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Abstract 
In this paper, we investigate the elementary wave interactions for the Suliciu 
relaxation system and construct uniquely the solution by the characteristic 
analysis method in the phase plane. We find that the elementary wave inte-
ractions have a much simpler structure for the Temple class than the general 
systems of conservation laws. It is observed that the Riemann solutions of the 
Suliciu relaxation system are stable under the small perturbation on the Rie-
mann initial data. 
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1. Introduction 

In the present paper, we study the simplified viscoelastic shallow fluid model 
which is called the Suliciu relaxation system [1] [2] [3] [4] 
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where 0ρ ≥  is the layer depth of fluid, u is the horizontal velocity, 0s >  is 

related to the stress tensor and is a conserved quantity, 2v
s
π

=  is the new vari-

able which is concerned with the pressure and π  is the relaxed pressure. 
In [2], the authors proposed the new reduced model for gravity-driven 
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free-surface flows of shallow viscoelastic fluids, and established the mathematical 
properties for this model. In [3], the authors investigated the semilinear behavior of 
the totally linearly degenerate hyperbolic systems with relaxation, using pointwise 
estimates of the gradient, they obtained the semilinear behavior of the Suliciu model. 
In [4], the authors studied the qualitative behaviour of phase transition phenomena. 

The above system can be considered as a relaxation for the following isen-
tropic Chaplygin gas dynamics system [5] [6] 
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where ,uρ  are respectively the density and the velocity of the gas, the pressure 

P is given by the state equation ( )
2sP ρ
ρ

= −  with 0s >  a constant. It is found 

that (1) is of Temple class [7] and it is also of rich type but it is not diagonal. 
The Riemann problem for the Suliciu relaxation system has been studied, for 

instance in [8] [9]. In [8], the authors are concerned with the numerical capture 
of stiff viscous shock solutions of the Navier-Stokes equations for complex com-
pressible materials. 

In [9], the authors obtained the delta shock wave solution under the genera-
lized Rankine-Hugoniot relation and the entropy condition, they also con-
structed the explicit solution for the Cauchy problem with the initial data in L∞ . 

In the present paper, we investigate the elementary wave interactions for (1) 
with the following three piecewise constants 
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where the perturbation parameter ε  is sufficiently small. (3) can be regarded 
as a local perturbation on the initial values 

( )( ) ( ), , ,0 , , ,     0.u v x u v xρ ρ± ± ±= ± >                (4) 

By the characteristic analysis method, we analyze the positional relations of the 
elementary wave curves in the phase plane ( ),u v  case by case. It is observed that 
for some cases even if there is no the delta shock wave in the corresponding Rie-
mann solution, the delta shock wave occurs after the wave interaction. When 
there is the delta shock wave in the corresponding Riemann solution, the delta 
shock wave may disappear after the wave interaction. Since the system is of Tem-
ple class, the structure of the solution is simpler than the conventional gas dy-
namics. We find that the Riemann solutions of the initial value problem (1) and 
(4) are stable under the above small perturbation on the Riemann data. 

This paper is arranged as follows. In Section 2, we give curtly the Riemann 
problem for the model (1) and (4) for the convenience of the readers. In Section 
3, we investigate the elementary wave interactions by the characteristic analysis 
method. In Section 4, we summarize our main conclusion. 
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2. Preliminaries 

We give briefly the Riemann problem for (1) with the initial values (4) (see [9]). 

The characteristic roots of (1) are 1
suµ
ρ

= − , 2 uµ = , 3
suµ
ρ

= + , which 

shows that (1) is strictly hyperbolic. The corresponding right characteristic vec-
tor of 1µ , 2µ  and 3µ  is respectively given by 

( ) ( ) ( )T TT2 2
1 2 3, ,1 ,    1,0,0 ,    , ,1 ,s sν ρ ν ν ρ= − = =
             (5) 

we get 

1 1 2 2 2 30,    0,    0,µ ν µ ν µ ν∇ ⋅ = ∇ ⋅ = ∇ ⋅ =
  

              (6) 

which indicates that each characteristic field is linearly degenerate. 

We construct the self-similar solution ( )( ) ( )( ), , , , ,u v x t u vρ ρ ζ= , x
t

ζ = .  

The Riemann problem (1) and (4) become the following boundary value prob-
lem of the ordinary differential equations 
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and ( )( ) ( ), , , ,u v u vρ ρ± ± ±±∞ = . For smooth solutions, let ( )T, ,V u vρ= , (7) 
becomes 

( ) 0,A V Vζ =                          (8) 

where 
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Besides the constant state solution ( ), , constantu vρ = , (8) has a rarefaction 
wave solution. For the given left state ( ), ,u vρ− − − , the rarefaction wave curve is 
given by 

( ) ( )

1 ,

, , :
,

,  .

su
R u v

u u s v v
v v u u

ζ µ
ρ

ρ− − −
− −

− −

 = = −

 = −
 < >



                  (9) 

For a bounded discontinuity at ζ τ= , it holds the Rankine-Hugoniot conditions 
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where [ ]ρ ρ ρ+ −= − , ( )0ρ ρ τ− = − , ( )0ρ ρ τ+ = + , etc. 
For the given left state ( ), ,u vρ− − − , the shock wave is given by 
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From (10) we know the contact discontinuity 

[ ]:  ,  ,  0.J u u v v ρ− −= = ≠                    (12) 

All the above rarefaction waves R, shock waves S, and contact discontinuities J 
are the elementary waves for (1). Notice the shock curves coincide with the rare-
faction curves in the phase plane ( ), ,u vρ  [7]. It is very important because it 
can simplify the process of the elementary wave interactions. 

We give the backward wave curves in the ( ),u v  plane (Figure 1), where the 

straight line 1l  is given by ( )1v u u sv
s − −= − +   , and the point ( ), 0A u sv− −+ .  

When ( ), Iu v+ + ∈ , the unique Riemann solution is S J R+ +
 

; when  
( ), IIu v+ + ∈ , the unique Riemann solution is S J S+ +

 

; when ( ), IIIu v+ + ∈ , 
the unique Riemann solution is R J S+ +



; when ( ), IVu v+ + ∈ , the unique 
Riemann solution is R J R+ +

 

. 
The forward wave curves in the ( ),u v  plane can be given similarly (Figure 

2), where 2l  is given by ( )1v u u sv
s + += − − −   , and the point ( ), 0B u sv+ +− . 

When ( ), Vu v+ + ∈ , i.e., s su u
ρ ρ+ −
+ −

+ ≤ − , we should construct the delta 

shock wave solution as follows. 
Consider a piecewise smooth solution of (1) with the form 

 

 
Figure 1. Backward wave curves in ( ),u v . 

 

 
Figure 2. Forward wave curves in ( ),u v . 
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where ( )( )x x tδ −  is the δ  measure on the support of ( )x x t= , ( )tω  de-

notes the weight of the delta wave ( )x x t= . Let ( )d
d
x u t
t δ= , since the concen-

tration in ρ  needs to travel at the speed of discontinuity. The above delta  

shock wave is a measure solution to the Suliciu relaxation system if and only if 
the following generalized Rankine-Hugoniot condition holds 
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where [ ] ( )( ) ( )( )0 0u u x t u x t= + − −  is the jump of u across the discontinuity 
( )x x t= , etc. 

The δ -entropy condition is 

( ) ( ) ( )3 1, , , , ,u v u t u vδµ ρ µ ρ+ + + − − −≤ ≤               (15) 

which is 
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+ ≤ ≤ −                    (16) 

When [ ] 0ρ = , we have 
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When [ ] 0ρ ≠ , we have 
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Based on the above analysis, we have the following conclusion. 
Theorem 2.1. The Riemann solution of the initial value problem (1) with the 

initial data (4) exists uniquely. 

3. Interactions of Elementary Waves 

Now we study the elementary wave interactions for (1) with the initial data (3). 
We construct the unique solution with the characteristic analysis method in 
the phase plane (see [10] [11]). (3) is regarded as the perturbation on the Rie-
mann initial values (4). In order to cover all the cases containing no delta 
shock, we have three possibilities according to the different combinations from 
( ),0ε−  and ( ),0ε  as follows. W



 and W


, W


 and W


, W


 and J, where 
W R S=

 

 , W R S=
 

 . 
Case 1: The collision of W



 and W


. 
We consider the collision wave interaction of a forward wave W



 emanating 
from ( ),0ε−  and a backward wave W



 emanating from ( ),0ε . There are five 
subcases as follows. 

Subcase 1.1 R


 and R


 and l mv v< , r mv v< , 0v∗ >  (Figure 3). 
Subcase 1.2 S



 and R


 and l m rv v v> >  (Figure 4). 
Subcase 1.3 R



 and S


 and r m lv v v> >  (Figure 5). 
Subcase 1.4 S



 and S


 and l mv v> , r mv v>  (Figure 6). 
Subcase 1.5 R



 and R


 and l mv v> , r mv v> , 0v∗ ≤  (Figure 8). 
The discussions for Subcase 1.1, Subcase 1.2, Subcase 1.3 are similar with the 

discussions for Subcase 1.4, thus we just need to consider Subcase 1.4 and Sub-
case 1.5. 

 

 

Figure 3. Collision of R


 and R


, 0v∗ > . 
 

 

Figure 4. Collision of R


 and S


. 
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Figure 5. Collision of S


 and R


. 
 

 

Figure 6. Collision of S


 and S


. 
 

Subcase 1.4 S


 and S


. The forward shock wave S


 emanating from 
( ),0ε−  and the backward shock wave S



 emanating from ( ),0ε  (Figure 6). 
Since the wave speed 1σ  of S



 is greater than the wave speed 2σ  of S


, they 
will interact with each other at the finite time 0t t=  and a new Riemann prob-
lem will be formed with (l) the left state and (r) the right state. 

Draw the backward wave curve ( )W l


 from (l) and draw the forward wave 
curve ( )W r



 from (r), it follows that they intersect with each other at (*). It is 
found that the unique solution of the new Riemann problem is given by (Figure 7) 

.S S S J S+ → + +
   

 
Subcase 1.5 R



 and R


, * 0v ≤ . The forward rarefaction wave R


 ema-
nating from ( ),0ε−  and the backward rarefaction wave r  emanating from 
( ),0ε  (Figure 8). Since the wave speed 3σ  of R



 is greater than the wave 
speed 4σ  of R



, they will interact with each other at the finite time 0t t=  and 
a new Riemann problem will be formed with (l) the left state and (r) the right 
state. 

Draw the backward wave curve ( )W l


 from (l) and draw the forward wave 
curve ( )W r



 from (r), it is found that the solution of the new Riemann problem 
is the delta shock wave solution (Figure 9) 

.R R δ+ →
 

 
When l rρ ρ= , it follows that 
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Figure 7. Interaction of S


 and S


. 
 

 

Figure 8. Collision of R


 and R


, 0v∗ ≤ . 
 

 

Figure 9. Interaction of R


 and R


, 0v∗ ≤ . 
 

when l rρ ρ≠ , it follows that 
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 (20) 

Theorem 3.1. When the forward shock wave intersects with the backward 
shock wave, the backward shock wave will propagate in its original direction and 
the forward shock wave will also propagate in its original direction. When the 
forward rarefaction (or shock) wave intersects with the backward shock (or 
rarefaction) wave, the forward rarefaction (or shock) wave will propagate in its 
original direction and the backward shock (or rarefaction) wave will also propa-
gate in its original direction, and the contact discontinuity will occur after the 
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wave intersection. When the forward rarefaction wave intersects with the back-
ward rarefaction wave, we see that there are two possibilities. One is that the 
backward rarefaction wave will propagate in its original direction and the for-
ward rarefaction wave will also propagate in its original direction, the other one 
is that the solution of this new Riemann problem is the delta shock wave. The 
above conclusions tell us that the Riemann solution of (1) with the initial data 
(4) are stable for this case. 

Case 2: The overtaking of W


 and W


. 
Suppose the forward wave W



 which connects the left state and the middle 
state is given by 

( ) ,
1 1 ,

m l m l

m l
m l

u u s v v

v v
ρ ρ

 = + −

 + = +


                     (21) 

the forward wave W


 which connects the middle state and the right state is 
given by 

( ) ,
1 1 .

r m r m

r m
r m

u u s v v

v v
ρ ρ

 = + −

 + = +


                     (22) 

It is observed that the forward wave W


 and the forward wave W


 both pass 
through the middle state (m), and the slope of them is equal, that is, the left 
state, the middle state and the right state are on the same wave curve. Then we 
have the solution of the new Riemann problem is given as W W W+ →

  

. 
We give the detailed results for this case as follows. 
Subcase 2.1 S S+

 

 (Figure 10). 
For this subcase, we obtain that the unique solution of the wave interaction is 

given by S S S+ →
  

. 
Subcase 2.2 S R+

 

 (Figure 11). 
For this subcase, we have the unique solution of the wave interaction 

S R S+ →
 

 or R


. 
Subcase 2.3 R S+



 (Figure 12). 
For this subcase, we have the unique solution of the wave interaction 

R S R+ →
 

 or S


. 
Subcase 2.4 R R+

 

 (Figure 13). 
For this subcase, we obtain that the unique solution of the wave interaction is 

given by R R R+ →
  

. 
Theorem 3.2. When the forward shock (or rarefaction) wave overtakes the 

forward shock (or rarefaction) wave, the solution of the wave interaction is still 
the forward shock (or rarefaction) wave which will propagate in its original di-
rection. When the forward shock (or rarefaction) wave overtakes the forward 
rarefaction (or shock) wave, the solution of the wave interaction is the forward 
shock wave or the forward rarefaction wave. The above conclusions reveal that 
the Riemann solution of (1) with the initial data (4) are stable for this case. 
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Figure 10. Overtaking of S


 and S


. 
 

 

Figure 11. Overtaking of S


 and R


. 
 

 

Figure 12. Overtaking of R


 and S


. 
 

 

Figure 13. Overtaking of R


 and R


. 
 

Case 3: The collision of W


 and J. 
For this case, we have 

dor :  ,
d

d:  .
d

m
m

m r

x sW W u
t

xJ u u
t

ρ
 = ±

 = =

 

                   (23) 
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It follows that the backward wave W


 cannot intersect with the contact dis-
continuity J in a finite time. We just need to consider the intersection of the 
forward wave W



 and the contact discontinuity J which will interect with each 
other ar the finite time 0t t=  (Figure 14). 

Subcase 3.1 R


 and J, 0v∗ >  (Figure 15). 
For this subcase, we have 

( ) ( )

( ) ( )
( ) ( )

: ,
: , , ,

: ,

: ,

l m m l m l

m r m r m r

l l l

r r r

W Q Q u u s v v
J u u v v

W Q Q u u s v v

W Q Q u u s v v

ρ ρ

∗ ∗ ∗

∗ ∗ ∗

 = + −


= = ≠


= − −
 = + −







                (24) 

then R


 will intersect with J at the finite time 0t t=  and a new Riemann prob-
lem is formed. 

 

 

Figure 14. Interaction of W


 and J. 
 

 

Figure 15. Intersection of R


 and J, 0v∗ > . 
 

 

Figure 16. Intersection of R


 and J, 0v∗ ≤ . 
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Figure 17. Intersection of S


 and J. 
 

From the left state we draw the backward wave curve ( )lW Q


, and from the 

right state we draw the forward wave curve ( )rW Q


, they intersect with each 

other at Q∗ . ( ),Q u v∗ ∗ ∗  is the projection of the state ( )1, ,u vρ∗ ∗ ∗  and the state 

( )2 , ,u vρ∗ ∗ ∗  on the plane ( ),u v , where 1

m
m

s
su u

ρ

ρ

∗

∗

=
− +

 and  

2

m
r

s
su u

ρ

ρ

∗

∗

=
− +

. Since m rρ ρ≠ , it follows that it is the contact discontinuity 

J which connects the state ( )1, ,u vρ∗ ∗ ∗  with the state ( )2 , ,u vρ∗ ∗ ∗ . 

Thus for this subcase, the unique solution of the new Riemann problem is 
given by 

or .R J R S J R+ → + +
  

 
Subcase 3.2 R



 and J, 0v∗ ≤  (Figure 16). 
For this subcase, since 0v∗ ≤ , we know that the positional relations of the left 

state and the right state are shown in Figure 16. From the left state we draw the 
backward wave curve ( )lW Q



, and from the right state we draw the forward 
wave curve ( )rW Q



, we have to consider the delta shock wave solution. Then 
the unique solution is given as follows R J δ+ →



. 
Subcase 3.3 S



 and J (Figure 17). 
Similar discussions as in Subcase 3.1, we obtain the unique solution of the 

wave interaction for this subcase is given by 

or .S J S R J S+ → + +
  

 
Theorem 3.3. When the forward shock wave collides with the contact discon-

tinuity J, the forward shock wave will pass through the contact discontinuity, 
and the backward shock (or rarefaction) wave will occur propagating in the op-
posite direction. When the forward rarefaction wave collides with the contact 
discontinuity J, there are two possibilities. One is that the forward rarefaction 
wave will pass through the contact discontinuity, and the backward shock (or 
rarefaction) wave will occur propagating in the opposite direction, the other one 
is that the solution of the new Riemann problem is the delta shock wave. The 
above conclusions reveal that the Riemann solution of (1) with the initial data 
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(4) are stable for this case. 
Now we construct the unique solution of the elementary wave interactions 

and get the following main conclusion. 
Theorem 3.4. The unique solution of the initial value problem (1) with the 

initial values (3) is constructed case by case. By analyzing the wave structures, we 
conclude that the Riemann solutions of the system (1) with the initial data (4) 
are stable under such small perturbation on the initial data (4). 

4. Conclusion 

Using the characteristic analysis method, i.e., by analyzing the elementary wave 
curves in the phrase plane, we get the unique solution of the initial problem (1) 
and the initial values (3). We observe that the elementary wave interactions have 
a much simpler structure for Temple class than general systems of conservation 
laws since the wave interaction of the same family does not generate a wave of 
other family for Temple systems. We observe that when the delta shock wave 
does not occur at the time 0t = , the delta shock wave may occur at the finite 
time for some cases of the initial value problem (1) and (3). 
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