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Abstract 
In this paper we build and analyze two stochastic epidemic models with 
death. The model assumes that only susceptible individuals (S) can get in-
fected (I) and may die from this disease or a recovered individual becomes 
susceptible again (SIS model) or completely immune (SIR Model) for the re-
mainder of the study period. Moreover, it is assumed there are no births, 
deaths, immigration or emigration during the study period; the community is 
said to be closed. In these infection disease models, there are two central 
questions: first it is the disease extinction or not and the second studies the 
time elapsed for such extinction, this paper will deal with this second ques-
tion because the first answer corresponds to the basic reproduction number 
defined in the bibliography. More concretely, we study the mean-extinction 
of the diseases and the technique used here first builds the backward Kolmo-
gorov differential equation and then solves it numerically using finite element 
method with FreeFem++. Our contribution and novelty are the following: 
however the reproduction number effectively concludes the extinction or not 
of the disease, it does not help to know its extinction times because example 
with the same reproduction numbers has very different time. Moreover, the 
SIS model is slower, a result that is not surprising, but this difference seems to 
increase in the stochastic models with respect to the deterministic ones, it is 
reasonable to assume some uncertainly. 
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A population is like a billiard ball: you get a lot of variability, but the varia-
bility is random, in all directions. 

Stephen Jay Gould: The Pattern of Life’s History [1]. 
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1. Introduction 

The ordinary differential equations in epidemic models has been a well-known 
topic for some time, there exist classic book like ([2], Chap. 10) or [3] and more 
recent monographs: [4] and [5]. All these deterministic models serve as a 
framework for formulating analogous stochastic models and as a source of 
comparison with the stochastic models (see for example [6] for a complete ref-
erence guide to all important contributions in stochastic epidemic models). In 
this way, there have been two ways to pass from the ordinary system to the sto-
chastic system, one of them is simply adding new stochastic terms, for example 
in [7] [8] [9] [10]. The other one is explained in [11] [12] and it is used in this 
paper. This technique begins by assuming different probabilities of the changes 
and calculating means and covariance matrix to obtain a stochastic differential 
system. But later we’ll see that the stochastic parts are different and this will 
cause great differences in the asymptotic behavior of the solutions (see for ex-
ample this results in [13] for a simple example about a population model). 

The Stochastic Differential Equation (SDE) system for the dynamics of n va-
riables has the form  

( ) ( ), , ,d t t dµ= +X X B X W                     (1) 

where ( )T
1, , nX X=X   and ( )T

1, , nW W=W   are n independent Wiener 
processes. The vectorial function ( ),tµ X  is called the drift, and ( ),tB X  the 
diffusion matrix. Moreover, the components ( ) , 1, ,j jX j nµ = =   and the 
diffusion term is the square root of the covariance matrix ( ),tD X  i.e. 
⋅ =B B D . 
Obviously, a key question in the epidemic models is to understand the con-

strains that lead to extinction or not of the disease and when. In order to study 
this question, let define the random variable T that indicates the persistence time 
i.e. the time it takes for the size of either variables to reach zero. 

{ }inf 0 : 0, for some 1, , ,jT t X j n≡ ≥ = =   

obviously T depends on the initial value ( )0X  although it is not explicitly in-
dicated. 

As discussed in ([2], p. 150), the mean persistence-time ( )Tτ ≡   for (1) sa-
tisfies the stationary backward Kolmogorov equation 

( )
2

1 1 1

1         1.
2

n n n

j jk
j j kj j k

D
x x x
τ ττ µ

= = =

∂ ∂
≡ + = −

∂ ∂∑ ∑∑L              (2) 

and with boundary conditions 

( )
( )

1 1

1 1

, ,0, , 0,

, , , 0,

j j

j j j
j

x x

x M x
x

τ

τ
− +

− +

 =

 ∂

=∂

 

 

                   (3) 

assuming that , 1, ,j jx M j n≤ =  . 
The Equation (2) is an Elliptic Partial Differential Equations of Second Order 

[14], really it is a advection diffusion equation, and as the name suggests, the 
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mean persistence-time will depend on the operator D . These comments would 
explain the results in [13]. Moreover in [7] [8] [9] [10] the matrices B  are di-
agonals which implies that the variables are not correlated, an unreasonable hy-
pothesis. As already commented in the abstract, we will solved numerically the 
backward Kolmogorov equation using finite element method with FreeFem++. 
These authors et. al. have used this technique en several paper: [13] [15] [16] [17] 
or [18] with very hopeful results to spread more complex problems. 

This paper is organized as follows. In Section 2, we describe the SIS and SIR 
models with death and obtain the backward Kolmogorov equations. In Section 3 
we explain the numerical methods with their results, with special attention to 
variational formulation of the problem (10) - (11). Finally in Section 4 we ana-
lyze the numerical results and draw the main conclusions. 

Our numerical methods were implemented in Matlab© and FreeFem++ 
which is freely available and particularly efficient, see [19]. The experiments 
were carried out in an Intel(R) Core(TM)i7-8665U CPU @ 1.90 GHz, 16.0 GB of 
RAM. The codes for the numerical tests are available on request. 

2. Two Models with Death 

2.1. Stochastic SIS Model 

In the SIS epidemic models the variable ( )T,S I=X  where ( )S S t=  is the 
susceptible population size and ( )I I t=  is the infected population size. In this 
model an individual starts off susceptible, at some stage catches the disease and 
after a short infectious period become susceptible again. Such a model is appro-
priate for a bacterial disease such as pneumococcus. 

The SIS model without demography is considerably simpler than the one con-
sidered here (see for example [17] and its references). The SIS model with de-
mography was proposed in [20] or [21], in particular we consider only death of 
infected individuals with rate β . The changes and their probabilities to the first 
order in t∆  are given in Table 1 with ( )T,S I=x . 

Following ([11], p. 148) we obtain the following deterministic model: 

( )

( ) ( )

1

2

d   ,  ,
d
d   ,   ,
d

S SIS I I
t S I
I SIS I I
t S I

αµ γ

αµ γ β

 = = − + +

 = = − +
 +

                 (4) 

This model has a fixed point at 0I =  because ( ) ( )1 2,0 ,0 0S Sµ µ= =  and 
the solution approaches the disease-free equilibrium ( )lim 0t I t→∞ =  when a  
 
Table 1. Possible change in ( )T,S I=x  and their probabilities. 

Change Propability 

( ) [ ]T1 1,1∆ −x  ( )SI S I tα + ∆  

( ) [ ]T2 0, 1∆ −x  I tβ ∆  

( ) [ ]T3 1, 1∆ −x  I tγ ∆  
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new basic reproduction number satisfies ( ) 1R α γ β= + ≤  (see [17] or [22]). 
The covariance matrix 

( ) ( ) ( )
( ) ( )

, ,
,  ,

, ,    
d S I d S I

S I
d S I d S I Iβ

 − 
=  − + 

D                (5) 

with ( ), SId S I I
S I
α γ= +
+

. 
Then if ( ) ( )0 , 0S x I y= =  its backward Kolmogoronv equation is  

( ) ( ) ( )
2 2 2 2

1 2 2 2 2

1  , , , 2 1,
2 2

yx y x y d x y
x y x yx y y
τ τ τ τ τ β τµ µ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + − + + = − ∂ ∂ ∂ ∂∂ ∂ ∂ 

 (6) 

with a singularity at the boundary 0y =  because for this value the coefficient 
of the second derivative is cancelled, which is why boundary payer will arise. The 
boundary conditions are:  

( ) ( )
( )

( )

0, ,0 0,

, 0,

, 0,

x

y

x y

M y
x

x M
y

τ τ
τ

τ

= =
∂ =
 ∂
∂

=∂

                      (7) 

provided that the number of x and y cannot exceed some values xM  and yM  
respectively. 

2.2. Stochastic SIR Model 

In the SIR epidemic models the variable ( )T, ,S I R=X  where ( )S S t=  is the 
susceptible population size, ( )I I t=  is the infected population size and ( )R t  
the recovered individuals because are assumed that individuals are immune after 
recovering from the disease. For example, [7] [8] [9] [10] proposes a model that 
in view of the results of [13] does not have any practical value, in my opinion. 

Now, the changes and their probabilities to the first order in t∆  are given in 
Table 2 with ( )T, ,S I R=x . 

Quite similar the model in [23] plus a new parameter β . The deterministic 
model is 

( )

d   ,
d
d     ,
d
d   ,
d

S SI
t S I
I SI I
t S I
R I
t

α

α γ β

γ

 = − +
 = − +

+


=

                    (8) 

 
Table 2. Possible change in ( )T, ,S I R=x  and their probabilities. 

Change Propability 

( ) [ ]T1 1,1,0∆ −x  ( )SI S I tα + ∆  

( ) [ ]T2 0, 1,1∆ −x  I tγ ∆  

( ) [ ]T3 0, 1,0∆ −x  I tβ ∆  
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In this differential system, the surface 0I =  is fix and its jacobian has three 
eigenvalues: 0λ =  doble and ( )λ α γ β= − +  and then when  

    1  1    ,γ β α γ β+ − < < + +  

and the matrix covariance  

( ) ( )

0

, ,   .

0

SI SI
S I S I

SI SIS I R I I
S I S I

I I

α α

α α γ β γ

γ γ

 − + + 
 = − + + − + +
 

−  
 

D            (9) 

Now assuming ( ) ( ) ( )0 , 0 , 0S x I y R z= = =  the backward Kolmogoronv 
equation is  

( ) ( ) ( )( )

( )

( )

2 2 2

2 2

2 2 2

2 2

, ,  

1 , 2
2

1 1  1
2 2

d x y d x y y y
x y z

d x y
x yx y

y y y
y zy z

τ τ τγ β γ

τ τ τ

τ τ τγ β γ γ

∂ ∂ ∂
− + − + +

∂ ∂ ∂

 ∂ ∂ ∂
+ − + ∂ ∂∂ ∂ 

∂ ∂ ∂
+ + + − = −

∂ ∂∂ ∂

          (10) 

where ( ), xyd x y
x y
α

=
+

, and the boundary conditions  

( ) ( ) ( )

( )

( )

( )

1

2

3

4

0, , ,0, , ,0 0, on ,

, , 0, on ,

, , 0, on ,

, , 0, on ,

x

y

z

y z x z x y

M y z
x

x M z
y

x y M
z

τ τ τ
τ

τ

τ

= = = Γ

∂ = Γ∂
∂

= Γ∂
∂

= Γ ∂

          (11) 

provided that the number of x, y and z cannot exceed some values ,x yM M  and 

zM  respectively. 

3. Numerical Results 

3.1. Deterministic Models 

In the deterministic models, the value of the basic reproductive number  

0
α

β γ
ℜ =

+
 determines persistence or extinction of the disease. If 0 1ℜ < , the 

disease is eliminated, whereas if 0 1ℜ > , the disease persists in the population 
(see for example [22] when the total population size remains constant). However, 
this parameter does not inform about the speed towards one situation or anoth-
er. 

Because these kinds of models are appropriate for a bacterial disease such as 
pneumococcus consider in [21], they study the pneumococcus in the population 
of Scottish children under two years, first we test this realistic example (Case 1) 
and later two example with similar value for 0ℜ . 
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Let’s consider the following example.  
Case 1: In [17] we studied the pneumococcus in the population of Scottish 

children with 00.0214, 0.0211, 0.00137 0.9986 1α γ β= = = ⇒ℜ = < .  
Case 2: For 00.1997, 0.1, 0.1 0.9986 1α γ β= = = ⇒ℜ = < .  
Case 3: For 00.3994, 0.3, 0.1 0.9986 1α γ β= = = ⇒ℜ = < .  
We solved the two deterministic models (4) and (8) using Matlab. In Figure 1 

we have plotted two paths for 0 25000t≤ ≤  in blue is the SIS Model with 
( ) ( )0 1000, 0 10S I= =  and in red the SIR Model with  
( ) ( ) ( )0 1000, 0 10, 0 1S I R= = = , in both path ( ) 0I t →  but in very different 

directions, a result that we would expect. Moreover, it would be more natural to 
ask Matlab to return the time *t  such that ( )* *0 1I t I< =  , which can be 
done using the event location facility. The highlighted numerical results are 
summarized in Table 3. In this table we have noted the time 0t  where 

( )* 0.99I t ≈  in the first line, and ( )* 310I t −≈  in the second. 
These three examples with the same reproduction number already have slight 

differences in their extinction, the third case is by far the fastest as well as the 
second model SIR. 
 

 
Figure 1. Case 1 for 0 25000t≤ ≤ , blue SIS Model for ( ) ( )0 10000, 0 10S I= =  and red 

SIR model with ( )0 1R = . 

 
Table 3. Time *t  for ( ) ( )0 1000, 0 10S I= = . 

Model Case 1 Case 2 Case 3 

SIS 24,181.70 1853.74 744.63 

 234,701.69 20,987.26 8869.11 

SIR 10,945.86 1174.60 587.31 

( )0 1R =  87,243.82 9795.86 4897.89 
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3.2. Mean Extinction-Time in Each Model 

These authors have resolved the boundary problems (6) - (7) using the Finite 
Element Method (FEM) and the software FreeFem++ which is freely available 
[19], this is a standard technique hence we will skip the details [17]. In Figure 2 
we can see the numerical solution of (6) - (7) with 1000, 100x yM M= = . Note 
that the three graphs are very similar but the scale is quite different, the value of 
its peaks can be read in Table 4. 
 

 
 

 
 

 
Figure 2. The numerical solution of (6) - (7) with 1000, 100x yM M= = . 
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Table 4. Maximum τ  for ( ) ( )0 0 , 0 100I R≤ ≤ . 

Model Case 1 Case 2 Case 3 

SIS 2759.2611 241.1770 124.7920 

SIR in ( )0 1000S =  1373.1032 149.9456 74.1740 

 
On the other hand, the boundary problem (10) - (11) has three independent 

variables which further complicates its numerical study, although the technique 
is similar. Let us multiply multiple (10) by a regular function ( ), ,x y zφ  satisfy-
ing the homogeneous Dirichlet boundary conditions on 1Γ . Integrating over the 
domain [ ] [ ]0, 0, 0,x y zM M M Ω = × ×  , the following terms with will appear: 

( ) ( )
2

2,   , ,x
dd x y d d x y n

x x x x xx
τ τ φ τ τφ φ φ

Ω Ω Ω ∂Ω

∂ ∂ ∂ ∂ ∂ ∂ = − − +  ∂ ∂ ∂ ∂ ∂∂  ∫ ∫ ∫ ∫  

( ) ( )
2

2,  , ,y
cc x y c c x y n

y y y y yy
τ τ φ τ τφ φ φ

Ω Ω Ω ∂Ω

 ∂ ∂ ∂ ∂ ∂ ∂
= − − +  ∂ ∂ ∂ ∂ ∂∂  

∫ ∫ ∫ ∫  

2

2 ,zy y y n
z z zz

τ τ φ τγ φ γ γ φ
Ω Ω ∂Ω

∂ ∂ ∂ ∂ = − +  ∂ ∂ ∂∂  ∫ ∫ ∫  

( )
2

,   ,x
dd x y d d n

x y y x x y y
τ τ φ τ τφ φ φ

Ω Ω Ω ∂Ω

 ∂ ∂ ∂ ∂ ∂ ∂
− = + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∫ ∫ ∫ ∫  

2

  ,yy y y n
y z z y z z
τ τ φ τ τγ φ γ γ φ γ φ

Ω Ω Ω ∂Ω

∂ ∂ ∂ ∂ ∂ − = + −  ∂ ∂ ∂ ∂ ∂ ∂ ∫ ∫ ∫ ∫  

and ( ) ( ) ( ), ,c x y d x y yγ β= + +  and where the boundary terms are of the fol-
lowing form: 

2

3

  0,

,

.

x y z

x

y

d n c n y n
x y z

d n d
y y

y n y
z z

τ τ τφ φ γ φ

τ τφ φ

τ τγ φ γ φ

∂Ω ∂Ω ∂Ω

∂Ω Γ

∂Ω Γ

 ∂ ∂ ∂   = = =    ∂ ∂ ∂    
 ∂ ∂

= ∂ ∂ 
∂ ∂  = ∂ ∂ 

∫ ∫ ∫

∫ ∫

∫ ∫

. 

In Figure 3 we can see the numerical solution (10) - (11) in ( )0 1000S x= =  
and 100, 100y zM M= = , again the three graphs are very similar but the scale is 
quite different and the value of its peaks can be read in Table 4. Note that the 
value of its peaks are close to half of the SIS model, it now appears that the dis-
tance between the two models is greater than the deterministic case. 

3.3. Numerical Simulation of the Stochastic Models 

In view of the results of the two previous subsections: the great difference in ex-
tinction time between deterministic and stochastic models, we thought it rea-
sonable to use some numerical simulation of stochastic differential equations in 
order to have more information. Our numerical simulations for the two stochastic  
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Figure 3. The numerical solution of (10)-(11) with My=100, Mz=100. 
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models have been done using the classic Euler-Maruyama numerical method, 
although it has strong order 1/2 and weak order 1 (we refer to [24] or [17] for a 
review on the numerical solutions of SDEs). This method applied to stochastic 
SIS model is straightforward and may be described as follows: 

Algorithm 3.1. Given ,α β  and γ , let t∆  be the time-step, nrun, the 
number of simulations, and Tol the tolerances. Then, we have: 
 

 
 

This Algorithm obtains the mean and standard deviation of the stopping time 
{ }* or  n nT inf I S Tol= < . The numerical results are in Table 5 with ( )0 1000S = , 

( )0 10I = , 310t −∆ = , 100nrum = . Note first that deviations from mean are 
very high, to obtain conclusions it would be necessary to decrease the step and 
increase the number of trials, which would cost a lot of computing time with 
doubtful results due to possible on numerical stability problems. In other words, 
we needed more precise and reliable numerical methods. However, note that the 
times are less than the estimates in the previous subsection and much further 
away from the deterministic problem. For the SIR model the results are very 
similar. 

https://doi.org/10.4236/ojmsi.2021.93016


A. Moujahid, F. Vadillo 
 

 

DOI: 10.4236/ojmsi.2021.93016 256 Open Journal of Modelling and Simulation 
 

Table 5. Euler-Maruyama for ( ) ( )0 1000, 0 10S I= = . 

Model Case 1 Case 2 Case3 

SIS 1134.5123 101.4930 52.2847 

 904.1301 97.7477 40.6314 

SIR 870.9902 90.7511 45.4430 

( )0 1R =  742.2000 67.9975 34.6920 

4. Conclusions 

In summary, in this paper first we have found the stochastic SIS and SIR models 
with death and computed the mean of the extinction-time analyzing and simu-
lating its backward Kolmogorov differential equation. The more important con-
clusions are the following: 

1) Although the reproduction number concludes the extinction or not of the 
disease, however, this number it does not help to know its extinction times be-
cause example with the same reproduction numbers has quite different time.  

2) The cases that increase the value of the first parameter α  also disappear 
more quickly, although always with the reproduction number 0 1ℜ < .  

3) Infection disappears much earlier in stochastic models than in the corres-
ponding deterministic models. 

4) Finally, we again encounter a stochastic model, as we saw in [18], which is 
verydifferent from the deterministic model. 

Perhaps the most important problem now is to describe techniques to com-
puter the parameter values using data set, i.e. a calibration of the model, in [17] 
these authors have researched an academic example. 
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