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Abstract 

In this paper, we derived a new distribution named as truncated Weibull 
Rayleigh (TW-R) distribution. Its characterization and statistical properties 
are obtained, such as reliability function, hazard function, reversed hazard 
rate function, cumulative hazard rate function, quantile function, rth mo-
ment, incomplete moments, Rényi and q entropies and order statistic. Para-
meter estimation is implemented using method of maximum-likelihood es-
timation and Fisher information matrix is derived. Finally, application of the 
presented new distribution to a real data representing the failure times of 63 
airbcraft Windshield is given and its goodness-of-fit is demonstrated. In ad-
dition to, comparisons to other models are implemented to show the flexibil-
ity of the presented model. 
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1. Introduction 

Rayleigh distribution is used as a life time model and has applications in several 
fields such as survival analysis, reliability theory, and specially communication 
engineering. This distribution is a special case of two parameter Weibull distri-
bution when the value of the shape parameter equals two. The Rayleigh distribu-
tion was originally derived by Rayleigh [2]. Johnson and balakrishnan [3] got 
continuous univariate distribution. Siddiqui [4] introduced the Rayleigh ampli-
tude distribution the asymptotic distribution of a two-dimensional random walk. 
Howlader and Hossain [5] introduced bayes estimators for the scale parameter 
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and the reliability function under the case of Type-II censored sampling data. 
Abd Elfattah et al. [6] studied maximum likelihood estimates efficiency of the 
parameter in three cases, called, Type-I, Type-II and progressive Type-II cen-
sored sampling schemes. Hendi et al. [7] introduced Bayes estimators of the 
scale parameter, reliability function and failure rate. Dey and Das [8] studied 
bayesian predictive intervals of the parameter of Rayleigh distribution. Dey [9] 
introduced bayes estimators for the parameter and reliability function of the 
Rayleigh distribution with different loss function. Soliman et al. [10] introduced 
type II half logistic family of distributions under application. Ferreira et al. [11] 
introduced concepts for the censored Rayleigh model by considering new loss 
function, called the Al-Bayyati Loss (ABL) and comparing it to other known 
outcome. Al Mayali [12] compared some estimators of Rayleigh distribution 
with simulation. Singh and Srivastava [13] developed Bayesian estimation of pa-
rameter of inverse maxwell distribution via size-biased sampling. 

The probability density function (p.d.f.) and cumulative distribution function 
(c.d.f.) of the Rayleigh distribution are given, respectively, by  

( )
2

22; 1 e , 0, > 0

x

G x xσσ σ
−

= − ≥                 (1) 

and 

( )
2

2

2
2; e , 0, 0

x

xg x xσ
σ

σ σ
−

= ≥ >                 (2) 

where σ  is an inverse scale parameter. From Equation (2), we obtain imme-
diately the expected value (the mean) and the variance of a Rayleigh distribution 
of X to be 

( )
2

E X σ Π
=                        (3) 

and 

( ) 2 4 .
2

Var X σ −Π =  
 

                   (4) 

Weibull distribution plays an effective role in Reliability Theory. In fact, 
Weibull distribution is the first candidate for modeling cases with monotone 
hazard rates but it is not a good candidate for modeling cases without monotone 
hazard rates. Thus, we can see many researchers attempting to modify the Wei-
bull distribution for applying under nonmonotone hazard rates. The truncated 
Weibull distribution is one of such distributions with bathtub shaped hazard rate 
function. It has been applied in several engineering areas, partially since it has 
more flexible hazard rate than Weibull distribution. 

In the last few years, many researchers are interested to expand generating 
family in order to get better fit for data analyzing. Eugene and Famoye [14] in-
troduced Beta-normal distribution. Cordeiro and de Castro [15] introduced new 
family generalized distribution. Ardianti [16] studied estimating parameter of 
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Rayleigh distribution by using maximum likelihood method and bayes method. 
Cordeiro et al. [17] studied the exponentiated generalized class of distributions. 
Alzaatreh and Famoye [18] introduced a new method for generating families of 
continuous distributions. Bourguignon et al. [19] studied the Weibull-g family of 
probability distributions. Cordeiro et al. [20] studied Lomax-G. Cordeiro et al. 
[21] introduced the beta odd log-logistic generalized-G. Cordeiro et al. [22] in-
troduced the exponentiated half-logistic family of distributions: Properties and 
applications. Hassan and Elgarhy [23] studied Kumaraswamy Weibull-G. Has-
san and Hemeda [24] studied additive Weibull-G family of probability distribu-
tion. Elgarhy et al. [25] introduced exponentiated extended-G. Hassan et al. [26] 
studied the generalized additive weibull-g family of distributions. Hassan et al. 
[27] studied [0, 1] truncated Fréchet-G. Abid and Abdulrazak [28] introduced 
truncated fréchet-g generator of distributions. Mansoor et al. [29] introduced a 
new familly of distributions to analyze lifetime data. Haq and Elgarhy [30] in-
troduced the odd Fréchet-G family of probability distributions. Hassan and 
Nassr [31] studied Power lindley-g family of distributions. 

Over the last two decades, several extensions of the well-known lifetime dis-
tributions have been developed for modeling many types of practical data sets. 
This development is followed by many approaches for generating new families 
of (probability) distributions which increase chances of modeling data of various 
random nature. Among those families, we can mention: Zografos and Bala-
krishnan [32] introduced the gamma-G (type 1). Ristic and Balakrishnan [33] 
studied the gamma-G (type 2). Saboor et al. [34] studied beta weighted modified 
Weibull distribution using the beta generator. Alizadeh et al. [35] presented the 
generalized transmuted family of distributions. Alizadeh et al. [36] show the 
odd-Burr generalized family of distributions. Jamal et al. [37] studied the odd 
Burr-III family of distributions. Bakouch et al. [38] introduced the extended odd 
family of probability distributions. In practical life problems, truncation arises in 
many fields, such as industry, biology, hydrology, reliability theory and medicine. 
An example of truncation is the progression of a disease which is not an in-
creasing function, but will stabilize after time point. This point is called the 
truncation for the support of the variable of the interest which may be time, 
length, height etc. Therefore, many researchers are attracted to analyze such 
truncated data using truncated versions of the standard statistical distributions. 
For instance, the 1 truncated Weibull distribution has been applied to analyze 
the tree diameter and height distributions in forestry, fire size and high-cycle fa-
tigue strength prediction (See Zhang and Xie [39]). Zaninetti and Ferraro [40] 
introduced the truncated Pareto distribution is compared to the Pareto distribu-
tion using astrophysics data and they concluded, generally, that the truncated 
Pareto distribution performs better than the Pareto. Recently, Burroughs and 
Tebbens [41] showed the suitability of truncated power law distributions for da-
ta sets of earthquake magnitudes and forest fire areas. Additional applications of 
the former distributions in hydrology and atmospheric science are given by Ab-
an et al. [42]. 
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In view of the work of [43], the advantages of the TW-G family are the fol-
lowing ones: 1) the corresponding functions have tractable expressions, includ-
ing the quantile function; 2) there is only one additional parameter to the base-
line distribution; 3) several members of this family enjoy interesting properties, 
including various shapes for the corresponding functions; 4) for some data sets, 
the TIW-G models can offer better alternatives to other well-established models, 
possibly defined with more parameters. In [43], these points are illustrated with 
the special member defined with the Rayleigh distribution as baseline. However, 
with a closer look on the shapes analysis, as well as platykurtic and high heavy 
tail properties for the pdf. With the idea in mind that the moderate lack of flex-
ibility of the TW-G family can be improved, we explore the solution provided by 
Truncated Weibull Rayleigh (TW-R) distribution. Thus, it is obtained from 
TW-G families. 

Therefore, we have a truncated general-G class of distributions and the only 
sub-model we aware of is the truncated Weibull -G family proposed by Najarza-
degan et al. [1]. As a powerful alternative to beta-G family of distributions. We 
cannot investigate more analytic properties and therefore we aim to study exten-
sively the truncated Weibull Rayleigh (TW-R) distribution to fit practical data 
from different domains and this is investigated in the application section, several 
distributions have been presented on an extension of known distributions. So, 
many methods for generating new distributions from classic ones were evolved. 
The TW-G family has the following cdf and pdf: 

( ) ( )( )
TW-G ; , 1 e , , , 0G xF x A x R

βαα β α β− = − ∈ > 
 

            (5) 

and 

( ) ( ) ( ) ( )( )
TW-G

1; , e , , , 0,G xf x A g x G x x R
ββ αα β αβ α β− −= ∈ >       (6) 

where ( ) 1
1 eA α −−= − , α  is the scale parameter, β  is the shape parameter 

and G is cdf of any baseline distribution. 
The purpose of this paper is to show a new three parameter life time model 

relied on the TW-G family. The TW-R model gives more flexible model. We 
hope that the new model will interesting wide enforcements in several areas. 
This paper is presented as follows: In Section 2, the Truncated Weibull-Rayleigh 
is presented. Section 3 provides several mathematical properties of the TW-R 
distribution. The maximum likelihood method is carrieded out to get the esti-
mators of the parameters in Section 4. Application to a real data explaining the 
execution of the new model is given in Section 5. Finally, show in Section 6. 

A random variable is said to have the TW-R distribution by vector parameters 
( ), ,α β σΨ . If it has the following cdf and pdf: 

( )
2

22
TW-R ; 1 exp 1 e

x

F x A

β

σα
−

      Ψ = − − −        

             (7) 
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and 

( )
2 2 2
22 2 2

1

2 2 2
TW-R ; e 1 e exp 1 e ,

x x x

f x A x σ

β β

σ σαβσ α

−
− −

− −

        Ψ = − − −         

     (8) 

where α , β  and σ  are shape and inverse scale parameter, respectively 
(Figure 1 and Figure 2). 

From Equations (7) and (8), we obtain immediately the reliability function, 
the hazard function, reversed hazard rate function, cumulative hazard rate func-
tion and the Quantile function of truncated weibull rayleigh distribution. 

The reliability function represents the probability of survival, giving by 
(Figure 3). 
 

 
Figure 1. Plot of cdf of TW-R distribution. 

 

 

Figure 2. Plot of pdf of TW-R distribution. 
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Figure 3. Plot of the reliability function of TW-R distribution. 
 

( ) ( )
2

22
TW-R TW-R; 1 ; 1 1 exp 1 e .

x

F x F x A

β

σα
−

      Ψ = − Ψ = − − − −   
    

      (9) 

The hazard rate function ( )h x , reversed hazard rate function ( )h x  and 
cumulative hazard rate function ( )H x  are an important quantity characteriz-
ing life phenomena (Figure 4). 

( ) ( )
( )

2 2 2
2 2 2

2

2

TW-R
TW-R

TW-R

1

22 2 2

2

;
; =

;

e 1 e exp 1 e

.

1 1 exp 1 e

x x x

x

f x
h x

F x

A x

A

β β

σ σ σ

β

σ

αβσ α

α

− 
 − − − −  

−

Ψ
Ψ

Ψ

   
   − −
   
   =

      − − − −        



     (10) 

Reversed hazard rate function is giving by 

( ) ( )
( )

2 2 2

2 2 2

2

2

TW-R
TW-R

TW-R

1

2 2 2 2

2

;
;

;

e 1 e exp 1 e

.

1 1 exp 1 e

x x x

x

f x
r x

F x

A x

A

β β

σ σ σ

β

σ

αβσ α

α

−
− − −

−

−

Ψ
Ψ =

Ψ

   
   − −
   
   =

      − − − −        

      (11) 

Cumulative hazard rate function of truncated weibull rayleigh distribution is 
giving by 

( ) ( )
2

22
TW-R TW-R

d; ; ln 1 1 exp 1 e .
d

x

H x h x A
x

β

σα
−

        Ψ = Ψ = − − − −              

 (12) 
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Figure 4. lot of the hazard function of TW-R distribution. 
 

Additionally, the Quantile function of the TW-R can be produced by revers-
ing cdf in Equation (7) as follows 

( )TW-R ; ,F x UΨ =  

thus, we get 

1

2 12 ln 1 ln 1 .Ux
A

β
σ

α

 
 −   = − − −       

 

If U a uniform variate in the unit interval ( )0,1 , then the random variable 
( )X Q u=  from follows Equation (7). 

2. Ordinary and Incomplete Moments 

Now, we obtain the rth moment about zero of X, say ( )rE X . From pdf in Equa-
tion (6), is giving 

( ) ( ) ( )
( )

1 2 1

1
0 0

1 1 1 21 .
2 ! 1

i j r r i
r

r
i j

ir AE X
i j j

β σ α β
+ − +∞ ∞

+
= =

− + −  = Γ +   
  + 

∑∑      (13) 

Proof 

( ) ( )TW-R
0

; dr rE X x f x x
∞

= Ψ∫ , 

then, 

( )
2 2 2
2 2 2

2 2 2
2 2 2

1

2 22 2

0

1

2 21 2
2

0

e 1 e exp 1 e d

e 1 e exp 1 e d .

x x x
r r

x x x
r

E X x A x x

A x x

β β

σ σ σ

β β

σ σ σ

αβσ α

αβ α
σ

−
   

∞    − − −   −    

−
   

∞    − − −   +    

        = − − −           

        = − − −           

∫

∫

 

By using exponential expansion, where exponential expansion is giving by 
equation 
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0
e

!

n
x

n

x
n

∞

=

= ∑                          (14) 

thus, 

( )
2

2

2

2

2

2

0

1  1 e

exp 1 e ,
!

i
x

i i

x

n i

β

σ
β

σ

α

α

−

∞−

=

 
 − −        − − =     

∑  

then 

( ) ( )
( )2 2

2 2

1 1
1

21 2
2

0 0

1
e 1 e d .

!

ixi xi
r r

i

AE x x x
i

β

σ σα β
σ

+ − 
∞  + −∞ − +  

=

 −  = −
 
 

∑ ∫  

By using binomial expansion, where binomial expansion is giving by equation 

( )
0

nn k n k

k

n
a b a b

k
−

=

 
+ =  

 
∑                      (15) 

thus, 
( )

( )
( ) ( )

22
22

1 1
1 1

22

0

1 1
1 e 1  e ,

i xx i j
j

j

i
j

β
β

σσ β
+ −  

+ −  −−  
 

=

  + −  − = −      
∑  

( ) ( ) ( ) ( )
2

2
1 1

21
2

0 0 0

1 1 1
e d ,

!

xi j i j
r r

i j

i AE x x x
i j

σβ α β
σ

 + ∞  + − +∞ ∞  +  

= =

− + − 
=  

 
∑∑ ∫  

Thus, the computation of this integration 

( )
2

2
121

21

0

1 2e d 1 .
2 1 2

x rj
r rx x

j
σ σ

  +∞  − +  +      = Γ +   +   
∫  

This completes the proof. 

3. The Probability Weighted Moments (PWMs) 

The class of probability weighted moments (PWMs) is primarily used in esti-
mating the parameters of a distribution whose inverse cannot be expressed ex-
plicitly. For a random variable X, its PWM giving by ,r sϒ  is defined as 

( )( ) ( ) ( )( ), .
s sr r

r s E x F x x f x F x
∞

−∞

 ϒ = =   ∫  

The probability weighted moments of the Truncated Weibull of rayleigh dis-
tribution is giving by: 

( ) ( )( ) ( )1 2 11 1

,
0 0 0

12 2

1 1 1 1
!

1 2 1 .
2 1 2

i j k kk sks

r s
j k i

r

A j sk
jk i

r
i

β βα σ β

σ

+ + + − ++ −∞

= = =

+

− + + −  
ϒ =   

  

   × Γ +   +   

∑∑ ∑
   (16) 

Proof 
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( ) ( )( ), ,
sr

r s x f x F x
∞

−∞

ϒ = ∫  

From Equations (7) and (8), we get 

2 2 2

2 2 2

2

2

1

2 2 21 2
,

2

e 1 e exp 1 e

1 exp 1 e d .

x x x

r
r s

s
x

x A

A x

β β

σ σ σ

β

σ

αβσ α

α

−
     

∞      − − −     + −      

−∞

 
 − 
 

    
    ϒ = − − −            

        × − − −             

∫

   (17) 

By using binomial expansion. 
Thus, 

( )
2 2
2 22 2

0
1 exp 1 e 1  exp 1 e ,

s
x xs j

j

s
j

j

β β

σ σα α
 
 − − 
 

=

                − − − = − − −                     

∑  

By substitution in Equation (8). We get,  

( )
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2 2

2 2

2

2

1

2 21 1 2
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0 0
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1 e 1 e

exp 1 1 e d .

x x
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r s
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x A

j

j x

β

σ σ

β

σ

αβσ

α

−
   

∞    − −   + + −    

=

−

 
   ϒ = − −      

 
  
  × − + −  

   

∑ ∫
 

By using exponential expansion 

( )
( ) ( )

2

2

2

2

2

2

0

1 1 1 e

exp 1 1 e ,
!

k
x

k kk

x

k

j
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β
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β

σ

α
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∑  

( ) ( )
( )2 2

2 2

1 1
1 2 1

21 2
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1   1
e 1 e d .
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kxj k k xk ss
r

r s
j k

A j s
x x
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β

σ σ
βα σ

+ − + + − + ∞  −∞ − +  

= =

 − +    ϒ = −      
∑∑ ∫  

By using binomial expansion 
( )

( )
( ) ( )

22
22

1 1
1 1

22

0

1 1
1 e 1 e ,

k xx k i
i

i

k
i

β
β

σσ
β

+ −  
+ −  −−  

 

=

  + −  − = −      
∑  

The computation of the following integration, 

( )
2

2
121 2

21

0

1 2e d 1 .
2 1 2

rxi
r rx x

i
σ σ

  +∞  − +  +      = Γ +   +   
∫  

thus 
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( ) ( )( ) ( )1 2 11 1

,
0 0 0

12 2

1 1 1  1
!

1 2 1 .
2 1 2

i j k kk sk s

r s
i j k

r

A j sk
jk i

r
i

β βα σ β

σ

+ + + − ++ − ∞

= = =

+

− + + −  
ϒ =   

  

   × Γ +   +   

∑ ∑∑
 

This completes the proof.  

4. Rényi and q Entropies 

An entropy is a measure of variation or uncertainty of a random variable X. The 
Rényi entropy is defined by  

( ) ( )
0

1 log d , 0 and 0.
1

R
RI x f x x R R

R

∞

= > ≠
− ∫  

Now, we will get Rényi entropy of Truncated Weibull Rayleigh distribution 
(TW-R) is giving by the following theorem 

( ) ( )
( ) ( )

( )
1 12 2

TW-R
0 0

1 2 1, log 1 .
2 1 2

RR i R

i
i j

I x R
R R j

β σε
++ −∞

= =

   Ψ = Γ −   − +   
∑ ∑    (18) 

Proof: 

( ) ( )
0

1 log d .
1

R
RI x f x x

R

∞

=
− ∫  

From Equation (8). We get, 

( )
2 2

2 2

2

2

2 2 2
TW-R
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2

1, log e 1 e
1

exp 1 e d .

R R
Rx x

R R R R R

x
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R

R x

β

σ σ

β

σ

α β σ

α

−
∞ − −

−

−

 
 Ψ = −
 −
 

  
  × − −     

∫
 

By using exponential expansion, 

( ) ( ) ( )
2

2

2

2

2

2

0

1 1 e

exp 1 e ,
!

i
x

i i i

x

i

R
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i
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β

σ

α

α

−

∞−

=
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∑  

thus, 

( )
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( )2 2

2 2
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2 2
2

0 0

,

11 log e 1 e d ,
1 !
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R

i
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R A x x
R i

β

σ σ
α αβ

σ
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=

Ψ

  −    = −   −      
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By using binomial expansion 
( )
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2 2

2 22 2

0
1 e 1 e ,

R i R
x xR i R jj

j

R i R
j

β
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σ σ
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thus 

( ) ( ) ( ) ( )( ) ( )

( )
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2

TW-R 2
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0
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Let ( ) ( ) ( ) ( )
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1
!
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i
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α βαβε
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, 
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0 0 0
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1

xR i R R j
R

i
i j

I x x x
R

β
σε
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The computation of the following integration, 

( ) ( )

( )
2

2

1 12 2
2

0

1 2 1e d 1 .
2 2

x RR j
Rx x R

R j
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This completes the proof. 

5. Order Statistics 

Let 1 2, , , nx x x  be independent and identically distributed random variables 
with continuous distribution function ( )F x , is given by 

( ) ( ) ( ) ( ) ( ) ( )11 1 .
, 1
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By using binomial expansion, 
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By substituting Equations (8) and (7) in Equation (20) and using binomial 
expansion then, 
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by using exponential expansion, 
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thus, 

( ) ( ) ( )
( )

( )
( )2 2

2 2

1

0 0 0

 1 1

21 2 2

1 11  
, 1 !

1  e 1 e .

j kj rn r

X r
k i

ix x
ij r i

n r j r
f x

j kB r n r i

A k x

ν

β

σ σα βσ

++ −− ∞

= = =

+ − 
 − − + + −  

− − + −  
=   − +   

 
 × + −
 
 

∑ ∑ ∑
 

6. Maximum Likehood Estimation 

In this section, we show estimation of the parameters of TW-R model by the 
maximum likelihood method. Assume 1 2 3, , , , nx x x x  be random variables 
from truncated weibull rayleigh distribution with the set of parameter ( ), ,α β σΨ . 
The likelihood function based on the observed random sample of size n from 
Equation (8) is given by 
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By taking ln function on both sides, 
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The first derivatives of ( ),x Ψ  with respect to the parameters α , β  and 
σ  are 
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and 
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Therefore, solutions of these equations simultaneously yeild the MLE ( ),x Ψ  
of parameters, unfortunately these equations cannot be solved analytically and 
numerical iterative methods can be employed to solve them. For interval estima-
tion and hypothesis testings under the parameters, we require the information  
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7. Application 

In this section, we introduce an application to a real data set to evaluate the flex-
ibility of the the truncated weibull Rayleigh (TW-R) model. We compare the fits 
of the TW-R distribution with the Truncated Weibull Fréchet (TWFr), type II 
Topp Leone inverse Rayleigh (TIITLIR) and inverse Rayleigh (IR) distributions. 
The data set is got from Mansoor et al. [29] expresss failure times of 63 airbcraft 
Windshield. The data are: 

0.046 1.436 2.592 0.140 1.492 2.600 0.150 1.580 2.670 0.248 2.878 
1.719 2.717 1.794 2.819 0.313 1.915 2.820 0.389 0.280 1.920 0.487 
1.963 2.950 0.622 1.978 3.003 0.900 2.053 3.102 0.952 2.065 4.015 
3.304 0.996 2.117 3.483 1.003 2.137 3.500 1.010 2.141 3.622 
1.085 2.163 3.665 1.092 2.183 3.695 1.152 2.240 1.183 2.341 
4.628 1.244 2.435 4.806 1.249 2.464 4.881 1.262 2.543 5.140. 
In Table 1, the analytical measures including, Akaike information criterion 

(AIC), the Bayesian information criterion (BIC), and Kolmogorov-Smirnov (k-s) 
are introduced. Table 1 list the MLEs of the model parameters and their corres-
ponding standard where as AIC, BIC and k-s. 

The new generated Truncated Weibull Rayleigh distribution (TW-R) is com-
pared with the Truncated Weibull Fréchet (TWFr), type II Topp Leone inverse 
Rayleigh (TIITLIR) and inverse Rayleigh (IR) distributions. For these data sets. 
The new distribution is compared with other distributions. By using some nu-
merous fineness of fit measures such as the log likelihood function (−2LogL), 
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), the 
Bayesian information criterion (BIC), and Kolmogorov-Smirnov (k-s). The as-
sessment parameters and fineness of fit measures of the pervious real life data 
sets. The fineness of fit measures such as −2LogL, AIC, BIC and for the (k-s). 

From the obtained results are presented in Table 1. As we can see from the 
results, the Truncated Weibull Rayleigh distribution is strong competitor to the 
compared models TWFr, TIITLIR and IR. Moreover, among all compared mod-
els, the TW-R distribution has the smallest values of the AIC, −2LogL, BIC, and 
k-s. Thus, we can conclude that the TW-R distribution is the best fit among 
those models. Figure 5 display the plot of the fitted model for the data sets. This 
figure show the best fit of TW-R distribution. 
 
Table 1. MLEs of the parameters, −2LogL, AIC, BIC and for the (k-s) data set. 

Distribution −2LogL AIC BIC k-s 

TWR 
(α, β, σ) 

285.55 291.55 290.95 0.108456 

TWFr 
(α, β, δ, μ) 

295.5 301.5 300.898 0.126968 

TIITLIR 
(α, θ) 

312.457 316.457 316.056 0.38516 

IR 
(α) 

500.807 504.807 502.606 0.74246 
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Figure 5. Plot of cdf of The estimated .tted models. 

8. Conclusion 

In statistical analysis many distributions are used to show sets of data. Recently, 
new distributions are derived to extend some of well-known families of distribu-
tions, such as the new distributions are more flexible than the others to model 
real data. The composing of some distributions with each other’s in some way 
has been in the first of data modeling. In this paper, we introduced a new family 
of continuous distributions based on Truncated Weibull generating family. We 
introduce a new three parameters-model, called the truncated Weibull Rayleigh 
distribution. We derive expressions for the ordinary and incomplete moments, 
probability weighted moments. We discuss maximum likelihood estimation. 
Application shows that the Truncated Weibull Rayleigh distribution provides 
consistently better fit than other models.  
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