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Abstract 
A new laser-plasma deposition method has been developed for the plasma 
chemical deposition of hard silicon carbonitride coatings on stainless steel 
substrates from the hexamethyldisilazane (HMDS) Si2NH(CH3)6 vapor in a 
high-speed Ar and Ar + 10 vol.% He gas stream at the HMDS gas flow activa-
tion after the laser beam focus. The method allows depositing silicon carbo-
nitride coatings at the rate of 0.4 - 1.2 μm·min−1, i.e. ~2 times higher than that 
at introducing HMDS in the laser beam focus zone. The properties of the 
prepared coatings have been studied by the methods of IR and Raman spec-
troscopy, atomic force microscopy, nanoindentation and X-ray diffraction 
(XRD) analysis. Studying the film structure with the use of XRD showed that 
the prepared silicon carbonitride coatings are X-ray amorphous. It has been 
found that the coating deposition rate and the structure of coatings depend 
on the process parameters: HMDS flow rate and plasma-generating gas (ar-
gon or (Ar + He). The method allows depositing SiCN films at a high speed 
and a hardness of 20 - 22 GPa. 
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1. Introduction 

Laser plasma produced in a powerful optical pulsating discharge (POPD) in 
high-speed gas flows is a new form of optical discharge [1]. POPD is obtained in 
the gas under the impact of the laser pulse-periodic radiation of 10 - 120 kHz 
and the laser pulse peak power of 500 kW. In the plasma-chemical synthesis of 
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coatings, the radiation is focused in high-speed gas fluxes of 100 - 300 m·s−1, 
providing a high gas phase cooling rate after the laser pulse, reduced size of the 
nucleation centers of solid-phase nuclei and a fast delivery of the decomposition 
products of reagents to the treated surface [2]. 

The synthesis of silicon carbonitride and carbon nitride films by the laser-plasma 
deposition in POPD plasma was used to grow hard protective films on stainless 
substrates by introducing precursor vapors in the laser beam focus [3] [4] [5] 
[6]. 

Silicon carbonitride is a unique multifunctional material, which successfully 
combines the best properties of silicon carbide and nitride. Silicon carbonitride 
layers are traditionally prepared either at increased temperatures (T ≥ 1000˚C) 
or by the chemical vapor deposition (CVD) at a relatively low temperature using 
high-frequency and microwave plasma or glow discharge plasma (PECVD) [7] 
[8] [9] [10] [11]. The formation of solid inorganic polymers of silicon carboni-
tride on silicon and quartz substrates at the laser pyrolysis of HMDS with am-
monia additives was published earlier in [12]. 

Hexamethyldisilazane (CH3)3SiNHSi(CH3)3 was chosen as a precursor because 
it contains all chemical fragments (Si-N, Si-C) necessary for the formation of sil-
icon carbonitride. 

In this paper, we present the results of studying the kinetic and physicochem-
ical properties of the silicon carbonitride films synthesized from the hexame-
thyldisilazane (HMDS) precursor by means of activation after the laser beam 
focus. The peculiarity of this plasma deposition variant is the effect of the action 
of argon plasma with a reduced energy due to its removal (taking out by the 
stream) from the laser beam focus. As a result of this interaction, the decompo-
sition of the precursor molecule does not occur completely: only the organic 
component of the molecule is separated. Such fragments fall on the substrate, 
where their further chemical transformation takes place with the inorganic 
coating formation. 

The addition of helium to a plasma-generating gas should not change the 
plasma parameters appreciably, since helium is introduced with a precursor after 
the laser beam focus, but it affects the growth kinetics and properties of coatings. 

2. Experimental Technique 

The films were deposited in the laser-plasma setup with a plasma-chemical cham-
ber, which was reported on earlier in [3]. For the deposition, in contrast to [3], 
the precursor flux (HMDS + Ar) was introduced after the laser beam focus. 

The film deposition was carried out onto stainless steel 304 substrates (Cr 20; 
Mn 2; Ni 8; C ≤ 0.8, wt.%) (Figure 1). 

The process parameters were as follows: the substrate temperature varied 
from 700˚C to 800˚С by the external heater, and the gas-carrier (argon) flux rate 
was 22 - 30 L/min. The average t laser beam power was 1.6 kW, and the pulse 
repetition rate was 120 kHz. The mixture of liquid precursor was introduced in  
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Figure 1. Photo of a stainless steel plate coated with SiCN film. FHMDS = 30 μL·min−1. FAr = 
27 L·min−1. 
 
the laser-plasma chemical reactor by a precision pump (Model LSP01) at the rate 
of 20 - 80 μL·min−1 and then, by means of an argon or a He (3 L/min) flux, it was 
mixed with the main argon flux in the reactor (22 - 27 L·min−1). The deposition 
time was 1 - 3 min. The deposition rate varied within 0.4 - 1.2 μm·min−1 and de-
pended on the process parameters. The coatings thickness was determined by 
the measurements of coatings reflection spectra and calculation on the known 
formulas, taking into account the refractive index determined from the ellipso-
metric data. To characterize the synthesized coatings, the following devices were 
used: Fourier IR spectrometer IFS-85 (Bruker), scanning electron microscope 
JSM 6700F with the EDS EX-23000 BU console, Raman Spectrometer LabRAM, 
Evolution, Horiba; Shimadzu XRD-7000, atomic-force microscope “Solver-Pro” 
(NT MDT) and scanning nanohardness meter NanoScan-3D (Technological In-
stitute for Superhard and Novel Carbon Materials, Russia). 

3. Results and Discussion 

The laser-plasma deposition process is multiparametric, and its rate depends on 
such parameters as HMDS concentration in a gas flow, plasma-generating gas 
flux (consumption) and laser beam energy introduced in a gas flow. 

The dependences of coating growth rates on the HMDS flux rates in the plas-
ma-generating gas Ar and Ar + 10 vol.% He are shown in Figure 2. 

It follows from Figure 2 that the growth rate dependence on the hexamethyl-
disilazane flux rate FHMDS, at the HMDS gas flux activation after the laser beam 
focus, is higher (curves 2, 3) than that in the variant for introducing the precur-
sor in the laser beam focus (curve 1). The growth rate dependence on the flow 
rate is nonmonotonic: it grows with the increase of FHMDS and reaches its maxi-
mum at FHMDS ≈ 50 μL·min−1, and then it goes down. This can be explained by 
the homogeneous nucleation of SiCN at this HMDS concentration in the gas 
phase, which then leads to the formation of a loose amorphous SiCN layer on 
the film edges [12]. The IR spectra of the coatings characterizing their chemical 
structure are given in Figure 3. In Figure 3 is the comparison of the IR spectra  
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Figure 2. Dependences of coating growth rates on HMDS flux rates. 1—introduction of 
HMDS in the laser beam focus in the Ar flux of plasma-generating gas; 2—introduction 
of the HMDS gas flow after the laser beam focus in the (Ar + He) flux of plasma-generating 
gas; 3—introduction of the HMDS gas flow after the laser beam focus in the Ar flux of 
plasma-generating gas. 
 

 
Figure 3. IR spectra of the coatings and Gaussian peak fitting: (a) Ar flux; (b) Ar + 10 vol% He FHMDS = 50 μL·min−1; (c) in-
troducing HMDS in the laser beam focus, Ar flux; FHMDS = 35 μL·min−1 and FAr = 27 L·min−1. 
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of the films obtained from HMDS in the argon flux (Figure 3(a)) and those ob-
tained in the (Ar + He) flux (Figure 3(b)) at FHMDS = 50 μL·min−1 (maximum 
deposition rate). The IR deposition spectra at FHMDS = 35 μL·min−1 in the variant 
of introducing HMDS in the laser beam focus are given in Figure 3(c). 

The decomposition of spectra a, b and c into Gaussian components in the 
wavenumber region of 500 - 1500 cm−1 is also presented in Figure 3. When in-
terpreting the absorption band decomposition results, we took into account that 
the peaks corresponding to the components are the superposition of different 
vibrational modes of the fragments forming the coatings. 

The broad absorption bands decomposition of the spectrum in Figure 3(a) in 
the region of 500 - 1000 cm−1 shows three overlapping peaks at 742 cm−1, 876 
cm−1 and 1017 cm−1. 

There are main absorption bands corresponding to the oscillation modes of 
Si-C (ω = 750 cm−1), Si-N (ω = 900 сm−1) and Si-O (ω = 1038 сm−1) in the spec-
tra. The spectra also show a small amount of bound hydrogen at 1250 cm−1 and 
3200 - 3400 cm−1 (N-H bonds), and the Si-H bonds at 2200 cm−1, and that is as-
sociated with incompletely decomposed HMDS molecules [13]. The Si-C/Si-N 
ratio calculated from the IR spectra by the Gaussian peak fitting gives the values 
of 1.01 for (a), 0.47 for (b) and 1.34 for (c), respectively. 

The Si-C/Si-N bonds ratio dependence, calculated from the IR spectra in the 
SiCN films produced at different HMDS supplies in the argon gas flux, is shown 
in Figure 4. The Si-C/Si-N ratio is increased from 0.4 to 1.6 by increasing the 
HMDS feeding rate from 20 to 70 μL·min−1 in the 27 L·min−1 argon gas flux. 

The coatings surface structure and morphology were determined using the  
 

 
Figure 4. Si-C/Si-N bonds ratio dependence calculated from the IR spectra in the SiCN 
films produced at different HMDS feeding rates in the argon gas flux FAr = 27 L·min−1. 
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X-ray diffraction analysis and atomic force microscopy. The X-ray diffraction 
data of the prepared films show that they are amorphous. The Raman spectra of 
the film obtained in the argon flux are given in Figure 5. There is a pike at 1427 
cm−1, which is usually associated with disordered graphite [14] [15]. 

The EDS analysis of this film (Figure 6) gives the following concentration 
values of its elements (at.%): C—38.60; N—7.89; O—14.8; Si—38.72.  

 

 
Figure 5. Raman spectrum of SiCN film; FHMDS = 20 μL·min−1, FAr = 27 L·min−1. 

 

 
Figure 6. EDS analysis of the SiCN film. FHMDS = 20 μL·min−1, FAr = 27 L·min−1. 
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AFM image of SiCN films is shown in Figure 7. 
The AFM study of morphology showed that, with an increase of feeding 

HMDS into the chamber, the film roughness and the average size of grains are 
increased. 

The average surface grains size dependence on the rate of feeding HMDS into 
the chamber is shown in Figure 8. 

As can be seen in the figure, the average size is increased from 0.11 to 0.20 μm 
with the increase in the HMDS feeding rate from 20 to 80 μL·min−1. 

The AFM images of the coatings surface at different HMDS feeding rate values 
revealed that the roughness is changed from 21 nm to 66 nm with an increase in 
the HMDS feeding rate from 20 to 80 μL·min−1. 
 

 
Figure 7. AFM image of deposited SiCN films. FAr = 27 L·min−1; FHMDS = 20 (a); 50 (b); 60 (c); 80 (d) μL·min−1. 
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Figure 8. Average surface grains size dependence on the HMDS feeding rate. 

 

 
Figure 9. The SiCN film hardness dependence on the HMDS feeding rate (FHMDS) in the 
argon gas flux (27 L·min−1). 
 

The coatings hardness is determined by nanoindentation measurements (ac-
cording to ISO 14577) with scanning nanohardometer NanoScan-3D. The mea-
surements were performed at several loads from 1 to 50 mN. To determine the 
real hardness of the coating, with the influence of a softer substrate taken into 
account, the nanoindentation results were processed according to the techniques 
suggested in [16]. The dependence of SiCN film hardness on the HMDS feeding 
rate is given in Figure 9. 
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The maximum hardness value was observed at the HMDS feeding rate of 25 
μL·min−1. With an increase in the HMDS rate of feeding into the chamber, the 
hardness value is decreased, and it can be explained by the HMDS effect on 
plasma parameters and, due to this, the change in the kinetics of film deposition 
on a substrate. 

4. Conclusions 

A new laser-plasma deposition method has been developed for the deposition of 
hard protective silicon carbonitride coatings from hexamethyldisilazane (HMDS) 
Si2NH(CH3)6 vapors introduced, after the laser beam focus, in the high-speed Ar 
or (Ar + He) gas flux. 

The method allows depositing silicon carbonitride coatings at the rate of 0.4 - 
1.2 μm·min−1, i.e. ~2 times higher than that at introducing this precursor in the 
laser beam focus. 

It has been found that the coating deposition rate and coatings structure de-
pend on the process parameters: HMDS flow rates and plasma-generating gas 
(Ar or (Ar + He)). 

The hardness of the produced films is 20 - 22 GPa at FHMDS = 20 - 25 
μL·min−1, and it is decreased by an increase of feeding HMDS into the chamber. 
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