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Abstract 
In this paper, the traditional proof of “square root of 2 is not a rational num-
ber” has been reviewed, and then the theory has been generalized to “if n is 
not a square, square root of n is not a rational number”. And then some con-
ceptions of ring, integral domain, ideal, quotient ring in Advanced algebra, 
have been introduced. Integers can be regarded as an integral domain, the ra-
tional numbers can be regard as a fractional domain. Evens and odds are 
principal ideals in integral domain. The operations on evens and odds are 
operations on quotient ring. After introducing “the minimalist form” in frac-
tion ring. The paper proves the main conclusion: in a integral domain, mul-
tiplicative subset S produces a fraction ring 1S R− , and n is not a square ele-
ment in R, then to every element a R∈ , 2a n≠ . 
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1. Introduction 

2  is an irrational number, which is an indisputable fact, was proved by an an-
cient Greek mathematician Hippasus though a method named contradiction.  

The proof is shown as below: if 2  is a rational number p
q

 (p, q are co-prime  

integers), and then 2 22p q= , then p2 is an even. By the theory: the square of an 
odd number is an odd, and so is an even number, we can draw a conclusion that 
p is an even. Assume that 2p k= , then 2 24p k=  is divisible by 4, then q2 is an 
even, then q is an even. So ,p q  are both even, which is contradict by the pre-
mise: p, q are co-prime integers.  
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Two implications can be got from the classical proof.  
1) In the proof, all the integers are divided into two equivalence classes: odds 

and evens, the two equivalence classes are closed to the “square” operation. And 
by the method “contradiction”, p and q are in a same class: evens, which is a 
contradiction. What’s more, for a general positive integer n, which is not a per-
fectly squared, is its square root an irrational? Whether it can also be proved by 
constructing an equivalence class?  

2) The set of integers form a ring by ordinary addition and ordinary multipli-
cation, and the ring of rational numbers is a fractional ring generated by the ring 
of integers. “The square root of 2 is not a rational number” can be extended to 
ordinary ring? If not, can we make the conclusion correctly by strict the ring; if 
so, how the conclusion could be proved? 

When it comes to how to find the square root of an element in a ring, a Chi-
nese researcher named Miaoqin Chen [1] found a way to solve the problem in 
Rings of polynomials with rational coefficients. But to a general integral domain, 
few researchers solve the problem.  

David E. Dobbs [2] did some researches about why the square root function is 
not linear in a ring.  

2. n Is Not a Perfect Square Number, and the Square Root of  
Which Is an Irrational 

Define 2.1. n is a positive integer, [ ] { }( )| is an intenter 0,1,2,na r qn q r= + =   
is a residue class module n. The set of all the residue classes denote as nZ . 

It can be known easily that nZ  forms a partition of the set of integers. Every 
integer belongs and only belongs one class of nZ , Thereafter, in the case of am-
biguity, [ ]na  can be denoted as [ ]a . 

Lemma 2.1. If n is not a perfect square integer ( ) 21 ,k k n k n∀ ≤ < ≠ , b is a 
positive integer, if [ ]0b∈ , then [ ]2 0b ∈ , if [ ]0b∉ , then [ ]2 0b ∉  

Proof: assume that ( )0b r qn r n= + ≤ < , then 2 2 2 2 22b r rqn q n r = + + ∈   ,  
Case 1: when [ ]0b∈ , it means that 0r =  and [ ]2 0b ∈ . 
Case 2: when [ ]0b∉ , because 2r n≠ , and [ ]2 0b ∉ . 
From the proof above, the conclusion below can be easily proved: to any posi-

tive integer m, if [ ]0b∈ , then [ ]0mb ∈ , if [ ]0b∉ , then [ ]0mb ∉ . 
Lemma 2.2. Assuming that b, n are both positive integers, then  
[ ] [ ] 20 0n nb nb∈ ⇔ ∈ . 

Proof: [ ]0 ,nb b qn q Z∈ ⇔ = ∈ , [ ] 2
20 ,nnb nb pn q Z∈ ⇔ = ∈ , p Z∈ , let p 

= q, and the conclusion is obviously right.  
Theorem 2.1. If n is not a perfect square integer, n  is an irrational num-

ber.  
Proof by contradiction: if n  is a rational number, let us assuming that it is  

pn
q

= , in which p and q are co-prime, and 2 2p nq= , based on the definition  

of the residue classes of module n, [ ]2 0 np ∈ . Because of the Lemma 2.1 [ ]0 np∈ , 

https://doi.org/10.4236/apm.2021.117044


T. C. Liu 
 

 

DOI: 10.4236/apm.2021.117044 667 Advances in Pure Mathematics 
 

we know that [ ] 2
2 0 np ∈  by lemma 2.2, and Because of the lemma 2.1, [ ]0 nq∈ , 

so p and q have the same factor n, which is incompatible to the premise: p and q 
are co-prime.  

As the procedure mentioned above, the theorem can be extended as: if n is not 
a m power number (to any positive integer k ( )1 , mk k n k n≤ < ≠ ), then m n  is 
an irrational number, the proof will not be shown in the essay.  

3. Some Important Conceptions and Conclusions in Ring  
Theorem 

To extend “the square root of 2 is not a rational number” to a general ring, some 
concepts about ring, ideal will be used, and some new methods, like minimalist, 
will be invented. So let’s review some definitions and theorems of abstract alge-
bra. 

Definition 3.1. [3] Assume that R is a non-empty set. If we define two alge-
braic operation on R, one is called addition, noted as a b⊕ , and the other one 
is called multiplication, noted as a b⊗ , and they meet the following conditions: 

1) R form a Abelian group on the operation ⊕ . 
2) The associative law of multiplication: to and elements a, b, c, it meet

( ) ( )a b c a b c⊗ ⊗ = ⊗ ⊗ .  
3) The distributive property of multiplication over addition. To any elements 

, ,a b c R∈ , they meet: 

( ) ( ) ( )c a b c a c b⊗ ⊕ = ⊗ ⊕ ⊗  

( ) ( ) ( )a b c a c b c⊕ ⊗ = ⊗ ⊕ ⊗  

Then R is a ring.  
If the multiplication in R also meets the commutative law, R is said to be a 

commutative ring.  
If there is an element e fit the condition: to any element a in R, a e e a⊗ = ⊗ , 

then e is called an identity.  
A commutative ring without zero divisor but with a identity is called a integral 

domain, which is a mainly study object in this essay.  
Example: n is a positive integer, over the operations [ ] [ ] [ ]a b a b⊗ = × ,  

[ ] [ ] [ ]a b a b⊕ = +  is a commutative ring, and the identity is [ ]1e = , if n is a prime, 

nZ  is a integral domain.  
Example: integer set Z over the normal addition and multiplication form a ring, 

called integer domain.  
Definition 3.2. [4] [5] Let R be a integral domain, a subset R of S is called a 

multiplicative closed subset, if the identity e S∈ , zero O S∉ , and S is closed 
over multiplication, it means 1 2 1 2, ,s S s S s s S∀ ∈ ∈ ⊗ ∈  

Definition 3.3. [6] [7] Let R be a integral domain, S is a multiplicative closed 
set, a equivalence relation “~” can be defined in the set R S× ,  
( ) ( )1 1 2 2 1 2 2 1, ~ ,r s r s r s s r O⇔ ⊗ − ⊗ =  

Note 1 / ~S R R S− = ×  is a set produced by 1S R−  in the relative of R S× , 
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we use r
s

 to represent the equivalence class produced by (r, s).  

Addition and multiplication can be defined in 1S R− : 

( ) ( )1 2 2 11 2

1 2 1 2

r s r sr r
s s s s

⊗ ⊕ ⊗
⊕ =

⊗
 

1 2 1 2

1 2 1 2

r r r r
s s s s

⊗
⊗ =

⊗
 

So, 1S R−  is a commutative ring with identity over the addition and multip-
lication mentioned above. 1S R−  is called a fractional ring over S, because of 
e S∈ , R can be isomorphic embedded in 1S R− .  

Example: To integer domain R, { }\ 0S R= , the fractional ring over S is ra-
tional number ring Q.  

Definition 3.4. [7] Let R be a commutative ring with identity, I is a non- 
empty set of R. if I form a sub group over the operation ⊕ , and I have absorp-
tion, that is: 

,a I r R a r I∈ ∈ ⇒ ⊗ ∈  

Then I is called an ideal.  
Example: a R∈ , ( ) { }|a r a r R= ⊗ ∈  is an ideal of R, the ideal is called a 

principal ideal. If ( )a O=  or ( )a R= , the ideal is called a trivial ideal, or it is 
called Nontrivial ideal. 

Example: in integer number domain Z, the set of evens 2Z forms an ideal.  
Definition 3.5. The cosets r I+  of ideal I of a ring R form a division of R, 

over the addition operation ( ) ( )1 2 1 2r I r I r r I+ ⊕ + = ⊕ +  and the multiplica-
tion ( ) ( )1 2 1 2r I r I r r I+ ⊗ + = ⊗ + , the cosets forms a domain, it is called quotient 
ring.  

4. The Extension and Proof in a Ring of “The Square Root  
of a Non-Square Number Is Not Rational Number” 

Theorem 4.1. Let R be an integral domain, n R∈ , n is a not-square number 
( ,r R r r n∀ ∈ ⊗ ≠ ), S is a multiplication closed set, 1S R−  is a fractional ring of 
R over s, then, to any 1a S R−∈ , 2a a a n= ⊗ ≠ .  

Before theorem 4.1 is proved, some definitions and lemmas should be intro-
duced.  

Definition 4.1. In a fractional ring 1S R−  of R over S, the minimalist style of 

the element r
s

 is 1

1

r
s

, if 1

1

~
rr

s s
, and 1 1,r s  not belong to any nontrivial prin-

cipal ideal.  
Lemma 4.1. Let R is an integral domain, every element in 1S R−  has a mini-

malist style.  

Proof: Assume that r R
s S
∈ , if r, s both belong to a principal ideal, that is  

( ), ,r s a a e∈ ≠ , then 1r a r= ⊗ , 2s a r= ⊗ , and  
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( )1 1
1 1 1 1

1 1

~
a r rr a r s a s r O

s a s s
⊗

= ⊗ ⊗ − ⊗ ⊗ =
⊗

  

Lemma 4.2. Let R be an integral domain, n is a non-square element in R, then 
( ) ( )2a n a n∈ ⇔ ∈ .  

Proof: “⇒ ”: ( ) ( ) ( )2 2,a n r R a n r a n r n r a n∈ ⇒ ∃ ∈ = ⊗ ⇒ = ⊗ ⊗ ⊗ ⇒ ∈  
“⇐ ”: because of the definition of quotient ring ( ) ( ){ }/ |R n r n r R= + ∈ , 
( )/R n  form a division of R, so ( ),s R a s n∃ ∈ ∈ + , so, ( )2 2a s n∈ + , if ( )2a n∈ , 

then ( )2s n∈ , because n is not a perfect square element, so 2s n≠ , so 2s O= , 
because R is an integral domain, so s O= , so ( )a n∈ .  

The proof of theorem 4.1 is shown as below: 
Proof: if there is an element 1a S R−∈ , meet 2a a a n= ⊗ = , and the mini-

malist style of a is r
s

 (which means r and s are not in any nontrivial ideal), then  

2 2r s n= ⊗ , ( )2r n∈ , because of lemma 4.2, ( )r n∈ , ( )r n∈ , then ( )2 2r n∈ . 
Assume that ( )2 2 2r k n s n k R= ⊗ = ⊗ ∈ , so based on the elimination law, we 
can get that 2s k n= ⊗ , which means ( )2s n∈ , based on the lemma 4.2, ( )s n∈ ,  
because ( )r n∈  and ( )r n∈  and (n) is a nontrivial principal ideal, it is para-

dox to r
s

 a minimalist style. 

So, to any 1a S R−∈  2a a a n= ⊗ ≠ . 
But what is worth for emphasizing is that sometimes it is not easy to judge if an 

element is a square element, for example, in the 2 order matrix ring generated  

by Z, 
22 0 1 1

2
0 2 1 1

e e    
= ⊕ = =   −   

, so 2 is not a square element. 
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