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Abstract 
Theoretical approach with analytical and numerical procedure for determina-
tion initial displacement of a reinforced and prestressed concrete members, 
simple and cantilever beams, loaded by axial forces and bending moments is 
proposed. It is based on the principle of minimum potential energy with equal-
ity of internal and external forces. The equations for strain internal energy 
have been derived, including compressed and tensile concrete and reinforce-
ment. The energy equations of the external forces with axial flexural displace-
ment effects have been derived from the assumed sinusoidal curve. The tra-
pezoid rule is applied to integrate the segment strain energy. The proposed 
method uses a non-linear stress-strain curve for the concrete and bilinear 
elastic-plastic relationship for reinforcement; equilibrium conditions at a sec-
tional level to generate the strain energies along the beam. At the end of this 
article are shown three specific numerical examples with comparative, expe-
rimental (two tests) results with the excellent agreement and one calculation 
result with a great disagreement, by obtaining results of virtual principle me-
thod. With this method is avoiding the adoption of an unsure (EJ), as in the 
case of underestimating or overestimate initial flexural rigidity. 
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1. Introduction 

The mechanics of continuous environments in dealing with the stress and strain 
distribution under the influence of external forces start from the assumption that 
the substance is continuous and therefore deformations are treated as conti-
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nuous transformations of the space in which the stressed body exists. 
Some changes occur immediately after a change in stress condition and thus 

are called initial deformations. The equilibrium process of deformation of elastic 
bodies under linear interconnection between stress and deformation is the sub-
ject of the study of classical elastic theory and falls into reversible processes. A 
more complete theoretical treatment of the occurrence of increasing material 
deformation was carried out by the Austrian physicist L. Boltzman, who formu-
lated a theory of subsequent elastic action and laid foundations for a linear 
theory of flow. The deflection [1] (Branson, D.F. and Shaikh, A.F., 1985) of the 
prestressed concrete beams is calculated with simple equations by modifying some 
of the existing methods. The comparison between the experimental and theoret-
ical results shows good agreement. Many reinforced and prestressed concrete 
bridges throughout the world are either deteriorated or distressed to such a de-
gree that structural strengthening of the bridge or reducing the allowable is ne-
cessary to extend the service life of the bridge. 

While several methods are available in the literature for evaluation of deflec-
tions, this chapter concentrates on the effective moment of inertia method in [2] 
Building Code Requirements for Reinforced Concrete (ACI 318) and modifica-
tions introduced by ACI Committee. These reports include [3] ACI 435.2R, 
“Deflection of Reinforced Concrete Flexural Members”, and [4] ACI 435.1R, 
“Deflection of Prestressed Concrete Members”. The report replaces several re-
ports of this committee (ACI 318) in order to reflect the more recent state of the 
art in design. The recommendations of current codes show that most of them 
underestimate or overestimate the initial flexural rigidity.  

Simplified method of ACI. According to ACI 318 Building Code [2] instan-
taneous displacement of reinforced concrete beams, shall be computed with ef-
fective moment of inertia Jc, given by 

3 3

1cr cr
e g cr g

a a

M M
J J J J

M M

    
 = ⋅ + − ⋅ ≤   
     

             (1) 

Jg = moment of inertia of gross concrete section about centroidal axis, neg-
lecting reinforcement; 

Jcr = moment of inertia of crecked section transformed to concrete; 
Ma = maximum moment in member at stage displacement is computed; 

Mcr = crecking moment = t g

t

f J
y
⋅

               (1a) 

yt = distance from centroidal axis, neglecting reinforcement; 
fr = modulus of rupture of concrete.  

Initial displacements are calculated considering the rigidity EcJe. The result in-
dicates that the ACI method is appropriate for calculation of displacements of 
RC beams. The ACI method may be improved [5] if the steel areas are included 
in the calculation of the cracking moment Mcr. 

The ACI method [6] diverges enough from the nonlinear model. When the 
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load is small and the beam is ithe uncracked state, the method of ACI underes-
timates the total displacement. This method overestimates the total displacements 
for higher loads.  

The European approach suggests calculation deflection based on curvature 
integration at many sections along the span. Tension stiffening [7] depends mainly 
on the bond characteristics of the reinforcement that, depend on many factors 
including the type of reinforcement elastic Modulus, and Poisson’s ratio. Ignor-
ing the tension stiffening significantly reduces the accuracy of the deflection 
prediction to 56%. The CEB-FIP Code 1990 (CEB-FIP 2004) [8] interpolates the 
effective curvature eκ  between the curvature of the gross and the cracked sec-
tions gκ  and crκ , respectively. Both the computed and the measured deflec-
tions can be found in [9] Abdelrahman (1995). 

Eurocode 2 (ENV 1992-1-1) [10]. The deflection calculation according to 
Eurocode 2 is generally determined by double integration of the curve K along 
the length of the element l, 

( )2dv K l= ∫∫                         (2) 

The proposed procedure is not directly applicable to elements that are ex-
posed to significant axial force. Two methods [11] are suggested for calculating 
the deflection of both reinforced and prestressed concrete flexural members. In 
the more rigorous approach, the curvature is calculated at a reasonable number 
of sections along the beam and then the deflection is calculated by numerical in-
tegrations. In the approximate method, the deflection is calculated twice assum-
ing the whole member to be in the uncracked and fully cracked conditions. The 
following equation is used as a function of the uncracked and fully cracked def-
lections.  

( )II IΔ 1 Δξ ξ∆ = + −                       (2a) 

( )2
1 21 cr aM Mξ β β= −  

where 1β  is a coefficient that takes account of bond properties of the bars: 0.5 
for plan bars, 1.0 for high bond bars; 2β  is a coefficient of the duration of the 
loading or of repeated loading, 1.0 is for short-term loading, and 0.5 is for many 
cycles of repeated loading; Δ is displacement, ΔI displacement calculated on an 
uncracked section and ΔII the displacement calculated on the basis of a cracked 
section According to CEB [11], the modulus of elasticity of concrete, Ec, may be 
estimated from compressive strength cf

∗ , using relationships presented in the 
design codes. 

The present paper has developed an analytical procedure (model) based on 
energy principles applied very frequently in the past (Pfluger, 1948, Timoshenko 
and Gere, 1961) 

The most comprehensive theoretical review of the Energy method was given 
by [12] Bažant and Cedolin (2010). The method proposed in this paper covers 
the tensile zone of concrete. In most papers the equilibrium conditions and 
moment-curvature relation may be accurately fulfilled at the mid-span of the 
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beam only.  
This paper includes the integration performed in all the segments along the 

beam span. By this paper, we intend to affirm the variational principle, the prin-
ciple of the minimum of potential energy, that is, the principle of virtual dis-
placements, for determining the deformation of elements of concrete structures. 
The energy potential of the internal stresses and strains along the element is 
equated with the energy of the external forces for the required deformation. This 
equalization gives a quadratic equation for the case of axial cross-section force or 
prestressing force, or a linear equation for the case of moments in cross-section, 
without axial forces. The expressions for the energy potentials of the internal 
forces are shown in a general (open) form, with the possibility of numerical in-
tegration, which is in fact a free member of the quadratic (linear) equation that 
directly affects the magnitude of the displacement. 

2. Theoretical Bases and Proposed Model Develop for  
Determination Displacements of RC & PSC Beams 

2.1. Relation between Stresses and Strains in Nonlinear Concrete  
Theory 

When solving some tasks in the theory of reinforced concrete structures, [13] 
(Ghali A. and Favre R., 1994) such as deformations problems and theories, non- 
linear relationships between stresses and concrete strains are also taken into ac-
count. Such nonlinearities are generally applicable to the so-called. Instantane-
ous deformations, which occur immediately after the change of load i.e. stress, as 
well as at the temporal deformations of concrete flow, for stress calculation, for 
pressed concrete, idealized diagram ,c cσ ε . The analytic diagram ( ),c cσ ε  was 
obtained by dividing the stress ordinates of the characteristic curve by the factor 
α, α/γc (Figure 1), is given in the form (Equation (3)): 

( )12
1

2c c c c
c

βσ ε ε ε
ε

= −                      (3) 

γc partial safety coefficient for concrete (γc = 1.50) and γc = 1.30 for non-ran- 
dom calculating situation, α = 0.85 coefficient for taking the influence of long- 
acting effects on compressive strength of concrete, fcd = fck/γc = β calculating 
compressive strength of concrete.  

2.2. Steel for Reinforcing [10] 

According to EC 2 for reinforced concrete structures, all types of steel that meet 
the EN10080 steel standards can be used. In compliance with this, the thermal 
coefficient α = 10 × 10−6 Co and the modulus of elasticity Ea = 200 kN/mm2 are 
taken. Calculation diagram stress-strain of steel for reinforcing is a bilinear dia-
gram (Figure 1). For steels with a pronounced flow threshold, the best approxi-
mation is achieved by an under-angle branch (ideally elastic-plastic), bilinear 
diagram. 
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Figure 1. Constitutive relations for concrete EC 2 [10] and steel with bili-
near diagrams. The analytic diagram ( ),c cσ ε  was obtained by multiply the 

stress ordinates of the characteristic curve by the factor α, α/γc. He strains 
of compressed and tensile concrete cε  and ctε  are shown as curve lines 
trought the cross section. Diagram stress strain of the steel for reinforcing 
is adopted a bilinear diagram. For smooth steel is fyk/ftk = 240/360 MPa. 
and for ribbed iron is fyk/ftk = 400/500 MPa. Modulus of elasticity is Es = 
200 kN/mm2. Steel for prestressing, bilinear idealiset diagram is obtained 
by applying the partial coefficient PN (γs = 1.15) for basic actions. The steel 
of the cables Φ7 mm have, fyk/ftk = 1500/1700 MPa. The strings Φ2.5 mm 
have yield stress somethin bigger, fyk/ftk = 1600/1900 MPa. 

 
The expansion diagrams show us the dependence of the stress from the rela-

tive elongation at simple uniaxial tension; they are reached experimentally. Dia-
gram without self-hardening effect in this case is 

s s sEσ ε= ⋅  at yd
yd

s

f
E

ε =                     (4) 

0 s ydε ε≤ ≤  

2.3. Stress and Strains Analysis of Prestressed Elements [10] 

Pre-flow stress and strains (t = 0) govern stresses and forces with the index “o”. 
So the stress in concrete is ( )0ckσ , steel for prestressing ( )0skσ  and steel for 
reinforceing ( )0sσ   

Introducing nk = Ek/Ec and ns = Es/Ec to determine the ideal cross section cha-
racteristic, is in effect 

i iB B n A= + ×  

s ie e nA B∆ = ×                         (5) 

e—distance of the center of gravity of the concrete from the center of gravity 
of the steel section 

Δe—distance of the center of gravity of the concrete cross-section to the cen-
ter of gravity of the idealized cross-section  
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Bi, Ji idealized cross-section and moment of inertia. 
In the case of adhesion between concrete and steel, the stress in the fiber at the 

distance yi from the center of gravity is (Equation (6)),  

,u l k k
c i

i i

N M
y

B J
σ = ± ⋅                       (6) 

,
l

s c snσ σ= × ; ,
u

s c snσ σ′ ′= ×  

Concrete strains are valid according to (6a) and pursuant to 
2

2 1
12 0c c

c c c
σ ε

ε ε ε
β

− + =                      (6a) 

cdfβ α=  

1 1 1 c
cu c c

σ
ε ε ε

β
= − −                      (6b) 

u
cε  is the upper strain = cε : l

cε  is the lower strain. 

2.4. Steel for Prestressing ([10], EC 2) & [14]  

The mechanical properties for prestressing of steel [10] are defined by the basic 
parameters of steel fp 0.1 k—characteristic value of the conventional stretching 
limit to which corresponds irreversible dilatation of 0.1%. 

ukε : characteristic strain value at maximum stress. 
ftk: characteristic value at straining Modulus of elasticity is adopted with a 

value of 200 kN/mm2. 
In compliance with the above, the bilinear idealized diagram shown in Figure 

1 is defined. It is recommended to limit the strain of steel to 10‰, without ex-
plaining whether the tot expansion of cables and straining of the section in the 
tightened zone are considered. The calculation diagram was obtained by apply-
ing the partial coefficient for PN (γ = 1.15) for basic actions (Figure 1).  

Cables that are strained at a later stage are considered to have high, while 
pre-straining cables normal ductility. 

3. Virtual Energy Method  

External forces acting on the body, execute action during its deformation. We 
will assume that this action is accumulated as deformation energy (deformation 
action, internal force action). If it is desired that no part of the defamation action 
is converted into kinetic energy and is lost in this way, then it is assumed that 
loads grow immensely slowly starting from zero. In this case, there will be a bal-
ance between external and internal forces at all times. 

If the deformation of the body is entirely elastic, then the energy accumulated 
during the loading is recovered. The deformation action of the internal reactions 
of the body is obtained if in volume element we put together all contributions 
and then we integrate them by the volume of the body. Potential energy of the 
structure [12] is defined according to the principle of the minimum potential 
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energy (Bažant and Cedolin 2010). 
The potential energy of the structure is defined by the given expressions (7).  

( ), 0, 0U W U Wδ δΠ = − Π = − =                 (7) 

Of all possible internal forces that stand in equilibrium with the given external 
forces, the real forces are those for which the potential Πiδ  has a minimum 
value. 

0 0 0
d d d

V A V
i i i i ij ijY u V p u A Vδ δ σ δγ+ =∫ ∫ ∫                (8) 

In which the expression  

0
d

V
ij ij iV Uδ σ δγ δ=∫                      (8a) 

is the change in the free energy (stain internal energy) of the system. 
The equalizing the change of the free energy of the system (strain energy) (8a) 

with (8) potential of the external forces (volume and surface integral), displace-
ment of the structural element is determined. 

3.1. The Strain Energy of the RC Beam Subjected to Bending [15] 

In accordance with the expression (9), the strain energy of compressed concrete 
along the cross-section is derived from the constitutive relation diagram, calcu-
lated by [15] Balabusic and Folic (2015) for concrete and steel (Figure 2). 

( )

( )12
1

2
12

1

d d

2 d d

d
3

M
c c c

V

c c c c c
l c

c
c c b

c

U V

A l

x b l

ε

ε

ε

σ ε

β ε ε ε ε
ε

εβ ε ε
ε

 
=  

 
 

⋅ ⋅ ⋅ ⋅ ⋅ 
 

 = ⋅ − ⋅ ⋅ ⋅ ⋅
 

=



∫ ∫

∫ ∫

∫

              (9) 

Strain cε  of compressed concrete exposed to bending is obtained from the 
equilibrium condition (see Equation (19, 19a, 19b). 

 

 

Figure 2. Represents the strains at the cross-section and the strains 
along the beam; the strain sε  of tensile reinforcement is represented 
as a sine function. The strains of compressed and tensile concrete cε  
and ctε  are shown in curve lines along the beam. 
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The strain energy at the ith section of compressed concrete after numerical 
integration along entire length of the beam by trapezoidal rule is finally given as,  

( ) 2
1

1

1 1 ;
2 3

M c
ci c b

c

U x b
εδβ ε δ δ
ε

 = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 
 

            (10) 

( ) ( ) ( )( ),0 ,1
12

2
M M M

c c c
n

ii

lU U U
n

−

=
= + ⋅∑  

3.2. Strain Energy Transmitted through Tensile and Compressive  
Reinforcement 

The strain energy of tensile and compressive reinforcement [15] is given by 

( )
0 0

d d d
l lM

s e e p p il
U A lσ ε σ ε 

 
=


+∫ ∫ ∫                 (11) 

The following notations have been used in expressions (8), where eσ  is the 
stress in steel for the case s ydε ε<  pσ  represents stress in steel for the case 

s ydε ε> . 
The approximation of tensile reinforcement siε  strain by the sine function 

(Figure 2) is accepted per sections along the beam:  

sin
2si so

n i
n

ε ε π −
= × × , 0,1, , 1i n= −� ; n—number of sections    (12) 

The strain soε  stated in Equation (12) represents the maximum strain of the 
steel in central section of simple beam. 

The strain energy transmitted by tensile reinforcement [15] per section is:  

( ) ;
2
ydM

si s yd s s ydU A f
ε

ε ε ε


⋅


= − > 
 
⋅  

Per section is:  

( )
21 ;

2
M s

si s yd s yd
yd

U A f
ε

ε ε
ε

= ⋅ ⋅ ⋅ <                  (13) 

Per volume integral 

( ) ( ) ( )
1

0
1

2
2

n
M M M

s s si
i

lU U U
n

−

=

 = + 
 

∑  

The strain energy that is transmitted by compressive reinforcement is:  

( )
221 ;

2
M c b b

si s yd c yd
yd b b

x a x a
U A f

x x
ε

ε ε
ε′

′ ′   − −
= ⋅ ⋅ ⋅ ⋅ ⋅ <   

   
      (14) 

( ) ( ) ( )
1

0
1

2
2

n
M M M

s s s i
i

lU U U
n

−

′ ′ ′
=

 = + 
 

∑  

3.3. The Strain Energy of the Prestressed Concrete (PSC) Beams  
[15] 

The integration is performed directly per volume because the strain energy is 
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changeable or constant along the section of the beam. Diagram as a difference of 
the strain energies of the compressed and tensile concrete are:  

For the simple beam,  

( )22
, 1 1

11 1
3 2 3

k
u u l

N u u l
c i c cU b d b dδ δ δβ ε δ β ε δ δ

  −
= ⋅ ⋅ ⋅ ⋅


 
 
− − ⋅ ⋅ ⋅ ⋅ ⋅ − − 

 
 (15) 

or the cantilever beam  

( )

( )

( ),

2
, 1

2

1

2
2

2 2

1
3

1 1
2 3

1
2

1

;

1
2 1

k

k

k

l
N l
c i c

l u
l u

c

Ne e
yd c c c yd si

e e

Ne c
yd c s i

e yd

U b d

b d

x a x a
A U

x x

h x
A U

d x

δβ ε δ

δ δβ ε δ δ

σ ε ε ε

εασ
α ε

 
⋅ ⋅ ⋅ ⋅  

 

⋅ ⋅ ⋅ ⋅ ⋅

 
⋅ ⋅ ⋅ 
 

 
⋅ ⋅ ⋅

= −

 −
− − − 

 

′ ′− −
+ ≤ =

− −
=


+ + −

     (15a) 

1 1

,
u l

u lc c

c c

ε ε
δ δ

ε ε
= =  

Whereat upper and lower steel strains  

u e
s c

e

x a
x

ε ε
′−

=  

1
1

l e
s c

e

h x
d x

αε ε
α

− −
=

− +
 

After integration along the prestressed beam and by use of the trapezoidal rule, 
we obtain strain energy for concrete and steel. 

1

,0 ,
1

2
2

k k k
n

N N N
c c c i

i

lU U U
n

−

=

 = + ⋅ 
 

∑                  (15b)
 

1

,0 ,
1

2
2

k k k
n

N N N
s s s i

i

lU U U
n

−

=

 = + ⋅ 
 

∑  

3.4. Strain Energy of Tensile Concrete of the RC Beam Subjected to  
Bending 

The strain energy of tensile concrete per cross-section is derived in accordance 
with the constitutive relations Equation (8) and equilibrium condition (Figure 2) 
expressions (see Equation (17)-(19), later) 

( )
, 2

M
ct i ct ct ct

lU x bβ ε= ⋅ ⋅ ⋅ ⋅                       (16) 

The limiting values of the strength and strain of concrete at tension, based on 
CEB (1990) and CEN (2004) [8] [11] [16] are:  

( )2 3 1 40.25 0.6 0.4ct dβ β= ⋅ ⋅ + ⋅  
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1 3( / (0.4 9.25 ( 9.5)ct ct ckf fε = ⋅ ⋅ +                 (16a) 

( )ct ct s bx h xε ε= ⋅ −  

After integration along the beam and by use of trapezoidal rule, it is:  

( ) ( ) ( )( )1
,0 ,12

2
nM M M

ct ct ct ii

lU U U
n

−

=
= + ⋅∑                 (16b) 

4. Equilibrium Conditions [10] EC 2 

The strains in the sections have been defined by adopting the tensile reinforce-
ment strain εs and the N(εc) force from the equilibrium conditions (Equation 
(19), later). From the proposed tensile reinforcement strain εs and responsible 
force N(εc), it is necessary to define the compressive and tensile concrete strains 
(εb, εct) of the beam’s cross-sections. (Figure 2) The dimensionless values (Equa-
tion (17) of the internal normal force nu and the internal bending moment mu 
are: 

2u u
ck

e Mm n
h bh f

= =⋅ ; u
ck

Nn
bdf

=                   (17) 

e is the eccentricity of the external normal force. 
Equation (21) represents the eccentricity of the selected beam section, thus it 

is represented by the sine function along the beam in the corresponding Equa-
tion (18). 

0 sin , 0,1, 2, , 1
2i

n ie e n n
n
−

⋅ ==
π

⋅ −�                 (18) 

The value e0 stated in Equation (18) represents the maximum eccentricity in 
the middle of the beam. As to well-known equilibrium conditions, the equality 
of forces and moments of the RC& PSC beams must be met in each selected sec-
tion.  

0
0,

n

b s ct s
k

N D D D Z N′
=

= + − = +∑                  (19) 

0 0
0,

n n

i
k

M z D Mν
=

= ⋅ = ⋅∑ ∑  

( )

( )( )

21 11 1 1 1
3 2 3 3 4

1 1
2

u u

s s
s s

s n m s s

k k

ϕ ϕ ϕϕ α ϕ ϕ

σ σ α σ σ′
′

     − − − + − + −     
     =

− − +
     (19a) 

hereat: s
D
ϕ
ϕ

=
+

, 
1

s

c

D
ε
ε

= ; 2u
Mm

bh β
= ; s

s

A
k

A
′=  

1210s c
s

s
ασ ε ϕ′

−
= ⋅ ⋅ ⋅ ; 1

1210s c
s

s
σ ε ϕ −

= ⋅ ⋅ ⋅         (19b) 

Neutral axis is: bx sh=  
The internal force N belongs to the condition with defined stresses and strains 

and it is included into the moment-bending condition ΣM = 0, corresponding to 
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axial strain energy. 
Equation (19) and (19a) serves to determine the strains of compressed and 

tensile concrete ,c ctε ε , and neutral axis for the adopted strain of tensile rein-
forcement εs as an independent variable. 

5. Energy Potential of External Forces  

According to [12] Bazant Z.P. and Cedolin L. the value of the integral is (Figure 
3),  

0 0
d d

V A
i i i i iW Y u V p u A= +∫ ∫                   (20) 

Energy of external forces is 

( ) ( )
0 0

d d
l l s c

i iW q x u x x P x
h

ε ε−
= −∫ ∫              (21) 

Uniform load expressed as a function of bending moment in cross-section, 

( )2

2i

M x
q

x
∂

= −
∂

                      (22) 

Therefore after two partial integrations, for boundary conditions 

( )0, , 0, 0ix x l M u x= = = =                (23) 

for 

( ) ( )
( )

2

2
s cu x

x
hx

ε ε
κ

∂ +
= =
∂

 

and the normal force in the cross-section Ni = −Pi gives the external energy as a 
function of the intersecting forces (moments and axial forces) and strains,  

( ) ( )
0

d
l s c s c

iW M x N x x
h h

ε ε ε ε+ − = +  
∫              (24) 

 

 

Figure 3. External Loads of Reinforced & Prestressed 
(simple and cantilever beam). 
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In order to determine the deformation (displacement) of a structural element 
(Simple and Cantilever Beams), it is necessary to adopt a deformation line,  

( ) sinvη ξ ξ= ⋅ π                        (25) 

where v is usually the maximum displacement, then the energy of external forces 
can be expressed (Figure 3). 

For SIMPLE BEAM 

1 1

2

2 sin cos
2

2
2

n n
i y iy izi i

pk pk

W q l v P v M v

v vN M
l l

ξ ξ
= =

π
= ⋅ + π ⋅ + π
π

− − ⋅
π

∑ ∑
        (26) 

For CANTILEVER BEAM applies:  

1 0

2

2 1 cos1 s n
2 2

21

in n
i y iy izi i

pk pk

W q l v P v M v
l

v vN M
l l

ξ ξ
= =

− π π = − ⋅ + + π ⋅ 



π 

− −
π
− 

 

∑ ∑
    (27) 

Whereby are uniform load, Piy concentrated forces, Miz concentrated mo-
ments at element (rod). Npk: prestressing force in cross-section. 

Mpk: moment from the prestressing force in the element. 
v: displacement of the deflection of a structural element. 
EXAMPLE NUMBER 1, D. Jeftić. 1979. [17], Prestressed beam,  
Comparison experimental results with virtual principle method 
In Figure 4, the cross-section and static diagram of the prestressed beam 

girder (bracket) are shown, which was examined by Prof. D, Jevtić [17]. 
The beam was prestressed on the track, and the release was performed 8 days 

after the concrete was embedded. At the period of 40 days, the beam has been 
loaded with its own weight g = 0.295 kN/mL and force P = 2.07 kN at the free 
end of the console (cantilever), which amounted to 42% of fracture force Pu. 
Concrete strength after 28 days fck = 55.0 MPa. The force of the previous stress is 
Nk = 93.60 kN.  

Prestressing steel strength is fyk = 1600 MPa, while the max is the elastic strain 
of the steel εyk = 8.0 × 10−3. Number and diameter of prestressing wires is Ak = 18 
Φ2.50 mm (Ak = 0.8836 × 10−4 cm2). 

The cross-sectional area of the concrete is Ac = 118 cm2, moment of inertia 
ideals. It is a cross section Jci = 1656 cm4. 

The task of this numerical example is to determine the initial displacement of 
the end of the prestressed beam by the energy method and compare it with the 
experimental results. 

Basic (initial) static influences in console clamping 0.590 kN mgM = ⋅ , 
2.07 2.0 4.14 kN mpM = × = ⋅ , 93.8 0.0153 1.432 kN mkM = × = ⋅  where the 

difference between the center of gravity of the cables and the center of gravity of 
the cross section is Δek = 9.39 – 7.86 = 1.53 cm, so that the total clamping mo-
ment is 4 3.248 kN mM = ⋅ , 
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Figure 4. Prestressed cantililever beam [17], D. Jeftić, experimental mode 
with concrete and steel strains. 

 
In Table 1 moments in cross sections, edge strains (upper and lower) of con-

crete are shown in εci, as well as strains in the direction of the prestressing force 
( )kN
kiε . 
According to Equation (15), we get dilatation energy Uci concrete cross-section 

of prestressed beams and especially (15a) energy Usi in prestressed wires. 
The expansion energy of the girder, along the length of the structure, was ob-

tained after integration with the Trapezoidal rule (15b).  
From Equation (15b):  

333.6948 10 kN mkN
cU −= × ⋅ ; 30.43537 10 kN mkN

sU −= × ⋅  

The energy of external forces according to (27) is,  
2

2

0.36338 0.295 2.0 2.07 93.6 2.0
1.432 0.36338 2.0

46.8 2.0242

iW v v v
v

v v

= × × × + × + ×

− × ×

= +

  

By equalizing the external and internal energy of the prestressed beam, a qua-
dratic equation is obtained 2 0.043282 0.000801 0v v+ − =  with one of the solu-
tions: v = 14 mm, which corresponds perfectly to experimentally measured result. 

EXAMPLE NUMBER 2. Assoc. Prof. Baderul Hisham Ahmad (2015) 
Prestrssed Concrete Design (SAB 4323) Deflections [14] [18] (overtop) 
Comparatinon of calculate results (PSC Beam) and Virtual principle me-

thod. 
The effect of deflection in structure varies according to the use of the structure. 

[14]. Short term deflections occur immediately upon the application of load 
(caused by elastic deformation of the concrete in response to loading), can use 
various methods to calculate displacement, due to external loads and due to pre-
stressed force.  

Double Integration Method, Moment Area Method, Conjugate Beam method 
and Principle of Virtual Load: 

a). Calculation of Assoc. Prof. Baderul Hisham Ahmad, Short-term deflection. 
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At Transfer, deflection (camber), due to pure prestress force, Figure 5 = −0.0605 
m (overtop). 

Whereat: Nk = 6800 kN, Mk = 6800 × 0.26 = 1768 kN;  
Ac = 0.4596 m2, Ec,28 = 28 kN/mm2, Jc = 0.06396 m4; 

fck = 40 MPa (=fcu,28).  
b). Calculation by Principle of Virtual Load at Table 2 are shown moments in 

the sections, upper an lover strains on the edge of the sections, strain energy of 
the sections and finally energy along the beam at Figure 5 are not shown the 
strains of pure prestress force because that energy is neglected (about 1%). 

 
Table 1. Example number 1.  

 4 3 2 1 0  

Mi 3.248 2.009 0.7855 −0.3671 −1.432 [kNm] 

( )u
ciε  −0.0462 0.0345 0.1131 0.1901 0.2651 [×10−3] 

( )l
ciε  0.5463 0.3869 0.2487 0.1285 0.0228 [×10−3] 

( )kN
kiε  0.1180 0.1324 0.1567 0.1730 0.1978 [×10−3] 

kN
ciU  33.3114 24.0114 15.645 5.3218 11.5188 [×10−3] 

kN
siU  0.12303 0.1544 0.21703 0.26443 0.34575 [×10−3] 

 
Table 2. Example number 2. 

 3 2 1 0  

Mi 0.00 883.53 1768 1768 [kNm] 

( )u
ciε  0.3290 0.5605 0.8382 0.8382 [×10−3] 

( )l
ciε  0.3290 0.1253 −0059856 −0.59856 [×10−3] 

Uci 115.06 122.9689 294.6134 294.6134 [×10−3] 

 

 
Figure 5. Prestressed concrete beam [8] [14] (overtop), 
calculation model with concrete strains. 
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( ) 345.060 0.071201 0.043933 122.9689 10ciU − = × − = ×   

((
) )( ) 3

115.06 2 122.9689 294.6134 294.6134 294.6134

294.6134 122.9689 115.06 24.0 6 2 10

49.81072

cU

k

−

= + × + + +

 + + + × 
=  

By equalizing energy of the external forces (26) and the strain energy (15) in 
the case of simple beam, we obtain displacement v. Influence of the strain energy 
of steel (prestressed force) may be neglected. It’s only about 1%. 

226800 442.0 sin 60 49.81072
24.0

v v⋅ ⋅ + ⋅ =�  ⇒  11.0 mmv = − , overtop. 

These two results have a great disagreement. (82%) 
EXAMPLE NUMBER 3. Magda I. Mousa (2015) 
Reinforced Concrete Beam [19] [20] 
Comparative experimental results with Virtual Principle Method  
An experimental program has been conducted in order to investigate the flex-

ural behavior and ductility of high strength concrete beams with variable length 
of tension [17] reinforcement lap splice, 

The tested beams are of 220 cm total length and 20 × 15 cm cross-section, 
with reinforcing by 4Φ12 mm and concrete strength fcu = 65 MPa, at middle third 
loaded with two (65 kN/2 and 75 kN/2) equal concentrated loads (Figure 6). 

The first yield displacement, Δy, corresponds to the intersection of the tan-
gents to the load-displacement.  

The load-defection curves can be classified into three distinct zones; the first 
zone is the initial part of the curve up to the cracking point, the post-cracking 
zone, continued up to the yielding point, and the post-yield zone, up the failure. 

The task of this example is to determine displacement in the middle of the 
reinforced concrete simple beam when steel strain εs is at the cracking point and 
on the post-yield zone, up the failure. It will be compared and checked with ex-
perimental results of this paper [15] (Figure 7). 

a.1) The cracking point for steel strain εs = 3.60‰ and on the post-yield zone, 
up to failure εs = 14.40‰, εc1 = 2.0‰.  

For two equal forces 65 kN/2 and 75 kN/2, after solving Equation (19a) in ac-
cordanc with (19, 19b), as the polynom of 5-th degree, we obtain the position of 
the neutral axis of reinforced concrete section, the value of concrete strain εc, 
strain energies of the sections and finally by trapezoidal rule strains energies 
along the beam. 

a.1.1) For steel strain εs = 3.60‰ at the cracking point: P = 65.0 kN, mu = 
0.06964, then  

5 4 3 24.46647 3.09329 81.66667 7.30952 10.95774 0ϕ ϕ ϕ ϕ ϕ+ − − + + =   

one of the roots is: φ = 0.4129, s = 0.1866, xb = 3.3586 cm.  
In accordance with (15), (15a) and (15b) we obtain:  
Uc1 = 0.048144 kN, Us1 = 0.294046 kN. 

https://doi.org/10.4236/ojce.2021.112015


M. Balabušić 
 

 

DOI: 10.4236/ojce.2021.112015 250 Open Journal of Civil Engineering 

 

 

Figure 6. Dimension and details of test model [15] 
(reinforcement and concrete). 

 

 

Figure 7. Experimental [15]. Load-deflection rela-
tionship (group 3) and load-steel strain relationship. 

 
Integration by trapezoidal rule:  

   0.0641950 0.392061 0.456276 kN mc s c sU U U+ = + = + = ⋅  
a.1.2) Steel strain εs = 14.40‰, post yield zone, up to failure: P = 75.0 kN, mu = 

0.07914. 
5 4 3 27.09287 104.013036 242.569667
23.736721 142.423980 0

φ φ φ φ
φ

+ − −
+ − =
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one of the roots is: φ = 0.8791, s = 0.10881, xb = 1.95861 cm.  
In accordance with (15), (15a) and (15b) we obtain:  
Uc1 = 0.104335 kN; Us1 = 1/2 × 2.26219 × 400,000.00 × 2.0 + 2.2619 × 

500,000.00 × 12.40 = 1.492-856. 

0.139113 1.990475 2.129588 kN mc sU + = + = ⋅  

Equalizing energy of the external forces (26) and the strain energy (15b) in the 
case of simple beam, we obtain displacement. 

εs = 3.60‰: 2 0.750 65.0 sin 60 0.45626v v⋅ ⋅ ⋅ ⋅ =⋅+
π

��  ⇒  8.0 mmv = .  

εs = 14.40‰: 2 0.750 75.0 sin 60 2.129588v v⋅ ⋅ ⋅ ⋅ =⋅+
π

��  ⇒  32.3 mmv = . 

These results given by Principle of Virtual Load correspond with experimental 
results taken from the original article [14] (Figure 7). 

6. Conclusions 

The main objective of this paper is to present a theoretical and analytical model 
that determines the elastic and inelastic structural response, strains and strength 
with the finally initial displacement of the simple and cantilever RC & PCT 
beams. The proposed method defines clearly the initial displacements of rein-
forced and prestressed beams with calculation strains and strain energy along 
with the member.  

The effective flexural rigidity proposed in this paper covers the tensile zone of 
concrete, which produces a more realistic estimation of curve section and ele-
ment deformation. The presented method with calculation strain and stresses 
along the beam including axial forces and bending moments, avoid calculation 
the member stiffness with defining approximate value the modulus of elasticity. 
At first and third example is noticed significantly agreement, experimental and 
calculated results by virtual principle method, on PSC and RC beams. Also cal-
culated results of PSC girder as simple beam have a great disagreement, with re-
sults obtained by virtual principle method. The cause is in stiffness EJ which is 
given as constant, but in fact, it is a complex function smaller than adopted flex-
ural rigidity and displacements calculated by the present virtual method have a 
bigger value. 

Acknowledgements 

The author gratefully acknowledges the support provided by “KRUŠO” 
BUILDING COMPANY OF MONTENEGRO with Presiden and owner Slobo-
dan Radović Krušo. Moreover, the author would like to thank Academic, prof. 
Dr. Radomir Folic for his assistance and proofreading the paper. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

https://doi.org/10.4236/ojce.2021.112015


M. Balabušić 
 

 

DOI: 10.4236/ojce.2021.112015 252 Open Journal of Civil Engineering 

 

References 
[1] Branson, D.E. and Shaikh, A.F. (1985) Deflection of Partialy Prestressed Members. 

SP-86, American Concrete Institute, Detroit, 323-363. 

[2] ACI Committee 318 (1995) Building Code Requirements for Structural Concrete 
(ACI 318-95) and Commentary (ACI 318R-95), American Concrete Institute, Detroit, 
369 p. 

[3] ACI Committee 435 (1966) Deflections of Reinforced Concrete Flexural Members. 
ACI Journal, Proceedings, 63, 637-674.  

[4] ACI Committee 435, Subcommittee 5, Scordelis, A.C. Branson, D.E., and Sozen, 
M.A. (1979) Deflections of Prestressed Concrte Members. Manual of Concrete Prac-
tice, ACI 435.1R-63 (Reapproved 1979), pp. 2-14. 

[5] Cervenka, V. (1985) Constitutive Model for Cracked Reinforced Concrete. Interna-
tional Concrete Abstracts Portal, 82, 877-882. https://doi.org/10.14359/10409  

[6] Araujo, J.M. (1991) A Model for Analysis of Reinforced Concrete Beams. Portu-
guese Magazine of Structural Engineering, No. 32, Lisbon, Portugal, 9-14. 

[7] Aly, R. (2007) Stress along Tensile Lap-Spliced Fiber Reinforced Polymer Reinforc-
ing Bars in Concrete. Canadian Journal of Civil Engineering, 34, 1149-1158.  
https://doi.org/10.1139/l07-046  

[8] Comite’ Euro Internatonal du Beton (CEB) and Federation Internationale de la 
Precontrainte (FIP) (1990) Model Code for Concrete Structures. Comite’ Euro In-
ternatonal du Beton, 6.rue Lauriston, F-75116, Paris.  

[9] Abdelrahman, A.A. (1995) Serviceability of Concrete Beams Prestressed by Fibre 
Reinforced Plastic Tendonds. PhD Thesis, Department of Civil, Geological and En-
vironmental Engineering, University of Manitoa, Winnepeg, 331. 

[10] European Committee for Standardization-Eurocode 2 (2003) Design of Concrete 
Structures. Part 1-1: General Rules and Rules for Buildings, Final Draft, 223 p. 

[11] Comite Euro-International du Beton (CEB) (1985) Design Manual on Cracking and 
Deformations. Comite Euro-International du Beton, Lausnane.  

[12] Bažant ZP and Cedolin L. (2010) Stability of Structures: Elastic, Inelastic, Fracture 
and Demage Theiries. World Scientific Publishing, Politecnico di Milano, Italy. 

[13] Ghali A. and Favre R. (1994) Concrete Structures and Deformations. 2nd Edition, E 
& FN Spon, London. 

[14] Branson, D.E. and Trost, H. (1982) Application of I-Effective Method in Calculating 
Deflections of Partially Prstressed Members. PCI Journal, 27, 86-111.  
https://doi.org/10.15554/pcij.09011982.62.77  

[15] Balabušić M., Folić R. (2015) Energy Analysis of the Critical Force of Slender RC 
Columns. Proceedings of the Institution of Civil Engineers-Structures and Build-
ings, 168, Paper No. 1300064. https://doi.org/10.1680/stbu.13.00064  

[16] CEN (European Committee for Standardization) (2004) EN 1992; Design of Con-
crete Structures, Part 1-1: General Rule and Rules for Buildings. European Com-
mittee for Standardization, Brussels. 

[17] Jevtić, D. (1979) Prednapregnuti Beton. Knjiga 1, Građevinska Knjiga, Beograd, 401- 
403. 

[18] Ahmad, B.H. (2015) Prestressed Concrete Design. (SAB 4323) Deflections, UTM 
Opencoursewre, Matrix Structural Analysis. Malaysia, Johor Bahru.  

[19] Mousa, M.J. (2015) Flexural Behaviour and Ductility of High Strength Concrete 

https://doi.org/10.4236/ojce.2021.112015
https://doi.org/10.14359/10409
https://doi.org/10.1139/l07-046
https://doi.org/10.15554/pcij.09011982.62.77
https://doi.org/10.1680/stbu.13.00064


M. Balabušić 
 

 

DOI: 10.4236/ojce.2021.112015 253 Open Journal of Civil Engineering 

 

(HSC) Beams with Tension Lap Splice. Alexandria Engineering Journal, 54, 551-563.  
https://doi.org/10.1016/j.aej.2015.03.032  

[20] Park, R. (1989) Evaluation of Ductility of Structures and Structural Assemblages 
from Laboratory Testing. Bulletin of the New Zealand Society for Earthquake Engi-
neering, 22, 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166  

 
 

 

https://doi.org/10.4236/ojce.2021.112015
https://doi.org/10.1016/j.aej.2015.03.032
https://doi.org/10.5459/bnzsee.22.3.155-166

	Virtual Principle for Determination Initial Displacements of Reinforced Concrete and Prestressed Concrete (Overtop) Members
	Abstract
	Keywords
	1. Introduction
	2. Theoretical Bases and Proposed Model Develop for Determination Displacements of RC & PSC Beams
	2.1. Relation between Stresses and Strains in Nonlinear Concrete Theory
	2.2. Steel for Reinforcing [10]
	2.3. Stress and Strains Analysis of Prestressed Elements [10]
	2.4. Steel for Prestressing ([10], EC 2) & [14] 

	3. Virtual Energy Method 
	3.1. The Strain Energy of the RC Beam Subjected to Bending [15]
	3.2. Strain Energy Transmitted through Tensile and Compressive Reinforcement
	3.3. The Strain Energy of the Prestressed Concrete (PSC) Beams [15]
	3.4. Strain Energy of Tensile Concrete of the RC Beam Subjected to Bending

	4. Equilibrium Conditions [10] EC 2
	5. Energy Potential of External Forces 
	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

