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Abstract 
This brief review described spatial-time climate patterns generated by the 
dynamics and thermodynamics of the Earth’s climate system and methods of 
identifying these patterns. Specifically, it does discuss the following major 
climate patterns: El Niño-Southern Oscillation (ENSO), Cold Ocean-Warm 
Land (COWL) pattern, Northern and Southern Annular Patterns (NAM and 
SAM), Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional 
Overturning Circulation (AMOC), Pacific North-American Pattern (PNA) 
and Pacific Decadal Oscillation Pattern (PDO). In view of an extensive num-
ber of publications on some climate patterns, such as the ENSO, which dis-
cussed in many hundred of publications, this review is not intended to cover 
all the details of individual climate patterns but intends only to give a general 
overview of their structure, mechanisms of their formation and response to 
external forcing. It is assumed that the climate patterns can be treated as at-
tractors of dynamical systems allowing us to extract and predict some specific 
features of the patterns such as the origin and evolution of the climate pat-
terns and their role in climate change. Thus the knowledge of patterns allows 
the climate prediction on long time scales and understanding of how an ex-
ternal forcing affects the frequency of occurrence of climate patterns and their 
magnitude but not the spatial structure. 
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1. Introduction 

The observed temperature and other physical variables are not uniformly distri-
buted over the Earth’s surface, in its ocean and atmosphere. They are typically 
forming space-time clusters called weather and climate patterns. The ubiquitous 
and well-understood weather patterns are cyclones and anticyclones. A cyclone 
(Low) is a low-pressure pattern balanced by the pressure gradient and the Cori-
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olis force and rotating counterclockwise in the Northern Hemisphere and clock-
wise in the Southern Hemisphere. An anticyclone (High) has opposite sign of 
rotation. Highs and Lows are mobile and have short life-time lasting from days 
to maximum of two weeks. This review is about the long-term climate patterns. 
In the time domain, the Earth’s climate system consists of two subsystems: the 
fast, “weather” type (mostly the atmosphere) and the slow one that includes the 
ocean and other slow-responding Earth’s components (Hasselmann, 1976). The 
fast component can be averaged to serve as a source term to the slow system. The 
climate patterns arise as the major component of the slow subsystem. 

The simplest climate pattern is the diurnal cycle. It is caused by the Earth’s 
rotation around its axis and has the West-East symmetry. Daily (sunny) side of 
this pattern is warmer, nightly side is cooler. The time period of this pattern is 
one day. Another simple pattern is the seasonal pattern that appears due to the 
orbital motion of the Earth around the Sun. Its period is one year. The variability 
of the Earth’s orbit on much longer time scale (the Milankovich cycles) creates 
orbital patterns (Loutre et al., 2004). 

Sir Gilbert Walker (Walker, 1928) summarized anecdotal evidence on the te-
leconnections between weather in distant parts of the Earth and introduced three 
less-trivial large-scale coherent patterns that he called “swayings”: North Atlan-
tic Oscillation, North Pacific Oscillation, and Southern Oscillation covering the 
South Pacific and the Indian Ocean. Subsequently, numerous studies have dem-
onstrated that the atmospheric and ocean variability on monthly and longer time 
scales is associated with these and other large-scale spatial-time patterns. 

An example is the North Atlantic Oscillation (NAO), which was originally de-
fined as a December-March mean of the sea level pressure difference between 
Iceland and Portugal (Hurrell, 1995). It is closely related to the Northern Annu-
lar Mode (NAM) (Thompson & Wallace, 1998). The counterpart of the NAM in 
the Southern Hemisphere is called the SAM (Limpasuvan & Hartmann, 2000). 

Other examples of climate patterns include the Pacific-North America (PNA) 
pattern (Wallace & Gutzler, 1981), the Cold Ocean-Warm Land (COWL) pat-
tern (Wallace et al., 1995), the Pacific Decadal Oscillation (PDO) (Mantua et al., 
1997), the well-known El Nińo-Southern Oscillation (ENSO) (Bjerknes, 1969; 
Timmermann et al., 2018), and the Quasi-Biennial Oscillation (QBO), which is 
observed in the stratosphere (Labitzke, 1987). 

The climate patterns are associated with the low-frequency variability of the 
general circulation of the atmosphere and can be characterized by a small num-
ber of preferred circulations, often called “regimes”. Observational evidence for 
the existence of the regimes was provided by Kimoto and Ghil (1993), who used 
the joint probability distribution functions (joint PDFs) of two leading modes 
identified from a principal component analysis of the 700 hPa geopotential heights 
to find four hemispheric circulation regimes. Cheng and Wallace (1993) used a 
hierarchical cluster analysis technique to identify three preferred regimes of cir-
culation in the North Hemisphere 500 hPa flow. Corti et al. (1999) found several 
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preferred flow regimes using model clustering and joint PDFs. 
Here we briefly review the knowledge of characterization and origin of climate 

patterns and their role in climate change. We describe a set of major climate pat-
terns, the physical mechanisms of their generation, and the external forcing of 
these patterns. There is an extensive number of publications on almost all major 
climate patterns, such as the ENSO and Annular patterns. This brief review is 
not intended to cover all the details of individual climate patterns and intends 
only to give a general overview of their structure, mechanisms of their formation 
and response to external forcing. 

In Section 2 we outline the methods used for climate pattern identification. 
Section 3 presents a short notion of potential mechanisms generating the climate 
patterns. Section 4 represents a set of selected major climate patterns generated 
by atmospheric-ocean processes. We give a description of a climate pattern, fol-
lowed by review of suggested mechanisms of its generation and the external in-
fluence on that pattern. Section 5 presents a discussion of pattern persistence and 
its possible role in long-term climate prediction. 

2. Methods of Pattern Identification 

There are well-developed methods of finding patterns in chaotic and determinis-
tic systems. Here we describe the major methods used in climate studies. 

2.1. Principal Component Analysis (PCA) 

The most popular method is the Principal Component Analysis (PCA), originally 
invented by Karl Pearson (Pearson, 1901; Jolliffe, 2002; Jolliffe & Cadima, 2016). 
The method employs the data in the form of a matrix ( ) ( )( )1 , , mx t x t=X � , 
wherein the Earth case X is a m × n-dimensional vector usually presented by m 
spatial pixels in a set of data maps taken at discrete times t = 1:n. The idea is to 
seek a linear combination of the columns of matrix X with maximum variance. 
The PCA is defined as an orthogonal linear transformation that transforms the 
data to a new coordinate system such that the greatest variance by some scalar 
projection of the data comes to lie on the first coordinate (called the first prin-
cipal component), the second greatest variance on the second coordinate, and so 
on. The data in every pixel are typically centered, with the mean over time values 

∑  and often normalized by standard deviations. The eigenvectors of the cova-
riance matrix ( )( )TT 1

1
n

i iiXX n x x x x−
=

= − −∑  are used to define the spatial 
and time parts of k patterns, as well as their eigenvalues λs: 

( ) ( )T
k k

k
X U V tλ= ∑ x ,                      (1) 

where 
T T,  k k k k k kXX U U X XV Vλ λ= = , 

The U(x) functions are usually called “Empirical Orthogonal Functions” 
(EOF) and V(t) is called “Principal Components” (PCs). The term “empirical” 
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emphasizes the fact that these functions determine the covariance (second-order 
correlations) between the observed spatial data points. It does not assume any 
physical causes of the covariance. The PCs can also be reconstructed using the 
data, EOFs and λs: 

( ) ( )1/2T
k k kV t X U λ= . 

The EOFs that result from the analysis often difficult to interpret in terms of 
physical processes. It might be beneficial to rotate the orthogonal basis to anoth-
er basis, which can be better explained in terms of physical forces. Upon rota-
tion, we will lose a nice property that EOFs have an orthogonal basis (no cross- 
correlations between EOFs). We will perhaps also lose orthonormality of the 
EOFs matrix if we choose a non-orthogonal transformation of the data. It is also 
important to note that these rotations do not use any particular property of the 
EOFs (such as orthonormality) and you essentially reduce EOF analysis to noise 
reduction—via the reduction in the number of EOF—after performing these ro-
tations. Some rotational methods retain the orthogonality of the modes but not 
the principal components or EOFs. Most commonly, the rotation has been used 
with the varimax code. The objective is to minimize the mode complexity by 
making the large loadings larger and the small loadings smaller (Jolliffe, 2002). 

2.2. Clustering Methods 

Another approach for pattern identification is the use of clustering methods. For 
example, the International Satellite Cloud Climatology Project used the K-means 
cluster technique (Hartigan, 1975) to identify cloud and weather regimes (Ros-
sow et al., 2005). A cluster analysis had been applied to the CloudSat data from 
the A-train formation of satellites for identifying the type of clouds (Sassen & 
Wang, 2008). Johnson and Feldstein (2010) used the K-means clustering to in-
vestigate the spatial and temporal variability of the wintertime North Pacific sea 
level pressure (SLP). 

The K-means method uses K centers of clusters determined by minimizing 
the sum of squared errors of the data with a cost function 

( )2

1

k

k j k
j

J x c= −∑∑  

where k is the number of clusters, k j kjc x n= ∑  are the cluster centers with 
nk being the number of data points in the cluster k. The second sum (the sum 
over j) is taken over the data points in the cluster k. 

As the next step in development of methods of data clustering preserving the 
information containing in the original data, Ruzmaikin and Guillaume (2014) 
explored a more advanced algorithm called Deterministic Annealing (Rose, 
1998), which is based on the minimization of the cost function relative to two 
independent parameters (the distance between data points and the Shannon en-
tropy of the data distribution) and provides probabilities with which data are 
associated with each cluster. The method has a close and deep analog to the clas-
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sical Gibbs’ thermodynamics based on the use of a minimum two basic variables 
to define a thermodynamic state. 

Ding and He (2014) investigated the relationship between the K-mean clus-
tering and PCA to prove that Principal Components are the continuous solu-
tions to the cluster membership indicators for K-means clustering and to show 
that the subspace spanned by the cluster centers is given by spectral expansion of 
the data covariance matrix truncated at K-1 terms. This relationship strengthens 
the PCA and allows to equivalently using cluster methods in search for climate 
patterns. 

A weak point of the Principal Component Analysis is that it is linear. It em-
ploys only the second-order correlations between data points, thus missing the 
high-order correlations. Monahan (2000) developed a nonlinear generalization 
of Principal Component Analysis, denoted as a Nonlinear Principal Component 
Analysis (NLPCA). NLPCA, as PCA, finds a data approximation by minimizing 
the mean squared error but, contrary to linear PCA, this approximation is not 
constrained to fall along a straight line in the space of the original variables. Ra-
ther, it can be a curve. A critical review of the PCA interpretation is given in 
Monahan et al. (2009). 

Wu et al. (2009) introduce an approach for handling the full set of correla-
tions between the data points, which they called “the Multidimensional Empiri-
cal Mode Decomposition (MEEMD)”. In MEEMD, a time series at a grid point 
x(t) is decomposed using Ensemble Empirical Mode Decomposition (Wu et al., 
2009) into adaptively obtained, amplitude and frequency modulated oscillatory 
components and a residual, a curve either monotonic or containing only one ex-
tremum from which no additional oscillatory components can be extracted. For 
multi-dimensional spatial-temporal data, time scale components of data series 
from all grids are pieced together to form a temporal evolution of the spatially 
coherent structure of that timescale. In contrast to the PCA analysis, the MEEMD 
is a temporally and spatially local method, which provides a better chance to 
identify the underlying physical information provided by data. Recently new 
clustering methods based on machine learning were developed. 

Thus a deep clustering is widely used in many practical applications for its 
powerful ability of feature extraction, it is natural to combine clustering algo-
rithms with deep learning for better clustering results. Aljalbout et al. (2018); 
Min et al. (2018) gave systematic reviews of deep clustering from the perspective 
of network architectures and the representative algorithms to show the characte-
ristics, advantages and disadvantages of different deep clustering algorithms. 
However, these powerful machine methods so far are only expected to be used in 
climate studies. 

Donges et al. (2009) proposed a method based on a complex network to re- 
construct and analyze data generated by a spatio-temporal dynamical system, 
relying on the nonlinear mutual information of time series analysis and bet-
weenness centrality of the complex network theory. These authors indicated that 
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the local degree centrality and related measures can be used to identify super-
nodes (regions of high degree centrality) and to associate them to known dy-
namical interrelations in the atmosphere called teleconnection patterns. 

3. Mechanisms of Pattern Formation 

The climate patterns are created by internal dynamics and thermodynamics of 
the Earth’s climate system. 

An important component of the dynamics is noise. Hasselmann (1976) in-
troduced a model of climate variability driven by random noise excitation with 
short time scale (“weather”) disturbances. Application of this model to sea-surface 
temperature (SST) (Frankignoul & Hasselmann, 1977) and to zonally-averaged 
energy (Lemke, 1977) produced a red-noise response spectrum with the most of 
its variance concentrated at very long periods. However uncorrelated noise forcing 
does not generate any correlations necessary for creating spatial patterns. 

The dynamics that include spatial correlations come from the Earth’s rotation 
and large-scale waves. Carl-Gustaf Rossby (Rossby, 1939) was the first to em-
phasize the importance of the two main ingredients of the atmospheric dynam-
ics: the zonal-mean zonal wind and non-zonally symmetric deviations of pres-
sure or geopotential heights. He described the non-zonally symmetric deviations 
as waves, which are now known as “planetary waves” or “Rossby waves” (Hol-
ton, 2004). The air or the ocean fluid on the Earth that moves toward the pole 
will deviate east; a fluid (or air) moving toward the equator will deviate west 
(true in either hemisphere). This effect is caused by the Coriolis force and the 
conservation of the potential vorticity leading to changes of relative vorticity 
analogous to the conservation of angular momentum in mechanics. The phase 
speed of the Rossby waves is always directed from West to East and is 

2 2c u
k l
β

= −
+

, 

where u is the basic zonal speed, β = 2Ωcosφ/R is the so-called Rossby parameter 
(Ω is the Earth angular velocity, R is the Earth radius, k is the zonal wavenumb-
er, and l is the meridional wavenumber.) Thus Rossby waves owe their origin to 
the gradient of the tangential speed of the planetary rotation (planetary vortici-
ty). The lowest wave mode (with the minimal k = 1) changes its sign once over 
the 360˚-long longitudinal circle. 

The planetary waves are generated by winter flow over mountains and by 
sea-land temperature contrasts and propagate in horizontal and vertical direc-
tions (Charney & Drazin, 1961). The vertical propagation of the waves into the 
stratosphere along with the decreasing air density dramatically increases their 
amplitude. This increase often leads to nonlinear wave breaking accompanied by 
energy release that produces temperature anomalies and sometimes reverses the 
direction of the zonal wind. The zonal wind in turn affects the wave propagation 
by modifying the wave refraction index. 

Another wave that defines the earth’s dynamics is the “Kelvin wave”, which 
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propagates in the ocean or atmosphere and balances the Earth’s Coriolis force 
against a topographic boundary such as a coastline, or a waveguide such as the 
equator. For an observer traveling with the wave, the coastal boundary is always 
to the right in the Northern Hemisphere and to the left in the Southern Hemis-
phere. Hence the Kelvin waves move equatorward with the negative phase speed 
on a western boundary of the Pacific Ocean and poleward with the positive 
phase speed on an eastern boundary of the ocean; the waves move cyclonically 
around an ocean basin (Gill, 1982). 

An example of thermodynamically generated pattern is COWL (Cold Ocean 
Warm Land) pattern. Wallace et al. (1996) argued that the COWL is essentially 
induced by the land-sea temperature distribution. Wallace et al. (1995) showed 
that the contrast in thermal inertia between land and ocean is responsible for the 
existence of the COWL pattern. The land surfaces, with their small heat capaci-
ties, equilibrate much more rapidly with the temperature of the overlying air 
mass than does sea surface temperature and thus experience larger temperature 
variability in response to month-to-month changes in atmospheric circulation 
patterns. It follows that hemispheric mean surface air temperature is largely de-
termined by the temperature of the continents, even when surface air tempera-
ture over the oceans is taken into account in the averaging. By allowing the at-
mosphere to respond to ocean mixed layer temperature fluctuations only via 
heat exchanges directly aloft i.e. excluding the air-sea interaction in the coupled 
land-ocean model, Broccoli et al. (1998) have found that the coupling between 
atmospheric and oceanic circulations does not play a critical role in existence of 
this pattern. 

4. A Short Introduction of the Major Climate Patterns 

Now we briefly describe some major climate patterns formed in the Earth cli-
mate system. In view of many years of investigations and numerous publica-
tions, each of the patterns listed below deserves an extensive review so that this 
presentation could not be considered in any way as to complete and up to date. 

4.1. ENSO Pattern 

El Niño and La Niña are the warm and cool phases of a recurring climate pattern 
across the tropical Pacific called El Niño-Southern Oscillation, or ENSO (Figure 
1). The pattern can shift the phase back and forth irregularly on the time scale of 
two to seven years, and each phase shift triggers changes of sea surface tempera-
ture (SST), air temperature, precipitation, and winds. These changes disrupt the 
large-scale air movements in the tropics, triggering a cascade of global side ef-
fects. The first written record of the impacts of El Niño was made in 1525 when 
the Spanish conquistador Francisco Pizarro observed rainfall occurring in the 
Peru deserts. Walker (Walker, 1928; Walker & Bliss, 1932), who found a connec-
tion between barometer records on the East and West Pacific (between Tahiti 
and Darwin) and its variability, called this pattern “the Southern Oscillation.” 
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Figure 1. NOAA/ESRL Sea Surface Temperature (SST) anomaly based on 1971-2000 cli-
matology: (a) 1988 La Niña condition; (b) 1997 winter El Niño condition. 

 
Bjerknes (1969) noticed that the default state of the sea surface temperatures at 
the East Pacific is remarkably cold for such low latitudes. Since the western Pa-
cific is relatively warm, a large SST gradient exists along the equatorial Pacific. 
As a result, there is direct thermal circulation in the atmosphere along the Pacif-
ic. The cool dry air above the cold eastern equatorial Pacific waters flows west-
ward along the surface toward the warm West Pacific. There, the air is heated 

https://doi.org/10.4236/ajcc.2021.102010


A. Ruzmaikin 
 

 

DOI: 10.4236/ajcc.2021.102010 212 American Journal of Climate Change 
 

and supplied with moisture from the warm water. This systematic equatorial 
circulation associated with the zonal pressure gradient was named the “Walker 
Circulation” by Bjerknes. Bjerknes thought that fluctuations in this circulation 
initiated pulses in the Southern Oscillation and ultimately led to an ENSO event. 

Bjerknes (1966, 1969) associated the feedback loop of the oceanic and atmo- 
spheric circulation over the tropical Pacific as a “chain reaction”, noting that “an 
intensifying Walker Circulation also provides for an increase of east-west tem-
perature contrast that is the cause of the Walker Circulation in the first place.” 
Bjerknes also found that this interaction could operate in the opposite: a de-
crease in the equatorial easterlies diminishes the supply of upwelling cold water 
and the lessened east-west temperature gradient causes the Walker Circulation 
to slow down. He thus provided an explanation for the association of the low 
phase of the Southern Oscillation with El Niño as well as the association of the 
high phase with normal cold state of the Eastern Pacific. 

Vecchi et al. (2006) explored changes in the Walker circulation since the mid- 
nineteenth century using observations and global climate model experiments. 
Observed Indo-Pacific sea-level pressure reveals a weakening of the Walker cir-
culation. The size of this trend is consistent with theoretical predictions, is accu-
rately reproduced by climate model simulations and within the climate models, 
is largely due to anthropogenic forcing. The climate models indicate that the 
weakened surface winds have altered the thermal structure and circulation of the 
tropical Pacific Ocean. In contrast, Sohn et al. (2013), who examined the changes 
in Walker circulation over the recent decades analyzing the sea surface temper-
ature (SST), deep convective activities, upper-tropospheric moistening, sea level 
pressure (SLP), and effective wind in the boundary layer over the 30-year period 
of 1979008 showed that the eastern tropical Pacific has undergone cooling while 
the western Pacific has undergone warming over the past three decades, causing 
an increase in the SST gradient. Since the SST trend was attributed to more fre-
quent occurrences of central Pacific-type El Niño in recent decades, it is sug-
gested that the decadal variation of El Niño caused the intensified Walker circu-
lation over the past 30 years. 

A comprehensive review of current understanding of the spatio-temporal 
complexity of this climate cluster mode and its influence on the Earth system has 
been given by Timmermann et al. (2018). It has been shown that the leading 
Empirical Orthogonal Function (EOF), which usually displayed as the classical 
El Niño pattern with eastern tropical Pacific warming tongue, exhibits variability 
on quasi-quadrennial timescales (3 years). But the second EOF has enhanced va-
riance on quasi-biennial and decadal timescales. The interplay of these two EOFs 
largely captures the spatial diversity of the observed ENSO mode. El Nio events 
can be viewed as the superposition of these two EOF modes, which results in a 
complexity of ENSO variability. On the other hand, La Nia events are weaker 
than El Nio events and exhibit less diversity in their spatial patterns, pointing to 
an asymmetry in the underlying dynamical processes for ENSO. 
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The oscillatory nature of ENSO requires mechanisms that include both posi-
tive and negative ocean-atmosphere feedbacks. As nicely reviewed by Wang 
(2001), the delayed oscillator, the western Pacific oscillator, the recharge-dis- 
charge oscillator (Jin, 1997; Timmermann et al., 2018) and the advective-reflective 
oscillator (Picaut et al., 1997) have been proposed to interpret the oscillatory 
nature of ENSO. All of these oscillator models have a positive ocean-atmosphere 
feedback in the equatorial eastern and central Pacific hypothesized by Bjerknes 
(1969). Each, however, has different negative feedbacks that turn the warm 
(cold) phase into the cold (warm) phase. In the delayed oscillator, free Rossby 
waves generated in the equatorial Eastern Pacific propagate westward and reflect 
from the western boundary as Kelvin waves. Since thermocline depth anoma-
lies for the returning Kelvin waves have signs opposite to those in the equa-
torial eastern Pacific, these anomalies provide negative feedback for the coupled 
ocean-atmosphere system to oscillate. In the Western Pacific oscillator, equa-
torial easterly wind anomalies in the Western Pacific, which are produced by 
Western Pacific off-equatorial cold SST and high SLP anomalies, induce an 
ocean upwelling response that evolves eastward along the equator to provide 
negative feedback. In the recharge-discharge oscillator, equatorial wind anoma-
lies in the central Pacific induce the meridional Sverdrup transport that recharges 
(or discharges) equatorial heat content. It is the recharge-discharge process that 
leaves an anomalously deep (or shallow) equatorial thermocline that serves as 
the phase transition for the coupled ocean-atmosphere system. The advec-
tive-reflective oscillator assumes that anomalous zonal currents associated with 
wave reflection at the ocean boundaries and mean zonal current tend to stop the 
growth of El Niño. The unified oscillator model, Equation (2) includes all of the 
physics (Wang, 2001): 

( ) ( ) 3
1 1 1 2 2

T a b t b t T
t

τ τ η τ δ ε∂
= − − + − −

∂
 

( )1 h
h c t R h
t

τ λ∂
= − − −

∂  

1
1 dT R
t τ
τ∂

= −
∂

                         (2)
 

2
2 eh R
t τ
τ∂

= −
∂

 

where T is the SST anomaly, h is the thermocline anomaly, τ1 and τ2 are zonal 
wind stress anomalies. The parameters a, b1, b2, c, d, e are constants, the para-
meters η, δ and λ represent the delay times, and the parameters E, Rh, 1

Rτ  and 

2
Rτ  are damping coefficients. 

Ruzmaikin (1999) suggested considering ENSO as a stochastic driver that ex-
cites the atmospheric anomaly states (Figure 2). This idea led to a concept to 
make 11-year solar activity forcing of climate feasible through stochastic reson-
ance—a mechanism that amplifies a weak input to a nonlinear bistable system 
by the assistance of noise (Gammaitoni et al., 1998). 
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Figure 2. (a) 47-year long time series of observed Nino 3.4 index (blue line) and solar ac-
tivity approximated by the sunspots number (green line); (b) The rectangular bars show 
when the system is in the anomalous state, the horizontal width of a bar gives a residence 
time in this state. Both the ENSO and sub-threshold solar forcing are included; (c) Spec-
trum of the function shown in the second panel; (d) Spectrum when only the ENSO forc-
ing is present (Ruzmaikin, 1999). 

4.2. The Climate Pattern Generated by Sea-Land Thermal  
Contrast (COWL) 

One of the dominant modes of natural variability in the Northern Hemisphere is 
called the “Cold Ocean-Warm Land” (COWL) pattern. The COWL pattern was 
identified by partitioning the observed winter season time series of monthly 
mean surface air temperature into a very slowly varying radiative component, 
and a component exhibiting rapid year-to-year fluctuations, the latter compris-
ing the COWL pattern (Wallace et al., 1995, 1996; Quadrelli & Wallace, 2004), 
Figure 3. Broccoli et al. (1998) demonstrated that the COWL pattern appears to 
be a robust feature that can be extracted from both the observations and coupled 
model. 

Wallace et al. (1996) pointed out that the COWL pattern does not appear as a 
single EOF of the 500 hPa heights. Quadrelli and Wallace (2004) showed that the 
COWL pattern can be reconstructed as a linear combination of the first two 
EOFs of monthly mean December-March sea level pressure. Using the Northern 
Hemisphere land station data, it was determined that roughly half of the tem-
poral variance of monthly mean hemispheric mean anomalies in surface air 
temperature during the period 1900-1990 were linearly related to the amplitude 
of a distinctive spatial pattern in which the oceans are anomalously cold and the  
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Figure 3. (a) The COWL pattern obtained by regression of the 
monthly mean geopotential heights at 500 hPa upon hemis-
pheric-mean surface temperature anomalies for cold season 
months in 1946-1993 (Wallace et al., 1996). 

 
continents are anomalously warm poleward of 40˚N. Apart from an upward 
trend since 1975, to which El Niño has contributed, the amplitude time series 
associated with this pattern resembles seasonally dependent white noise. It is 
argued that the variability associated with this pattern is dynamically/thermody- 
namically induced and is not necessarily an integral part of the fingerprint of 
global warming (Wallace et al., 1995). 

The internally generated variability in the COWL pattern identified in the 
coupled model integration was used to assess the importance of the upward 
trend in the amplitude of the observed structure-function over the last 25 years. 
This trend, which has contributed to the accelerated anthropogenic warming of 
Northern Hemisphere temperature over recent decades, may not be purely ran-
dom (Broccoli et al., 1998). 

4.3. Annular Patterns (NAM and SAM) 

The planetary wave-zonal wind interaction of the atmospheric dynamics gene-
rates the major climate patterns in the middle-high latitudes called annular modes 
(http://www.atmos.colostate.edu). There are two annular modes: the Northern 
Annular Mode (NAM) and the Southern Annular Mode (SAM), Figure 4. These 
modes are characterized by north-south shifts in atmospheric mass between the 
polar regions and the middle latitudes and explain more of the week-to-week, 
month-to-month, and year-to-year variance in the extratropical atmospheric 
flow than any other climate phenomenon. For example, the NAM and SAM ex-
plain on the order of 20% - 30% of the total variance of geopotential heights 
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Figure 4. The NAM and SAM ring-like patterns of winter-
time climate anomalies. A positive NAM at high latitudes 
manifests in low pressure and temperature, and strong 
wind; at low latitudes it is seen in high pressure and tem-
perature, and weak wind. The signs of the anomalies are 
opposite for the negative NAM. Similar pattern is displayed 
by the SAM. For more details see the website of David 
Thompson at http://www.atmos.colostate.edu. 

 
and wind fields of their respective hemispheres, depending on the level and 
timescale (Thompson & Wallace, 1998). 

The time series associated with annular modes are possibly consistent with a 
normally distributed red-noise process. The indices of the annular modes are 
based on the leading principal component (PC) time series of gridded geopoten-
tial height anomalies at a given pressure level. Thus the variability in the NAM is 
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represented by its first principal component, called “the NAM index”, which has 
noticeable magnitude mainly during the winter season (December to March or 
often October to March). The PC can be positive or negative thus indicating two 
phase states of the NAM and SAM. Thompson & Wallace (2001) found a signif-
icant difference in cold weather events in diverse regions (such as minimum 
winter temperatures in Chicago, Paris and Tokyo) dependent on the sign of the 
NAM index. 

It was suggested and demonstrated in numerical simulations that the excita-
tion of the first EOF (i.e. the NAM), which characterizes the zonally-symmetric 
anomaly of atmospheric circulation, involves interaction between the planetary 
waves and the zonal-mean flow in the atmosphere (Limpasuvan & Hartmann, 
2000). The second EOF (PNA-type patern) reflects the non-zonally symmetric 
structure of the planetary waves (Quadrelli & Wallace, 2004). 

The nonlinear wave-zonal flow interaction (Holton & Mass, 1976) can be en-
visioned as a dynamical system with two basic states in its phase space corres-
ponding to positive (negative) anomalies (Chao, 1985; Yoden, 1987; Ruzmaikin 
et al., 2003, 2006a) i.e. positive (negative) NAM. The system spends some time in 
residence at one or another state wandering between the two states (Ruzmaikin 
et al., 2003, 2006a). 

Thompson and Wallace (1998) noted that the strengthening of the polar vor-
tex over the 30 years (1960-1990), unrelated to any known tropospheric forcing, 
has led to speculation that anthropogenically induced temperature changes at 
stratospheric levels might somehow be responsible. However the analysis of the 
residence time distributions for the Northern Annular Mode shows that the large 
difference of the tails of the residence time distributions for positive and nega-
tive phases of the NAM (characterized by the kurtoses) points to a temporal 
dominance of one of the phases in rarely occurring events (Ruzmaikin, 2009). 
This suggests an unrelated to the global warming explanation of the dominance 
of the positive NAM in mid-1960s to the late 1990s indicated by Thompson and 
Wallace (1998). 

It has been shown that the NAM index at different heights of the atmosphere 
is statistically significantly affected by the solar variability (proxied by solar 10.7 
cm flux, Figure 5) (Ruzmaikin & Feynman, 2002). The effect varies depending 
on the time in the winter and the direction of the tropical stratospheric winds 
(the QBO), see Figure 5. Response of the stratosphere to solar variability, in par-
ticular at 30 hPa, and dependence of this response on the QBO phase was first 
discovered by Karen Labitzke (Labitzke, 1987) and further investigated by La-
bitzke and van Loon (For summary of their results see Labitzke (2004).) The 
most interesting extra finding by Ruzmaikin and Feynman (2002) was that at the 
beginning of winter at the West phase of the QBO and at the end of winter at the 
East phase of the QBO the atmosphere responds to solar activity in a coherent 
manner stretching from sea level to the top of the stratosphere, thus outlining a 
vertical extension of the NAM pattern. For comparison, we indicate the effect of  
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Figure 5. The solar variability influence on the NAM in the winter (November to March). 
The red circles mark the NAM index (the principal component of the first EOF of geopo-
tential heights) for the high solar flux input on the Earth’s stratosphere, the blue stars 
mark the NAM index for the low solar flux. The solar flux is proxied by the 10.7 cm solar 
radio flux. The case (a) corresponds to the West QBO, the case (b) corresponds to the 
East QBO. The effect is visible from the middle stratosphere (10 hPa) to the troposphere 
(850 hPa) (Ruzmaikin & Feynman, 2002). 
 
solar variability on the PNA index (see the next section). Note that although the 
PNA is close to the second EOF it is still a linear combination of the two EOFs (a 
reduced first and a strong second EOF). The change in the probability of having 
long residence times (i.e. effect on the tail of distribution) under external forcing 
is larger than the change in the mean residence time. As an example, we examine 
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the solar variability forcing on the NAM. We show that the stochastic process 
that drives the NAM is affected by solar variability (Ruzmaikin & Feynman, 
2002). At high solar activity, the NAM spends slightly more time in its negative 
phase in the stratosphere and slightly less time (compare to the positive phase) 
in the troposphere. A particularly noticeable change in the tails of the distribu-
tions is seen near the tropopause. This difference should be taken into account 
in studying the role of solar variability on the stratosphere-troposphere coupling. 
Much stronger influence on the NAM may occur during rare but prolonged changes 
in solar activity. An example is the dominance of the negative NAM during the 
70-year-long Maunder Minimum of solar activity as inferred by Ruzmaikin et al. 
(2004b). 

The effect of solar variability on the NAM is more pronounced on time scales 
longer than the 11-year solar cycle due to the thermal inertia of the oceans (Ruz-
maikin et al., 2004b). Empirical studies show that solar variability influences North 
African climate on multi-decadal time scales (Stager et al., 2007; Ruzmaikin et 
al., 2006b). For example, using annual records of the water level of the Nile col-
lected in 622 - 1470 A.D. two characteristic time scales that may be linked to so-
lar variability were identified: a period of about 88 years and a period just ex-
ceeding 200 years (Ruzmaikin et al., 2006b). These time scales are characteristic 
of the rate of auroras (caused by solar activity) that were recorded in the North-
ern Hemisphere at the same time interval (Feynman & Fougere, 1984; Ruzmai-
kin et al., 2006b). Ruzmaikin et al. (2006b) suggested that a possible physical link 
between solar variability and the low-frequency variations of the Nile water level 
involves the influence of solar variability on the NAM and on its North Atlantic 
Ocean and Indian Ocean patterns that affect the rainfall over the sources of the 
Nile in Eastern Equatorial Africa. 

It has also been shown that the reconstructed sensitivity of the sea level tem- 
perature to a longer-term (multi-century) solar forcing in the Northern Hemi- 
sphere is in very good agreement with the empirical temperature pattern cor- 
responding to changes of the NAM Ruzmaikin et al. (2004b). The temperature 
pattern (cold in Europe-warm in Greenland) associated with this mode was do-
minant during the Maunder Minimum. 

Time evolution of the annular spatial patterns can also be traced. Data analys-
es (Kodera, 1995; Baldwin & Dunkerton, 1999) and modeling (Shindell et al., 
1999; Gray et al., 2003) show that wind anomalies in the upper-middle stratos-
phere move poleward and downward during the winter. A greater fraction of 
stratospheric perturbations penetrates to the Earth’s surface during solar maxi-
mum conditions than during solar minimum conditions (Hameed & Lee, 2005). 
These anomalies are affected by the variable solar UV flux that impinges on 
ozone and temperature at the top of the stratosphere (Haigh, 1994). Through the 
thermal wind relationship, temperature changes induce a gradient in the zonal 
wind that influences propagation of planetary waves. Since the interaction of the 
zonal-mean wind and planetary waves is considered as a probable mechanism of 
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the NAM generation the solar influence on this interaction may explain why the 
poleward-downward propagation of anomalies depends on the level of solar ac-
tivity. 

Daily and monthly resolution indices of the annular modes are available from 
the NOAA CPC. The data is available from 1958 to present for the Northern 
Annular Mode and from1979 to present for the Southern Annular Mode 
(https://www.cpc.ncep.noaa.gov/). The NAM/NAO Indices for the Northern 
Annular Mode/North Atlantic Oscillation are available back to the middle 1800s 
based on station data over the Atlantic sector. The most widely used index is 
based on surface data from Iceland and Portugal or the Azores. An excellent 
source for historical indices of the NAM is maintained by Jim Hurrell at: 
https://www.cgd.ucar.edu/cas/. 

The SAM Indices for the SAM preceding the satellite era (that is preceding 
1979) are based on very limited observations: there are only a handful of stations 
over the high latitudes of the SH, and there are no continuous data records over 
Antarctica prior to 1958. There are three different SAM indices available for the 
period preceding 1979. All are generated on the basis of midlatitude stations 
and/or tree ring records: 1) Data provided by Gareth Marshall (British Antarctic 
Survey) at http://www.nerc-bas.ac.uk/icd/gjma/sam.html; 2) Tree ring based re-
constructions of the annular modes that can be obtained from Martin Wid-
mann at GKSS (m.widmann@bham.ac.uk) and Julie Jones at Univ. Sheffield (Ju-
lie.Jones@Sheffield.ac.uk); 3) Midlatitude station-based values of the SAM availa-
ble from Martin Visbeck at the University of Kiel at  
http://www.ifm-geomar.de/SAM. 

4.4. Atlantic Multidecadal Oscillation (AMO) and Atlantic  
Meridional Over-Turning Circulation (AMOC) 

Atlantic Multidecadal Oscillation is a mode of variability of the North Atlantic 
Ocean covering a region from 0 to 80˚N with 60 - 80 years of SST variations 
(Figure 6). 

A possible mechanism of the AMO is based on the about 150-year instrumen-
tal record of a quasi-periodicity of about 70 years, with a few distinct warmer 
phases between ca. 193020131965 and after 1995, and cool phases between 
190020131930 and 196520131995 (van Oldenborgh, et al., 2009). In models, 
AMO-like variability is associated with small changes in the North Atlantic 
branch of the Thermohaline Circulation called Atlantic Meridional Overturning 
Circulation (AMOC). However, historical oceanic observations are not sufficient 
to associate the derived AMO index to present-day circulation anomalies. Mod- 
els and observations indicate that changes in atmospheric circulation, which in-
duce changes in clouds, atmospheric dust and surface heat flux, are largely re-
sponsible for the tropical portion of the AMO. 

The pattern of the Atlantic meridional overturning circulation (AMOC) is de-
fined by the zonally-integrated component of surface and deep currents in the  
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Figure 6. (a) AMO pattern extracted from SST monthly anomalies in 1870–2013, based 
on the record from Hadley Center. (b) AMO index for the same time period  
https://www.metoffice.gov.uk/weather/climate/.  
 
Atlantic Ocean (Buckley & Marshal, 2016). Weijer et al. (2019) presented a com-
prehensive review of the stability of the Atlantic Meridional Overturning Circu-
lation based on concepts of the Dynamical Systems Theory, and conclude that it 
cannot be ruled out that the AMOC in the current climate is in, or close to, a re-
gime of multiple equilibria. But there is considerable uncertainty in the location 
of stability thresholds with respect to our current climate state, there are no 
credible indications of where the present-day AMOC is located with respect to 
thresholds. 

4.5. Pacific North-American Pattern (PNA) 

PNA (Figure 7) had been identified as a pattern of the mid-tropospheric geopo-
tential height field extending from the mid-Pacific to eastern North America 
(Wallace & Gutzler, 1981). Long-sustained winter regimes of alternating high 
and low pressure in Greenland with effects on climate in Europe were found to 
be associated with the pattern of the long waves in the upper westerlies showing 
a general reversal over the Northern Hemisphere and winter climate variability 
along the Atlantic coast of North America (Dickson & Namias, 1976). The posi-
tive phase of the PNA pattern is associated with above-average temperatures 
over western Canada and the extreme western United States, and below-average 
temperatures across the south-central and southeastern U.S. 

The positive phase is also associated with an enhanced East Asian jet stream  
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Figure 7. The PNA pattern for January, April, July, and October, displayed so that the 
plotted value at each grid point represents the temporal correlation between the monthly 
standardized geopotential height anomalies at that point and the teleconnection pattern 
time series valid for the specified month (NOAA Center for Weather and Climate Predic-
tion). 
 
and with an eastward shift in the jet exit region toward the western United 
States. The negative phase is associated with a westward retraction of that jet 
stream toward eastern Asia, blocking activity over the high latitudes of the North 
Pacific, and a strong split-flow configuration over the central North Pacific. The 
positive phase of the PNA pattern tends to be associated with El Niño, and the 
negative phase tends to be associated with La Niña. 

The mechanisms that form and drive PNA pattern were extensively investigated 
by Dai et al. (2017). The main mechanism involves a poleward-propagating 
Rossby wave train that has been excited by tropical convection. It also involves 

https://doi.org/10.4236/ajcc.2021.102010


A. Ruzmaikin 
 

 

DOI: 10.4236/ajcc.2021.102010 223 American Journal of Climate Change 
 

barotropic amplification of a PNA-initiated disturbance due its interaction with 
the zonally asymmetric climatological flow. The mechanism includes amplifica-
tion through a positive feedback onto the growing teleconnection pattern by 
high-frequency eddy vorticity fluxes. 

The PNA is affected by long-term solar variability (Ruzmaikin, 2007). Figure 
8 shows the projection of the Total Solar Irradiance (TSI) on the PNA pattern. 
The 21-century deep minimum of solar variability and the extended solar activi-
ty minima in the 19th and 20th centuries (1810-1830 and 1900-1920) are consis-
tent with minima of the Centennial Gleissberg Cycle (CGC), a 90 - 100 year var-
iation of the amplitude of the 11-year sunspot cycle observed on the Sun and at 
the Earth (Feynman & Ruzmaikin, 2014). The Earth’s climate response to these 
prolonged low solar radiation inputs involves heat transfer to the deep ocean 
causing a time lag longer than a decade. It had been found that the Pacific North 
American pattern (PNA) is a dominant spatial pattern of the climate response to 
CGC, which allows distinguishing the CGC forcing from other climate forcings 
(Ruzmaikin & Feynman, 2015). The CGC minima, sometimes coincidently in 
combination with volcanic forcing, are associated with severe weather extremes. 
Thus the 19th-century CGC minimum coexisted with volcanic eruptions, led to 
 

 
Figure 8. (a) Projections of the global (land plus ocean) temperature maps (PNA pattern) 
on the Total Solar Irradiance (TSI). The maps are constructed from the Berkeley Earth 
record (http://berkeleyearth.org/data/) for the time period 1850-1999. (b) The PNA pat- 
tern reconstructed by Trouet and Taylor (2009), see World Data Center for Paleoclima-
tology, https://www.ncdc.noaa.gov/). The characteristic features of the PNA pattern, such 
as the temperature anomaly of opposite signs over the USA, are seen in both images 
(Trouet & Taylor, 2009). 
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especially cold conditions in United States, Canada and Western Europe in 1816 
called “year without summer” (c.f.  
http://www.bellrock.org.uk/misc/miscyear.htm). 

4.6. Pacific Decadal Oscillation Pattern (PDO) 

The PDO was first introduced by Mantua et al. (1997) as the leading EOF of 
North Pacific (20˚N - 70˚N) monthly-averaged anomalies of Sea Surface Tem-
perature (SST). The anomalies were defined as departures from the climatologi-
cal annual cycle after removing the global mean SST (Figure 9). During a “posi-
tive” (warm), phase, the west Pacific becomes cooler and part of the eastern 
ocean warms; during a “cool” or “negative” phase, the opposite pattern occurs. 
Mantua and Hare (2002) described PDO as a long-lived El Niño-like pattern of 
Pacific climate variability, and by others as a blend of two sometimes indepen-
dent modes having distinct spatial and temporal characteristics of North Pacific 
sea surface temperature variability. A growing body of evidence highlights a 
strong tendency for PDO impacts in the Southern Hemisphere, with surface cli-
mate anomalies over the mid-latitude South Pacific Ocean, Australia and South 
America. Interdecadal changes in Pacific climate have widespread impacts on 
natural systems, including water resources in the Americas and many marines  
 

 
Figure 9. (a) Two phases of the PDO pattern extracted from SST monthly anomalies, based on NCEP/NCAR Reanalysis for 
1900-2013. (b) PDO index for the same time period constructed by Nate Mantua (Mantua & Hare, 2002). 
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fisheries in the North Pacific. Tree-ring and Pacific coral-based climate recon-
structions suggest that PDO variations—at a range of varying time scales—can 
be traced back to at least 1600, although there are important differences between 
different proxy reconstructions. The 20th Century PDO fluctuations were most 
energetic in two general periodicities—one from 15-to-25 years, and the other 
from 50-to-70 years. 

Related to PDO is the Interdecadal Pacific oscillation (IPO, Figure 10). IPO is 
an oceanographic/meteorological phenomenon similar to the Pacific decadal os-
cillation (PDO), but occurring in a wider area of the Pacific. While the PDO oc-
curs in mid-latitudes of the Pacific Ocean in the northern hemisphere, the IPO 
stretches from the southern hemisphere into the northern hemisphere. 
 

 
Figure 10. IPO patterns in models and observations (Henley et al., 2017). Observed IPO 
spatial patterns in (a, c) IPO positive and (b, d) IPO negative phases. (e) IPO from Jan 
1871 to Sep 2005 (blue) and PDO from Jan 1880 to Feb 2008 (red) smoothed with 
37-month filter (images are from the Hadley Center). 
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The period of the IPO oscillation is roughly 15 - 30 years. Positive phases of 
the IPO are characterized by a warmer than average tropical Pacific and cooler 
than average northern Pacific. Negative phases are characterized by an inversion 
of this pattern, with cool tropics and warm northern regions. The IPO is consi-
dered as pattern of ENSO-like decadal variability, typically it has been defined as 
the projection of monthly Pacific SST data upon a pattern representing low-pass 
(decadal) global SST variability (Newman et al., 2016) driven by both interan-
nual and decadal ENSO variability, which is coherent between the North and 
South Pacific. The North and South Pacific centers of action in the IPO regres-
sion pattern are roughly equivalent but the PDO North Pacific center is signifi-
cantly enhanced. 

Although earlier modeling suggested that the PDO might be a physical mode 
of coupled ocean-atmosphere interaction oscillating on decadal time scales, the 
later research (Newman et al., 2016) has found that the PDO is not a single 
physical mode of climate variability but instead represents the combination of 
different processes including random atmospheric forcing, teleconnections from 
the tropical Pacific, and ocean Rossby waves/shifts in the basin-wide ocean gyre 
circulation, which operate on different time scales. The random atmospheric 
forcing can be represented by a slow dynamical system integrating fast forcing 
approximated as white noise, and the ocean at a given location is treated as a 
motionless mixed layer in which surface heat fluxes both force and damp SST. 
The forcing is represented by fluxes associated with weather variations, which 
relative to oceanic time scales have approximately no memory and the same va-
riance at all time scales (i.e. white noise). The resulting SSTA are damped by a 
linear negative air-sea feedback, representing loss (gain) of heat with the atmos-
phere from anomalously warm (cold) waters. Another forcing is the ENSO trop-
ical Pacific SST anomaly, which induces tropical precipitation that shifts forcing 
global atmospheric teleconnections by altering near-surface air temperature, 
humidity, wind, and clouds far from the equatorial Pacific. When El Niño events 
peak during boreal winter, the Aleutian low deepens and the changes in the sur-
face heat fluxes, wind-driven mixing, and Ekman transport in the upper ocean 
all act to create a positive PDO pattern. 

5. Discussion of Climate Role of the Patterns 
5.1. Influence of Climate Patterns on the Global Trend 

Global warming experienced a pronounced hiatus during the period 1998-2013, 
which started from a very warm El Nino year 1998 (Trenberth & Fasullo, 2013; 
Trenberth et al., 2014; IPCC, 2014). The global temperature trend dropped to 
0.05C/decade compared with the previously recorded long-term trend 0.12C/decade. 
Paleoclimate records show that the decades of low global temperature trend were 
found not exceptional (IPCC, 2014). 

Despite the continuous anthropogenic influence on climate in the form of the 
greenhouse release (CO2 level now crossed a record high level of 400 ppm in 
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2013) a 15-year plateau in global mean temperature had not been predicted by 
most climate models. This plateau in global warming, or climate hiatus, is highly 
puzzling for the climate research community especially in view of record-high 
extreme weather events (coldest and hottest temperatures and floods). The prob-
lem is to identify the actual mechanism of climate variability that causes the 
hiatus. There could be two major potential causes: 1) The reduced input of solar 
irradiance onto the Earth system due to the deep minimum of solar activity (the 
so-called Gleissberg cycle minimum); and 2) The role of the heat absorption by 
the ocean including its deep layers. 

The strongest pause in the rise in global mean surface temperatures is in the 
northern winter mainly of the central and eastern Pacific Ocean and over north-
ern continents associated with the PDO in its negative phase Trenberth et al. 
(2014). 

The COWL mode plays its role. At hiatus, the ocean uptakes the heat, i.e. stays 
cooler than land. This should intensify the COWL mode of land-ocean ex-
change. When during hiatus the COWL mode spends more time in its one 
phase, say cold ocean-warm land, the normal air exchange is broken and there 
are more extreme weather events (hot spots, floods) over land. Due to enhanced 
evaporation over wet places and lack of moisture supply to dry areas, this is what 
might happen in Europe. It apparently leads to the more intense formation of 
the Deep Convective Clouds (DCC) over land and suppressed DCC formation 
over oceans (Aumann & Ruzmaikin, 2013). 

The slowdown in the rate of global warming in the early 2000s is not evident 
in the model experiments due to ensemble average of natural climate variabili-
ties (Meehl et al., 2014). However, as shown by these authors, a number of indi-
vidual ensemble members from that set of models successfully simulate the ear-
ly-2000s hiatus when the observed negative phase of the IPO occurred that con-
tributed to the early-2000s hiatus. If the recent methodology of initialized decad-
al climate prediction could have been applied in the mid-1990s using the Coupled 
Model Intercomparison Project Phase 5 multi-models, both the negative phase 
of the IPO in the early 2000s as well as the hiatus could have been simulated, 
with the multi-model average performing better than most of the individual mod-
els. Kosaka and Xie (2013) showed that accounting for recent cooling in the east-
ern equatorial Pacific reconciles climate simulations and observations. They pre-
sented a method of uncovering mechanisms for global temperature change by 
prescribing, in addition to radiative forcing, the observed history of sea surface 
temperature over the central to eastern tropical Pacific in a climate model. Al-
though the surface temperature prescription is limited to only 8.2 percent of the 
global surface, the model reproduces the annual-mean global temperature re-
markably well with correlation coefficient r = 51 for 1970012 (which includes the 
last hiatus and a period of accelerated global warming). The simulations capture 
major seasonal and regional characteristics of the hiatus, including the intensi-
fied Walker circulation, the winter cooling in northwestern of the North Ameri-

https://doi.org/10.4236/ajcc.2021.102010


A. Ruzmaikin 
 

 

DOI: 10.4236/ajcc.2021.102010 228 American Journal of Climate Change 
 

ca and the prolonged drought in the southern USA. The results showed that the 
current hiatus is part of natural climate variability, tied specifically to a La 
Niña-like decadal cooling. 

5.2. Persistence of Climate Patterns 

Here we will assume that climate patterns can be treated as the attractors of gen-
eral dynamical systems, to which the climate system does belong. The assump-
tion that the climate patterns are the attractors of the climate dynamical system 
is justified by a number of previous researchers such as Corti, Palmer, Ghil and 
other authors referred in this paper. A simple representation of attractors is po-
tential wells (Khatiwala et al., 2001; Ruzmaikin, 2009). Does external forcing 
change the spatial structure of patterns? The model studies of the Lorenz system 
and double-well dynamical systems show that the positions of the wells deter-
mining the localization of the climate patterns are changed only slightly. A mod-
el of the mean zonal flow-planetary wave interaction (Ruzmaikin et al., 2003) 
also indicates weak changes. Observational evidence of pattern change is limited 
so far but for example, Kodera (1995) found that during low solar activity the 
NAO pattern is confined to the Atlantic sector, while during the high solar activ-
ity the NAO-related anomalies extend over the whole Northern Hemisphere. 

Introducing an external forcing would change either the phase states or the 
residence times (occupation frequencies) of the states. According to Rossby (1941), 
forcing does not change the states (i.e. the spatial structure of the climate pat-
terns characterized by the EOFs) but only affects the mean residence times of the 
states. The Rossby conjecture was further advocated by Palmer (1999) and Corti 
et al. (1999). For visual illustration (Figure 11) Palmer presented a picture with 
two cups representing the phase states: a ball is randomly thrown from above for 
simulating occupation of the states, and a fan imitating the external force 
(Figure 10(a)). He also supported the hypothesis by using as an example the 
Lorenz dynamical system, which (for a certain range of parameters) has two ba-
sic states. However, further analysis of the forced Lorenz system (Khatiwala et 
al., 2001) showed that the change in the mean residence times is a small effect 
compared with a more dramatic change in the tail of the probability distribution 
of the residence times, meaning the increase in the frequency of occurrence of ex-
tremely persistent events. The main reason for this is that the Rossby-Palmer 
conjecture missed an extra and critical feature of this no-linear system: the 
energetic barrier ∆U separating the system (the ball) in one of the states from 
transition to the other state (Figure 10(b)) (Ruzmaikin, 2007). As known from 
the 20th-century studies, the residence time in a state is exponentially propor-
tional to the height of the barrier (the Kramers formula (Kramers, 1940)). An 
external forcing affects the depth of a state thus effectively increasing (or de-
creasing) the barrier. And, due to the exponential sensitivity of the residence 
time, even a small change of the barrier may induce noticeable effect on the time 
spent in that state. A numerical study of a model double-well potential system 
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with stochastic transitions between the wells showed that when one of the wells 
is made deeper (by changing a parameter in the potential) the probability dis-
tribution of residence times in this well displays a longer tail (Khatiwala et al., 
2001). 

5.3. A Role of Patterns in the Long-Term Climate Prediction 

Ed Lorenz in his celebrated paper on chaos Lorenz (1963) wrote: “When our re-
sults concerning the instability of nonperiodic flow are applied to the atmos-
phere, which is ostensibly nonperiodic, they indicate that prediction of the suffi-
ciently distant future is impossible by any method unless the present conditions 
are known exactly. In view of the inevitable inaccuracy and incompleteness of 
the weather observations, precise very-long-range forecasting would seem to be 
nonexistent”. However, in response to this statement Bunimovich (2015) pro-
vided some surprising mathematical results suggesting that a long-term forecast 
in dynamical systems with complex behavior is not so hopeless. After rigorously 
proving a prediction theorem for a simple chaotic dynamical system, he shows 
that by collecting enough data it is possible in principle to uncover the hierarchy 
of states for chaotic dynamical systems. This finding indicates that combining an 
analysis of chaotic bursts (transitions through chaotic dynamics) between rather 
regular states of the atmosphere (like cyclones, anticyclones and other types of 
eddies) may improve a weather/climate forecast on long time scales. 
 

 
Figure 11. A pictorial illustration of possible mechanisms of external influence on a cli-
mate pattern: (a) As envisioned by Palmer (1999): Solid caps correspond to two states of 
the pattern. Random population of the cups is controlled by dropping a ball. Forcing is 
depicted as a fan, which tends to blow the ball toward the left-hand cup. (b) As suggested 
by Ruzmaikin (2007) (see also Khatiwala et al. (2001)): There is a barrier between the 
states. Random transitions from one state to another are controlled by internal Earth’s 
dynamics. The external forcing (such as solar variability) slightly changes the depth of 
one of the potential wells for some time leading to an exponentially amplified increase of 
the residence time in that well and, as a consequence, a longer persistence of this state. 

https://doi.org/10.4236/ajcc.2021.102010


A. Ruzmaikin 
 

 

DOI: 10.4236/ajcc.2021.102010 230 American Journal of Climate Change 
 

5.4. Time Patterns in Climate Structure 

Lovejoy (2013) argued that there are three qualitatively different regimes in the 
weather-climate system: The high-frequency regime is clearly the weather and 
the low-frequency regime is clearly “the climate”, but there is also an in-between 
regime had been described with a spectral plateau as “low-frequency weather”. It 
was dubbed “macroweather” because it is a kind of large-scale weather (not 
small-scale climate) regime. In each regime, the standard deviation is S(δt) ≈ δtH, 
so that the standard deviations of the fluctuations at “weather”, “macroweather”, 
and “climate” scales are roughly power laws (scaling) and are distinguished by 
their exponents. This finding generalizes the stochastic approach introduced by 
Hasselmann (1976) but still lucks of the role of spatial-temporal correlations that 
form the climate patterns. 

6. Conclusion 

After all the questions arise: 1) why should we be interested in climate patterns, 
and 2) is there a need to advantage the knowledge of them. 
• It is well excepted that specific climate patterns, for example, El Niño or 

PDO, greatly influence the weather conditions not only locally but also over 
the globe. 

• The climate patterns may substantially affect the global trend (see Section 
5.1). 

• External forcing of climate, such as solar forcing, can be well seen in climate 
patterns and may be deemed and difficult to record globally. 

• Climate patterns allow prediction of long-term evolution of climate. 
• To advance the knowledge of climate patterns it would be important to better 

understand the mechanisms of their formation. 
• Use the arsenal of accumulated knowledge of dynamical systems that treat 

climate patterns as attractors of the Earth’s dynamical system. 
Currently, there are an extensive number of publications that include the weather 

effects of specific climate patterns, such as the ENSO, PDO and NAM. However, 
there is a gap in research and publications devoted to investigation of mechan-
isms of climate pattern formation and their role in climate prediction. This re-
view is an attempt to fill this gap and stimulate research of climate patterns both 
from observational and modeling viewpoints. 
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