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Abstract 
Deep learning (DL) has experienced an exponential development in recent 
years, with major impact in many medical fields, especially in the field of 
medical image and, respectively, as a specific task, in the segmentation of the 
medical image. We aim to create a computer assisted diagnostic method, op-
timized by the use of deep learning (DL) and validated by a randomized 
controlled clinical trial, is a highly automated tool for diagnosing and staging 
precancerous and cervical cancer and thyroid cancers. We aim to design a 
high-performance deep learning model, combined from convolutional neural 
network (U-Net)-based architectures, for segmentation of the medical image 
that is independent of the type of organs/tissues, dimensions or type of image 
(2D/3D) and to validate the DL model in a randomized, controlled clinical 
trial. We used as a methodology primarily the analysis of U-Net-based archi-
tectures to identify the key elements that we considered important in the de-
sign and optimization of the combined DL model, from the U-Net-based ar-
chitectures, imagined by us. Secondly, we will validate the performance of the 
DL model through a randomized controlled clinical trial. The DL model de-
signed by us will be a highly automated tool for diagnosing and staging pre-
cancers and cervical cancer and thyroid cancers. The combined model we 
designed takes into account the key features of each of the architectures 
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mechanism is an improvement added on convolutional network architecture 
for fast and precise segmentation of images (Attention U-Net), Harmony 
Densely Connected Network-Medical image Segmentation (HarDNet-MSEG). 
In this regard, we will create a comprehensive computer assisted diagnostic 
methodology validated by a randomized controlled clinical trial. The model 
will be a highly automated tool for diagnosing and staging precancers and 
cervical cancer and thyroid cancers. This would help drastically minimize the 
time and effort that specialists put into analyzing medical images, help to 
achieve a better therapeutic plan, and can provide a “second opinion” of 
computer assisted diagnosis. 
 

Keywords 
Combined Model of U-Net-Based Architectures, Medical Image  
Segmentation, 2D/3D/CT/RMN Images 

 

1. Introduction 

Deep learning (DL) has experienced an exponential development in recent years, 
with major impact in many medical fields, especially in the field of medical im-
age and, respectively, as a specific task, in the segmentation of the medical image. 

We aim to create a computer assisted diagnostic method, optimized by the use 
of deep learning (DL) and validated by a randomized controlled clinical trial, 
over a period of 17 months, is a highly automated tool for diagnosing and stag-
ing precancerous and cervical cancer and thyroid cancers that would drastically 
minimize the time and effort that specialists put in analyzing medical images 
and that makes the right tool as support in the diagnostic process specialists and 
to achieve a better therapeutic plan. 

We aim to: 
• Design a high-performance deep learning model, combined from convolutional 

neural network (U-Net)-based architectures, for segmentation of the medical 
image that is independent of the type of organs/tissues, dimensions, or type 
of image (2D/3D); 

• To validate the DL model in a randomized controlled clinical trial over a pe-
riod of 17 months. 

DL architectures designed for diagnosis—segmentation of medical images, 
three categories can be exemplified: 
• FCN-based models (fully convolutional network) [1] [2]; 
• Convolutional Neural Network (U-Net)-based models (convolutional neural 

network-images segmentation) [3]; 
• GAN-based models (generative adversarial nework) [4]. 

FCN achieves goals of segmenting the medical image with good results [5]. 
Types of FCN: Cascading FCN [6], parallel FCN [7] and recurrent FCN [8] also 
achieve medical image segmentation goals with good results. 
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U-Net [3] and its derivatives segment the medical image with good results. 
U-Net is based on the FCN structure, consisting of a series of convolutional and 
devolution layers and with short connections between equal resolution layers. 
U-Net and its variants such as UNet++ [9] and recurrent U-Net [10] perform 
well in many medical image segmentation tasks [11] [12]. 

GAN is a type of mixed architecture (supervised and unsupervised) called 
semi-supervised architecture, architecture composed of two neural networks, a 
generator and a discriminator or classifier, which competition with each other in 
an adversarial formation process [4]. In models, the generator is used to predict 
the target mask based on encoder-decoder structures (such as FCN or U-Net) 
[12]. The discriminator serves as a form regulator that helps the generator 
achieve satisfaction segmentation results [13] [14]. GAN has used in the genera-
tion of synthetic instances of different classes. 

The main core of the solution of this task, segmentation of medical images, is 
the approach based on convolutive neural networks because they are ideal for 
capturing the structure in data. 

A certain NNC architecture has proven particularly effective at segmentation, 
namely U-Net, a type of encoder decoding network that reduces image feature 
dimensions, maps and then tries to accurately reconstruct the image to learn key 
(key) key features. However, the basic U-Net has some drawbacks and for this 
reason, many architectures have been built over U-Net to make it stronger. We 
will analyze some of the most interesting or recent U-Net-based architectures 
and make a synthesis of their key advantages based on the main features and 
their performance in segmenting the medical image, to have a starting point for 
the model development imagined by us. 

2. Methodology 

Next, we will present and describe (2.1.) the U-Net-based architectures and then 
we will present (2.2.) the key elements that we considered important in the de-
sign, optimization and validation of the combined DL model, from the U-Net- 
based architectures, imagined by us. 

2.1. U-Net-Based Architectures 
2.1.1. Attention U-Net 
One of the architectures investigated is Attention U-Net, developed in 2018. 
Usually, for a segmentation task, there is only a part or a few parts of the image 
that are relevant for the problem. However, the basic U-Net is not capable of fo-
cusing on a specific region of interest, and that results in excessive processing of 
irrelevant areas. 

The Attention U-Net architecture is visually provided in Figure 1. Both the 
image and its description are taken from the original paper [15]. 

Attention gate mechanism is an improvement added on U-Net which sup-
presses irrelevant regions and highlights key features that are useful for segmen-
tation. Another advantage of attention gates is that they do not add significant  
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Figure 1. A block diagram of the proposed Attention U-Net segmentation model. Input 
image is progressively filtered and downsampled by factor of 2 at each scale in the en-
coding part of the network (e.g. H4 = H1/8). Nc denotes the number of classes. Attention 
gates (AGs) filter the features propagated through the skip connections. Feature selectivi-
ty in AGs is achieved by use of contextual information (gating) extracted in coarser scales. 
 
computational overhead when integrated into U-Net. The authors of the archi-
tecture presented in [15] propose input features of each layer to be scaled by at-
tention coefficients that are computed in the attention gate. Each pixel from the 
input has its own attention coefficient in order to enhance the important regions 
and suppress the irrelevant ones. The attention mechanism is shown in Figure 2. 
Both the schema and the description are taken entirely from the original paper 
[15]. 

The architecture has been trained on two 3D datasets, one for which the task 
was multi-class segmentation (pancreas, spleen, kidney) and another for one- 
class segmentation (only pancreas). Both datasets contain CT scans and can be 
found in the publicly available NIH-TCIA dataset. Table 1 below describes the 
performance of the network in terms of Dice score coefficient, in comparison 
with the classical U-Net. 

2.1.2. KiU-Net 
Classical U-Net performs poorly in detecting small structures and does not seg-
ment boundaries of regions precisely. This happens because the deeper we go in 
the layers of the network, the larger the receptive field is, and this results in re-
duced attention to details. A solution to this drawback came with the develop-
ment of the KiU-Net in 2020 in [16]. The architecture consists of two networks, 
a Kite-Net and a U-Net that run in parallel having their results combined.  

The Kite-Net can be thought of as the opposite of U-Net. While U-Net reduc-
es the image dimensions in the encoder and reconstructs it in the decoder, the 
Kite-Net up samples the image in the encoder and reduces it back in the decod-
er. This way the receptive field will not increase in the deeper layers as in U-Net 
and hence, the desired fine details are obtained. Since Kite-Net alone is only fo-
cusing on extracting small structures and the dataset could have both large and 
small regions to be segmented, it has been put together with U-Net, which per-
forms well at segmenting high-level features, i.e. large regions. Their outputs are  
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Figure 2. Schematic of the proposed additive attention gate (AG). Input features (xl) are 
scaled with attention coefficients (α) computed in AG. Spatial regions are selected by 
analyzing both the activations and contextual information provided by the gating signal 
(g) which is collected from a coarser scale. Grid resampling of attention coefficients is 
done using trilinear interpolation. 
 
Table 1. Comparison of the quantitative metric dice score coefficient for pancreas, 
spleen, kidney dataset and pancreas dataset between U-Net and Attention U-Net. 

 U-Net Attention U-Net 
Number of CT scans 

in dataset 

Pancreas CT (3D) 0.814 0.840 

150 Spleen CT (3D) 0.962 0.965 

Kidney CT (3D) 0.963 0.964 

Pancreas 2 CT (3D) 0.820 0.831 82 

 
concatenated matching their dimensions accordingly with the help of a Cross- 
Residual-Fusion-Block. Figure 3 provides visual details regarding the architec-
ture. The images and their descriptions have been taken entirely from the origi-
nal paper [16]. 

The architecture has been trained on various datasets, both with 2D and 3D 
images, in order to prove the character of independency of the data type. The 
results are presented in Table 2 below in terms of Dice score coefficient. 

2.1.3. U-Net with Context Aggregation Blocks 
Another improvement to the classical U-Net has been proposed in [17] and it 
consists of replacing some convolutional layers in the U-Net with Context Ag-
gregation Blocks. These blocks contain dilated convolutional layers and normal 
convolutional layers. Dilation convolution helps detecting features in large re-
ceptive fields without increasing computational costs. However, this type of 
convolution has been reported to cause “gridding artefacts” which can affect 
model’s performance. In order to overcome this, the dilation convolutions are 
combined with normal convolutions and their output features are aggregated. 
The task performed in [17] is multi-class segmentation, since the images are 
multi-channeled—each channel corresponds to an organ. After applying the 
Context Aggregation Blocks, a Squeeze-Extract block is used to assign different 
weights to each channel for reweighting each organ mask importance. The Con-
text Aggregation Block and the Squeeze-Extract block are depicted in Figure 4 
and Figure 5. Images and descriptions are taken entirely from the original paper 
[17]. 
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Figure 3. Architecture details of KiU-Net for 2D image segmentation. In KiU-Net, the input image is forwarded to the two 
branches of KiU-Net: Kite-Net and U-Net which have CRFB blocks connecting them at each level. The feature maps from the last 
layer of both the branches are added and passed through 1 × 1 2D conv to get the prediction. In CRFB, residual features of 
Kite-Net are learned and added to the features of U-Net to forward the complementary features and vice-versa. (b) Details of 
Cross Residual Fusion Block (CRFB). 
 

 
Figure 4. Squeeze-extract block used in the proposed model. 

 

 
Figure 5. Overall architecture of the proposed model. 
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Table 2. Comparison of the quantitative metric dice score coefficient for Brain US, GLAS, 
RITE, BraTS and LiTS datasets between U-Net and KiU-Net. 

 U-Net KiU-Net 
Number of 2D 

images/3D scans 
in dataset 

Brain Anatomy Segmentation (US) (2D) 0.853 0.894 1629 

Gland Segmentation (Microscopic) (2D) 0.797 0.832 165 

Retinal Nerve Segmentation (Fundus) (2D) 0.552 0.751 40 

Brain Tumor Segmentation MRI (3D) 0.808 0.876 
335 (155 slices in 

each scan) 

Liver segmentation CT (3D) 0.844 0.942 200 

 
The architecture proposed has been trained on a dataset containing CT scans 

and the task consisted of multi-class segmentation (the parts segmented: blad-
der, bone marrow, femoral head left, femoral head right, rectum, small intestine, 
spinal cord). The results are shown in Table 3 below in terms of Dice score coef-
ficient. 

2.1.4. HarDNet-MSEG 
This architecture has been described in [18] and it has achieved the state-of- 
the-art on two datasets so far. It appeared as a solution to the failure of U-Net at 
segmenting small blurry areas, to the lack of coverage for broken image areas 
and the time-consuming training. It consists of a HarDNet encoder and a partial 
decoder, which reduces the training time. The encoder is based on a DenseNet 
but has significantly less connections for cutting computation costs and smaller 
channel width in order to recover the accuracy lost from connection pruning. 
The HarDNet block used in encoder is shown in Figure 6, as an evolution from 
DenseNet Block. The figure and its description are taken entirely from the orig-
inal paper [18]. 

Talking about the decoder, the classical U-Net’s decoder produces in the shal-
lower layers high resolution low-level features, hence they require large compu-
tation costs. The good part is that the high-level features produced by the deeper 
layers also include a sort of low-level structure, so it followed that shallow layers 
from the encoder could be eliminated when connecting with the decoder’s lay-
ers, resulting in a cascaded partial decoder. Its architecture is presented in Fig-
ure 7, which was entirely taken from [19]. 

The architecture has been trained on several datasets containing 2D colonos-
copy images. Table 4 below contains details about the results in terms of Dice 
coefficient score for classical U-Net and for HarDNet-MSEG. The scores on 
Kvasir-SEG and CVC-ClinicDB datasets are currently SOTA in biomedical im-
age segmentation. 
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Table 3. Comparison of the quantitative metric dice score coefficient for abdominal da-
taset between U-Net and U-Net with context aggregation blocks. 

 U-Net U-Net with CAB 
Number of CT scans 

in dataset 

Bladder CT (3D) 0.902 0.924 

105 (from 71 to 119 
slices in scan) 

Bone Marrow CT (3D) 0.846 0.854 

Femoral Head Left CT (3D) 0.893 0.906 

Femoral Head Right CT (3D) 0.897 0.900 

Rectum CT (3D) 0.778 0.791 

Small Intestine CT (3D) 0.813 0.833 

Spinal Cord CT (3D) 0.823 0.827 

 
Table 4. Comparison of the quantitative metric Dice score coefficient for Kvasir-SEG, 
CVC-ColonDB, ETIS-Larib Polyp DB and CVC-ClinicDB datasets between U-Net and 
HarDNet-MSEG. 

 U-Net HarDNet-MSEG 
Data 

dimensions 

Gastrointestinal polyps: Kvasir-SEG (2D) 0.818 0.912 900 

Colon polyps: CVC-ColonDB (2D) 0.512 0.731 Unknown 

Colon polyps: ETIS-Larib PolypDB (2D) 0.398 0.677 Unknown 

Colon polyps: CVC-ClinicDB (2D) 0.823 0.932 550 

 

 
Figure 6. HarDNet block overview. 
 

 
Figure 7. (a) Traditional encoder-decoder framework; (b) The proposed cascaded partial 
decoder framework. We use Visual Geometry Group Network (VGG16) as the backbone 
network. Traditional framework generates saliency map S by adopting full decoder which 
integrates all level features. The proposed framework adopts partial decoder, which only 
integrates features of deeper layers, and generates an initial saliency map Si and the final 
saliency map Sd. 
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2.2. Design, Optimization and Validation of the  
Combined DL Model 

2.2.1. Design and Optimization of the Combined DL Model 
We analyzed some of the most interesting and powerful architectures, suitable 
for segmenting the biomedical image with the objective of creating a high- 
performance, combined model of deep learning architectures (DL) aimed at 
segmenting the medical image that is independent of the type of organs/tissues, 
dimensions or type of image (2D/3D). 

The performance of the model will also depend on the size, annotation and 
tagging of images in the data sets that we will use: 
• Datasets containing 2D colonoscopy images-Data sets Kvasir-SEG, CVC- 

ColonDB, ETIS-Larib Polyp DB and CVC-ClinicDB; 
• Data set containing ct scans abomen, and the task consisted of multi-class 

segmentation (segmented parts: bladder, bone marrow, left femoral head, 
right femoral head, rectum, small intestine, spinal cord); 

• Datasets, both with 2D images and 3D images-Brain US, GLAS, RITES, 
BraTS and LiTS datasets; 

• Two sets of 3D data, one for which the task was multi-class segmentation 
(pancreas, spleen, kidney) and another for segmentation of a class (pancreas 
only). Both datasets contain CT scans and can be found in the publicly avail-
able NIH-TCIA dataset. 

The DL model we imagined will combine the following DL architectures: 
Kite-Net, Attention U-Net, HarDNet-MSEG [15] [16] [17] [18]. 

The combined model we designed taking into account the key features that 
each of the architectures mentioned as follows (Figure 8): 
 

 
Figure 8. Combined model of U-Net-based architectures used in segmentation of medi-
cal images. Acronyms: Fully Convolutional Neural Network (U-Net), Overcomplete 
Convolu-tional Network Kite-Net (KiU-Net), Attention gate mechanism is an improve-
ment added on convolutional network architecture for fast and precise segmentation of 
images (Attention U-Net), Harmony Densely Connected Network-Medical image Seg-
mentation (HarD-Net-MSEG). 
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• U-Net will be enhanced by having a context aggregation block encoder and 
we will still retain the low-level image features resulting from The U-Net, but 
we will have slightly finer segmentation of them without adding costs due to 
context aggregation blocks; 

• Kite-Net will have a unit with attention gates and a Kite-Net decoder, this 
way we add a benefit of attention to the details of Kite-Net; 

• A partial decoder like the one in the HarDNet-MSEG architecture used as the 
new U-Net decoder to reduce training time. 

2.2.2. Validation of the DL Combined Model 
In addition to comparing the performance achieved by our model in terms of 
quantitative evaluation measurements, we also want to have an overview of the 
qualitative results. To do this, we aim to compare the results obtained by the 
model on images with the evaluation by a specialist of images (raw, non- 
segmented), regarding the diagnosis and colposcopic staging of cervical pre-
cancers and also the diagnosis and staging of cervical and thyroid cancers. We 
will validate the qualitative results through a randomized, controlled clinical trial 
over a period of 17 months [20] [21]. 

3. Discussions 

Network Architecture Search Technique (NAS) can automatically identify a cer-
tain network architecture in computer vision tasks [22] and promises its use and 
performance in the medical field [12] [23]. 

Another problem is the lack of clinical trials demonstrating the benefits of us-
ing DL’s medical applications in reducing morbidity and mortality and improv-
ing the quality of life of patients. 

DL can be a support in solving complex problems, with uncertainties of op-
tions in investigations and therapy and could help medically and by filtering, 
providing data from literature. This aspect leads to a personalized medicine of 
the patient’s die with diagnosis and therapeutic options based on scientific evi-
dence. Another aspect is represented by the time encoded by the doctor in pa-
tient care, time gained by the constructive and effective support of DL in medical 
decision-making and synthesis activities. 

4. Conclusion 

We analyzed the best U-Net-based architectures suitable for biomedical image 
segmentation. We’ve specified the most important features we want to fit into a 
new, high-performance model. In this regard, we will create a comprehensive 
computer assisted diagnostic methodology validated by a randomized controlled 
clinical trial. The model will be a highly automated tool for diagnosing and 
staging precancers and cervical cancer and thyroid cancers. This would help 
drastically minimize the time and effort that specialists put into analyzing medi-
cal images, help to achieve a better therapeutic plan, and can provide a “second 
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opinion” of computer assisted diagnosis. 
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