
br A= −  from 0t = . 

Combining Equation (35) and (64), the optimal control of the auxiliary problem 
could be formulated as ( ) ( )*ˆ , e 0tc t Zβθ η= . Apply Lemma 1 again, optimal 

consumption is expressed as ( ) ( )* 2, e 0
b t

c t Z
θ β

θ η
− +

= .   

By substituting Equation (57) into the system (9), we have the following theo-
rem.  

Theorem 4 Under the same assumptions of Lemma 1 and 2, the optimal evo-
lution of the capital distribution starting from 0k  is the solution of the follow-
ing partial differential system  

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) [ )

2
2

2

0

, , ,
, e 0 ,

0, , ,

,0 , 2 , 0, ,

b tk t k t k t
b Ak t Z

t
k k

k t k t t

θ βθ θ θ
θ η

θθ
θ θ θ

− +∂ ∂ ∂
= + + −

∂ ∂∂
 = ∈
 = ∈ +∞ π

       (67) 

where ,η β  and ( )0Z  are given in Theorem 3.  
Theorem 5 Under the hypotheses of Lemma 1 and 2, along the optimal tra-

jectory, the detrended capital  

( ) ( )
2

4, : , e
bt A

Dk t k tθ θ
 
 − − 
 =                    (68) 
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converges uniformly, as a function of θ , 
( )2e 0

2

b

Z
θ

−

π
. when t tends to infinity, 

i.e.,  

( ) ( )2e 0
lim sup , 0.

2

b

Dt

Z
k t

θ

θ
θ

−

→∞ ∈

 
 

− = 
 
 

π
                (69) 

Proof For positive integer n∈ , we define the function :ne →   as  

( )

( )

( ) ( )

cos
, 1,

sin sin
: , 1,

1 , 0.
2

n

n
n

n n
e n

n

θ

θ θ
θ


≥


 −= = ≤

π

π
−




=


π

π

               (70) 

It is obvious that ( ) ( )ne D Gθ ∈  and ( ) ( ) ( )
2

2
2

d
d

n
n n

e
Ge n e

θ
θ θ

θ
= = − . For a 

fixed θ , let ( ) ( ), : etG
nt eω θ θ= , we have  

( ) ( ) ( ) ( )2 2d ,
e e ,

d
tG tG

n n

t
Ge n e n t

t
ω θ

θ θ ω θ= = − = − . So ( ) ( )2
, e n t

nt eω θ θ−= , that 

is ( ) ( )2
e etG n t

n ne eθ θ−=  which implies e 1l 1ltG = . Taking the scalar product of 
Equation (50) and ne  for all n, we have  

( )
( )

( )

( )
( )

2 2

2 2

4 4
0 0

4 4
0 0

, e , e ,1l 1l, d

,e ,1l 1l,e d .

b bt A G t s A Gt
n n n

b bt A G t s A Gt
n n

z t e z e z s e s

z e z s e s

η

η

   
   − + − − +   
   

   
   − + − − +   
   

= −

= −

∫

∫

  (71) 

If 0n ≠ , ,1l 0ne =  since it is the integral on [ ]0,2π  of a constant times 
( )sin nθ  or ( )cos nθ , combining with  

( ) ( )
2 2

2
4 4e e e ,

b bA t A n t
tG

n ne eθ θ
   
   − − −   
   =  

we have  

( )
2 2

2 2
4 4

0 0, , e e , , 0.
b bt A n t A n

n n nz t e z e z e n
   
   − − − −   
   = = ≠       (72) 

If 0n = , we have ( ) ( )
2

4

0

0 e
,

2

bt A

Z
z t e

 
 − 
 

=
π

. Using Fourier series, ( )z t  can 

be expressed as  

( )( ) ( ) ( )

2
2

24
4

0
, 0

0 e
e , .

2

bt A bt A n

n n
n Z n

Z
z t z e eθ θ

 
 −       − − 

 

∈ ≠

= +
π ∑       (73) 
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The detrended capital is written in the form  

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2
2 2

2

2

4 4

4
4 4

0
, 0

0
, 0

, e , e

0 e
e e ,

2

0
e , .

2

b bt A t A

D

bt Ab bt A t A n

n n
n Z n

n t
n n

n Z n

k t k t z t u

Z
u z e e

Z u
z e e u

θ θ θ θ

θ θ

θ
θ θ

   
   − − − −   
   

 
 −        − − − −   

   

∈ ≠

−

∈ ≠

π

π

= =

 
 
 = +
 
 
 

= +

∑

∑

 (74) 

For 0ε∀ > , using Cauchy-Schwartz inequality and ( )2
22

0 0 , nL
n

z z e
∈

= ∑


, 

we have  

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

2

2

2

2

2

2

2

0
, 0

0
, 0

0
, 0

1 1
2 22 2

0
, 0 , 0

1
2

0
, 0

e 0
sup sup e ,

2

e e , sup

e e ,

e e ,

e e .

b

n t
D n n

n Z n

t nt
n n

n Z n

t nt
n

n Z n

t nt
n

n Z n n Z n

t nt
L

n Z n

Z
k t z e e u

z e e u

z e

z e

z

θ

θ θ

εε

θ

εε

εε

εε

θ θ θ

θ θ

−

−

∈ ∈ ∈ ≠

− +−

∈∈ ≠

− +−

∈ ≠

− +−

∈ ≠ ∈ ≠

− +−

∈ ≠

− =

≤

=

   
≤    

   

 
=  

 

π ∑

∑

∑

∑ ∑

∑

 



 (75) 

Letting ( )2

, 0
: e

t n

n Z n
S

ε− +

∈ ≠

= < ∞∑ , By the inequality (75), we conclude that  

( )( ) ( )
2

2

0

0
sup e 0.

2

b

tt
D L

e Z
k t S z

θ

ε

θ
θ

−

→∞−

∈ π
− ≤ →


           (76) 

  
Theorem 5 shows that the trade barriers do have an effect on the convergence 

of the spatial AK model. When 2 2
1

A b Aρ
σ

− < <
−

, the detrended capital 

converges to 
( )2e 0

2

b

Z
θ

−

π
. When 0b = , the detrended capital converges to 

( )0
2

K
π

. 

When trade costs exceed the reasonable range, the detrended capital may not be 
convergent. The next section provides a complementary simulation verification. 

4. Numerical Illustration 

To illustrate the dynamics of the spatial AK model with trade costs, we provide 
several numerical examples by using the explicit optimal dynamics of the de-
trended capital ( ),Dk t θ  in the form of Fourier series. In the following exam-
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ples, there are four key parameters in our modeling: , ,A b ρ  and σ . we choose 
0.36A =  as a reasonable ratio output to capital and fix 0.06ρ = , 0.8σ = . We 

choose two different trade barrier coefficients b on the condition that the set 
, , ,A b ρ σ  satisfies hypothesis (33) and analyze the impacts of trade costs on 

capital accumulation with different initial distributions of capital. 

Example 1 For a fixed trade cost coefficient, set 1
2

b =  and compare the in-

fluence of trade cost coefficient on capital accumulation with different endow-
ments of capital. We consider three different initial capital distribution ( )0k θ ,  

when ( )0 cosk θ θ θ= , the detrended capital behaves as in Figure 1, when 
( ) 2

0k θ θ= , the trend of the physical capital is shown in Figure 2, see Figure 3 
when ( )0 cosk θ θ= . 

From Figures 1-3, it can be seen that the distrended capital ( ),Dk t θ  under 
the different initial distributions have the same trend. Next, we change the trade 
cost coefficient b. 

Example 2 Might as well take 1b =  and consider the three different initial 
capital distributions ( )0k θ  as the same in Example 1, the dynamic of the cor-
responding detrended capital is illustrated in Figures 4-6.  

 

 
Figure 1. ( ),Dk t θ , when ( )0 cosk θ θ θ= . 

 

 

Figure 2. ( ),Dk t θ , when ( ) 2
0k θ θ= . 
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Figure 3. ( ),Dk t θ , when ( )0 cosk θ θ= . 

 

 

Figure 4. ( ),Dk t θ , when ( )0 cosk θ θ θ= . 

 

 

Figure 5. ( ),Dk t θ , when ( ) 2
0k θ θ= . 

 
Moreover, we analyze the evolution of the detrended capital as the cost coeffi-

cient changes. With the same initial distribution, compare Figures 1-6, we find 
that the bigger the cost coefficient b is, the slower the convergence rate of 

( ),Dk t θ  is, trade costs have an effect on the dynamics of capital accumulation. 
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Figure 6. ( ),Dk t θ , when ( )0 cosk θ θ= . 

5. Conclusion 

In this work, we investigate the role of trade costs in the evolution of a spatial 
growth model. To this extent, we formulate an optimal control problem with the 
dynamics of physical capital growth as constraints. By employing the dynamic 
programming method and semigroup theory, we obtain the optimal consump-
tion strategy and capital growth trajectory with trade costs. We also find that 
when the trade cost keeps within a reasonable range, the spatiotemporal dynam-
ics reduce the inequalities in capital endowments and lead to the convergence of 
capital over space in the long run. Finally, we perform numerical simulations to 
support the analytical results and illustrate the spatiotemporal dynamics gener-
ated by the model. In addition, if trade cost is a nonlinear function of ( ),k t θ , 
we will face a more complicate and challenging problem which needs further 
study. 
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