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Abstract 
This article deals with correlating two variables that have values that fall be-
low the known limit of detection (LOD) of the measuring device; these values 
are known as non-detects (NDs). We use simulation to compare several me-
thods for estimating the association between two such variables. The most 
commonly used method, simple substitution, consists of replacing each ND 
with some representative value such as LOD/2. Spearman’s correlation, in 
which all NDs are assumed to be tied at some value just smaller than the 
LOD, is also used. We evaluate each method under several scenarios, includ-
ing small to moderate sample size, moderate to large censoring proportions, 
extreme imbalance in censoring proportions, and non-bivariate normal (BVN) 
data. In this article, we focus on the coverage probability of 95% confidence 
intervals obtained using each method. Confidence intervals using a maximum 
likelihood approach based on the assumption of BVN data have acceptable 
performance under most scenarios, even with non-BVN data. Intervals based 
on Spearman’s coefficient also perform well under many conditions. The 
methods are illustrated using real data taken from the biomarker literature. 
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1. Introduction 

In research studies involving clinical measurements such as biomarker concen-
trations, it is quite common to have specimens for which the concentration of 
the analyte is non-zero, but below the analytic limit of detection (LOD); that is, 
the measuring device used to determine the level of the analyte in the biological 
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specimen is unable to measure the concentration. For such specimens, all that 
we know is that the analyte is present and that the concentration is less than the 
LOD. Non-zero observations that are less than the LOD are commonly referred 
to as non-detects (NDs). For purposes of statistical analysis, non-detects as we 
have defined them are considered to be left-censored. 

In the study by Amorim and Alvarez-Leite [1], NDs were of particular con-
cern. The authors evaluated urinary o-cresol as a biomarker of toluene exposure 
by calculating the Pearson correlation coefficient (PCC) relating the level of 
o-cresol in the urine of workers exposed to toluene to the level of urinary hip-
puric acid in the same workers. Out of the 54 urine samples that Amorim and 
Alvarez-Leite analyzed, the o-cresol concentration was below its LOD (0.2 μg/ml) 
in 39 (72%); out of these 39 samples, the concentration of hippuric acid was be-
low its LOD (0.1 mg/ml) in 4 (10%). Thus, there were only 15 samples for which 
the data were “complete” for both biomarkers. In the study by Atawodi et al. [2], 
NDs were also of great concern. These authors examined various hemoglobin 
adducts as biomarkers of tobacco smoke exposure by comparing the adduct le-
vels of 18 current smokers with those of 52 “never smokers”. The hemoglobin 
adduct levels were below the LOD (9 fmol HPB/g Hb) in 7 (13%) of the 52 sam-
ples from the “never smokers”. 

Perhaps the method that is most commonly used to deal with samples in 
which there are NDs is to remove the NDs and perform the statistical analysis us-
ing only the “complete data”. In the study by Lagorio et al. [3], the authors used 
this approach in their examination of trans, trans muconic acid (t, t-MA) as a 
biomarker for low-level benzene exposure. They calculated the Pearson correla-
tions among t, t-MA concentrations in urine samples obtained from 10 Estonian 
shale oil workers; these concentrations were estimated using high-performance 
liquid chromatography (HPLC) following three different pre-analytical proce-
dures (methanol dilution, filtration, ether extraction). Another method that is 
commonly used to analyze data sets in which NDs are present is to use “simple 
substitution”; in other words, a value is substituted in place of the NDs and then 
the “usual” statistical analysis is performed on the resulting “new” sample of da-
ta. The most commonly used values in this crude type of imputation include the 
LOD [1] [2], and LOD/2 [4]. We contend that the approaches that are common-
ly used to handle NDs have several shortcomings; the purpose of our study was 
to evaluate some of the commonly used methods, along with some that are not 
so common. 

Nonparametric methods have also been used to deal with samples in which 
NDs are present. In this approach, one treats all NDs as if they were tied at some 
value just below the LOD of the respective measuring device. For example, if one 
wished to correlate two analytes X and Y, at least one of which was undetectable 
in some specimens, one could use Spearman’s Rank Correlation Coefficient (de-
noted here by rs). In this method, the original X and Y values are replaced by 
their respective midranks and the NDs are assigned the smallest midrank for 
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that variable. If one wished to compare the analyte levels between two groups 
and NDs were present in at least one of the two samples, one could compute the 
midranks after combining the data into a single sample; each of the NDs would 
then be assigned the smallest mid-rank. One could then use the Mann-Whitney- 
Wilcoxon (M-W-W) test or other nonparametric two-sample method based on 
these mid-ranks to compare the two groups in terms of the level of the analyte. 
In their evaluation of potential biomarkers of exposure to tobacco smoke, Ata-
wodi et al. [2] used the M-W-W test to compare smokers and never smokers in 
terms of the level of a hemoglobin adduct; NDs were present in the sample of 
never smokers. 

In a simulation study, Wang [5] found that none of the “standard” methods 
described above perform satisfactorily when correlating two measurements X 
and Y that are both subject to left-censoring, especially if X and Y are strongly 
positively correlated (ρ ≥ 0.5). If the distribution of X and Y is bivariate normal 
(BVN), a preferable approach is to estimate the Pearson correlation between X 
and Y using maximum likelihood (ML) [6]. Multiple imputation could also be 
used if the appropriate missing data mechanism is present and other conditions 
are satisfied [7]. 

2. Methods 

We performed a Monte Carlo simulation to compare 5 methods that can be used 
to obtain point and confidence interval (CI) estimates of the correlation between 
X and Y when both X and Y are left censored. These methods included several of 
the “standard methods” that have been used to analyze data in which NDs are 
present, as well as the ML method [6]. The methods compared were as follows: 

(1) Simple Substitution: replace each ND by 
(a) LOD; 
(b) LOD/2; 
(c) 2LOD . 

(2) Complex Substitution [8] [9]: Substitute ( )i i xE X X LOD<  in place of 
each ND among the x-values and substitute ( )i i yE Y Y LOD<  in place of each 
ND among the y-values. In other words, replace each ND for each variable by 
the conditional mean of that variable, given that it is known that the value is less 
than the LOD for that variable. 

(3) Random Imputation from a Uniform Distribution: Substitute a randomly 
selected value from the interval [0, LODx] in place of each ND among the 
x-values and substitute a randomly selected value from the interval [0, LODy] in 
place of each ND among the y-values. The rationale for this method is that there 
may be nothing special about using the LOD or some fraction of it in place of 
the NDs; why not use any randomly generated number between 0 and the LOD. 

(4) Maximum Likelihood [6]. 
(5) Spearman Correlation: All NDs among the x-values are treated as if they 

were tied at some value smaller than the smallest observed x-value; similarly, all 
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NDs among the y-values are treated as if they were tied at some value smaller 
than the smallest observed y-value. Assign midranks in the usual way and calcu-
late rs using these midranks. 

For estimation methods (1)-(4) above, we used a 2nd-order Fisher z-transfor- 
mation, which provides a more accurate estimate of the variance of ( )ˆz ρ , in 
the calculation of the 95% C.I. for ρ. The coverage probability of CIs based on 
this method has been shown to be closer to the nominal level than those based 
on the usual Fisher z-transformation, and the 2nd-order z-transformation poses 
no computational difficulties [10]. For estimation method (5), we evaluated both 
the jackknife and approximate bootstrap confidence interval (ABC) as methods 
for finding a 95% C.I. for the population value of the Spearman correlation. De-
fining the population value of the Spearman coefficient is controversial [11]; we 
followed Newton and Rudel [12] and defined the true value, ρs, to be the mean of 
the rs values calculated from the Monte Carlo samples prior to applying the cen-
soring schemes. 

In the simulation study to compare the point estimation and confidence in-
terval methods described above, we included various settings of several simula-
tion parameters: 1) sample size (n = 20, 30, 50, 75, 100, 200, 500); 2) true correla-
tion between X and Y prior to censoring (ρ = −0.9, −0.6, −0.5, −0.25, 0.0, 0.1, 0.2, 
0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9); 3) true bivariate distribution of X 
and Y (bivariate normal, bivariate gamma, bivariate beta); and 4) censoring 
proportions on X (p1) and Y (p2). We included 55 combinations of censoring 
percentages in the simulations, both balanced and unbalanced. Balanced combi-
nations included (p1, p2) = (0, 0), (10, 10), (20, 20), (25, 25), (30, 30), (40, 40), 
(50, 50), (60, 60), (70, 70), (75, 75), (80, 80), and (90, 90). Unbalanced combina-
tions included (10, 0), (10, 5), (10, 50), (10, 75), (20, 50), (25, 75), (30, 75), (90, 
45), and (90, 0), along with 34 others. All together, we considered 18,480 differ-
ent combinations of simulation parameter settings. We used a Monte Carlo si-
mulation size (MCSS) of 5000. 

Each of the point estimates and corresponding 95% C.I. procedures described 
above were evaluated in terms of the following criteria: 1) bias (and absolute bi-
as), 2) median absolute deviation, 3) confidence interval width, and 4) confi-
dence interval coverage probability (CP). In this article, we present results from 
our comparisons of the CP of 95% CIs based on the different estimation me-
thods. 

3. Results 

The maximum likelihood estimate (MLE) performed best overall in terms of all 
of the criteria that we considered, and it can be recommended for estimating ρ 
even when the assumption of BVN is violated. However, the ML method may 
not be able to produce a point estimate (due to failure of the optimization rou-
tine to converge) for extreme negative values of ρ, small sample sizes and/or ex-
tremely heavy or imbalanced censoring. This is more likely to occur when the 
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joint distribution of X and Y differs substantially from the BVN in terms of mul-
tivariate skewness and kurtosis. Our simulation study was designed so that the 
non-BVN distributions that we included represented substantial departures from 
the BVN in terms of Mardia’s measures of multivariate skewness and kurtosis 
(denoted by β1,p and β2,p, respectively). For the bivariate normal, β1,2 = 0 and β2,2 
= 8. For the bivariate gamma we used in the simulation study, β1,2 = 3.5 and β2,2 
= 12. For the bivariate beta we used, β1,2 = 3 and β2,2 = 10. The ML method per-
formed quite well for most settings of the simulation parameters even when the 
simulated data were generated from these non-BVN distributions. This is 
somewhat surprising since the MLEs were derived under the assumption that X 
and Y followed a BVN distribution. 

Tables 1-3 contains brief summaries of our simulated CP results for simple 
substitution based on LOD/2, complex substitution, random imputation, Spear-
man’s rs (jackknife interval), and Maximum Likelihood. We do not present the 
results for simple substitution based on LOD or 2LOD . The results for 

2LOD  were comparable to, but generally inferior than, those based on 
LOD/2 for almost all simulation parameter settings. Simple substitution based 
on LOD was not competitive with LOD/2 in terms of coverage probability. We 
do not include results for the ABC-based CIs for the Spearman coefficient since 
this method required considerably more computation time than the jackknife 
and provided little or no improvement when compared to the jackknife intervals 
in terms of CP. 

Table 1 summarizes the effects of censoring proportions on CP for only a 
subset of the censoring proportions that we examined: {(0, 0) (0.1, 0.7) (0.25, 
0.25) (0.25, 0.75) (0.5, 0.5) (0.75, 0.375) (0.9, 0) (0.9, 0.9)}. The results for each 
censoring proportion in Table 1 were obtained by calculating the median CP 
over all settings of the other simulation parameters (namely, the true value of ρ 
or ρs, and sample size). The results labelled “non-normal” in the bottom half of 
the table were obtained by averaging the CP results for the bivariate gamma with 
those for the bivariate beta. For example, based on BVN simulated data, the me-
dian CPs over all other simulation parameter settings for censoring proportions 
p1 = 0.1 and p2 = 0.7, were 94.8% for the ML method, 91.5% for the Spearman 
coefficient, 81.0% for complex substitution (CS), 77.0% for simple substitution 
(SS) with LOD/2, and 34.6% for random imputation (RI). Based on the non-BVN 
simulated data, the median CPs for the same censoring proportions for the ML, 
Spearman, CS, SS, and RI methods were 93.9%, 92.9%, 81.4%, 84.0%, and 11.6%, 
respectively. 

We adopted the “liberal” guideline proposed by Bradley [13] for evaluating 
the robustness of a statistical test to aid us in determining if the CP of a CI based 
on a particular method differed in any meaningful way from the nominal 95% 
confidence level. According to the Bradley criterion, if the true significance level 
α differs from the nominal level by no more than α/2, one can conclude that the 
test is robust. If the true significance level differs by more than α/2 from the no-
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minal level (either above or below), one can conclude that the test is not robust. 
In the present study, we applied the Bradley criterion as follows: if the estimated 
CP differed from the 0.95 nominal confidence level by no more than 0.025, the 
CP for the confidence interval method was deemed to be within acceptable lim-
its. If the estimated CP differed by more than 0.025 from the nominal confidence 
level, the CP for that method was deemed to be unacceptable. Thus, for a 95% 
CI, the estimated CP had to be between 92.5% and 97.5% for a CI procedure to 
be classified as “acceptable.” 

The boldface values in Table 1 indicate median CPs that were less than the 
lower acceptability criterion of 92.5%. Confidence intervals based on the ML 
method maintained an acceptable value of CP for all censoring proportions ex-
cept (0.9, 0.9) with BVN data and (0, 0) and (0.9, 0.9) for non-BVN data. The 
CPs for CIs based on the Spearman coefficient were comparable to those for the 
ML-based CIs for many of the censoring proportions, but did not achieve the 
92.5% acceptability criterion in several instances, especially for BVN simulated 
data. The complex substitution, simple substitution and random imputation- 
based CIs achieved the 92.5% level only when there was no censoring in the 
BVN simulated data. 

 
Table 1. Comparison of median coverage probability of 5 C.I. methods, by censoring 
proportions. 

Distribution 
Censoring 

Proportions 
(p1, p2) 

Method 

Simple 
Substitution 

LOD/2 

Complex 
Substitution 

Random 
Imputation 

Spearman’s 
rs (Jackknife 

Interval) 

Maximum 
Likelihood 

Normal (0, 0) 94.8 94.8 94.8 93.8 94.8 

Normal (0.1, 0.7) 77.0 81.0 34.6 91.5 94.8 

Normal (0.25, 0.25) 85.8 92.2 77.8 94.1 94.8 

Normal (0.25, 0.75) 73.0 76.2 22.8 89.9 94.8 

Normal (0.5, 0.5) 78.9 84.3 43.6 92.5 94.7 

Normal (0.75, 0.375) 71.5 75.7 21.7 88.4 94.9 

Normal (0.9, 0) 21.9 26.5 0.9 33.8 94.9 

Normal (0.9, 0.9) 27.3 27.2 0.1 61.8 90.0 

Non-Normal (0, 0) 90.7 90.7 90.7 93.9 91.0 

Non-Normal (0.1, 0.7) 84.0 81.4 11.6 92.9 93.9 

Non-Normal (0.25, 0.25) 90.4 89.3 27.3 94.1 93.4 

Non-Normal (0.25, 0.75) 81.6 76.6 8.2 91.8 94.0 

Non-Normal (0.5, 0.5) 86.3 85.5 17.1 93.7 93.8 

Non-Normal (0.75, 0.375) 82.1 80.0 8.9 92.5 94.0 

Non-Normal (0.9, 0) 60.6 60.0 0.6 69.7 93.2 

Non-Normal (0.9, 0.9) 40.5 38.6 0.1 74.3 85.8 
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The effects of the true value of the correlation parameter (either Pearson’s 
correlation or Spearman’s coefficient) on the median CP of the CIs based on the 
various methods are illustrated in Table 2. As in Table 1, boldface values in Ta-
ble 2 identify median CPs that did not achieve the lower acceptability criterion 
of 92.5%. Confidence intervals based on the ML method achieved an acceptable 
CP for all values of ρ except −0.9 with BVN data; however, ML-based CIs did 
not perform as well with non-BVN data. Confidence intervals based on Spear-
man’s coefficient generally performed as well as those based on the ML method 
for non-BVN simulated data, but failed to achieve the 92.5% acceptability crite-
rion for several values of the true correlation when BVN simulated data were 
used. The complex substitution and simple substitution CIs achieved the 92.5% 
level for very few of the settings for the true value of ρ. The random imputation 
CIs achieved the 92.5% level only when ρ = 0. 

The effects of sample size (n) on the median CP of the CIs based on the vari-
ous methods are illustrated in Table 3. As in Table 1 and Table 2, boldface values 
in Table 3 identify median CPs that did not achieve the lower acceptability crite-
rion of 92.5%. It is interesting to note that the ML-based CIs maintained an ac-
ceptable value of CP for all sample sizes except n = 500 for the non-BVN simu-
lated data. Confidence intervals based on the Spearman coefficient performed  

 
Table 2. Comparison of Median Coverage Probability of 5 C.I. Methods, by True Para-
meter Value. 

Distribution 
True Value 

of *ξ  

Method 

Simple 
Substitution 

LOD/2 

Complex 
Substitution 

Random 
Imputation 

Spearman’s rs 

(Jackknife 
Interval) 

Maximum 
Likelihood 

Normal −0.9 0.0 0.0 0.0 15.8 90.8 

Normal −0.5 62.0 82.5 45.5 91.6 94.6 

Normal −0.25 92.4 93.6 85.5 93.3 94.9 

Normal 0.0 95.0 94.9 94.8 94.4 95.0 

Normal 0.25 89.3 91.8 85.5 93.0 95.0 

Normal 0.5 79.8 86.0 46.8 91.9 94.9 

Normal 0.75 62.0 70.4 2.6 89.0 94.7 

Normal 0.9 25.6 24.9 0.0 76.7 94.4 

Non-Normal −0.9 1.6 2.9 0.0 15.4 87.6 

Non-Normal −0.5 80.1 75.1 4.4 92.0 91.7 

Non-Normal −0.25 90.2 89.5 67.5 93.3 92.9 

Non-Normal 0.0 94.9 95.0 94.9 94.2 89.3 

Non-Normal 0.25 89.6 91.6 57.6 94.2 94.0 

Non-Normal 0.5 86.3 85.8 11.3 93.4 93.5 

Non-Normal 0.75 82.7 72.8 0.9 91.1 93.4 

Non-Normal 0.9 38.5 31.7 0.6 79.8 91.4 

*ξ  = ρ for Pearson correlation, ξ  = ρs for Spearman’s coefficient. 
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Table 3. Comparison of median coverage probability of 5 C.I. methods, by sample size. 

Distribution 
Sample 

Size 

Method 

Simple 
Substitution 

LOD/2 

Complex 
Substitution 

Random 
Imputation 

Spearman’s rs 

(Jackknife 
Interval) 

Maximum 
Likelihood 

Normal 20 89.8 92.3 88.4 92.3 94.1 

Normal 30 89.2 92.2 85.9 93.3 94.4 

Normal 50 84.0 89.3 70.3 93.0 94.5 

Normal 75 81.2 88.2 58.3 93.1 95.2 

Normal 100 78.0 86.1 48.6 92.2 95.0 

Normal 200 64.5 78.3 19.5 88.0 94.8 

Normal 500 34.3 56.6 0.7 73.3 95.2 

Non-Normal 20 89.6 91.8 67.5 92.4 93.3 

Non-Normal 30 89.4 91.4 53.8 93.4 93.7 

Non-Normal 50 88.0 88.6 31.6 93.7 93.8 

Non-Normal 75 87.7 87.0 18.8 93.8 93.8 

Non-Normal 100 87.2 85.1 11.2 93.9 93.7 

Non-Normal 200 86.0 78.7 1.8 93.7 93.2 

Non-Normal 500 82.0 59.7 0.0 90.6 91.7 

 
almost as well as the ML method with the non-BVN data, but failed to maintain 
the 92.5% level for several sample sizes with the BVN data. The CIs based on the 
complex substitution, simple substitution and random imputation methods failed 
to achieve the 92.5% level for any of the sample sizes in Table 3. 

4. Example 

We used the data from the study by Amorim and Alvarez-Leite [1] described 
previously to illustrate the various point and confidence interval methods. The 
authors correlated urinary concentrations of o-cresol with urinary concentra-
tions of hippuric acid as part of their evaluation of o-cresol as a biomarker for 
toluene exposure. Only 15 of the 54 subjects in their study had complete data on 
both o-cresol and hippuric acid. The Shapiro-Wilk test indicated that the biva-
riate normality assumption is untenable for these data, with p < 0.0001 for both 
the 15 o-cresol values and the 50 hippuric acid values. 

Table 4 provides a summary of the results based on all of the estimation me-
thods described in this article. The ML method for estimating ρ in the presence 
of non-detects yielded ˆ 0.79MLρ = , with a 95% CI of (0.66, 0.87). Analyzing on-
ly the 15 cases with complete data yielded r = 0.76 with a 95% CI of (0.40, 0.92). 
Simple substitution with LOD/2, which was the method used by Amorim and 
Alvarez-Leite, yielded 2ˆ 0.79LODρ = , with a 95% CI of (0.65, 0.87). As can be 
seen in Table 4, the ML-based results differed very little from those based on the 
various substitution methods, with the exception of random imputation. However,  
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Table 4. Point and confidence interval estimates based on data from amorim and alva-
rez-leite [1]. 

Method n Estimate 95% C.I. 

Complete cases 15 0.76 (0.40, 0.92) 

Substitute LOD 54 0.77 (0.63, 0.85) 

Substitute LOD/2 54 0.79 (0.65, 0.87) 

Substitute 2LOD  54 0.78 (0.64, 0.86) 

Random Imputation 54 0.63 (0.43, 0.76) 

Complex Substitution 54 0.78 (0.65, 0.86) 

Spearman 54 0.58 (0.34, 0.82) 

Maximum Likelihood 54 0.79 (0.66, 0.87) 

 
there is quite a discrepancy between the ML-based results and those based on the 
Spearman coefficient. The censoring proportions in this study were p1 = 0.07 
(4/54) for hippuric acid and p2 = 0.72 (39/54) for o-cresol. The closest censoring 
proportions to these in Table 1 are (0.1, 0.7). For non-BVN data (as is appar-
ently the case for these data), only the CIs based on the MLE or the Spearman 
coefficient achieved acceptable CP for these censoring proportions (93.9% for 
ML and 92.9% for Spearman). The simulation results for non-BVN data in Ta-
ble 2 indicate that MLE-based CIs achieve acceptable CP (93.4%) when the true 
value of ρ is 0.75; this seems to be a reasonable assumption based on the ML-based 
point estimate in Table 4 ( ˆ 0.79MLρ = ). Similarly, Spearman-based CIs achieve 
acceptable CP (93.4%) when the true value of ρs is 0.5; this also appears to be a 
reasonable assumption based on the results in Table 4 (rs = 0.58). Finally, from 
the results for non-BVN data in Table 3, we see that CIs based on either the ML 
method (93.8%) or the Spearman coefficient (93.7%) achieve acceptable CP 
when n is 50, this is approximately so for the Amorim and Alvarez-Leite study 
(n = 54). Thus, based on our simulation results (summarized in Tables 1-3), we 
have no reason to doubt the validity of either the ML-based CI or the Spear-
man-based CI. Given the apparent departure from BVN for these data based on 
the Shapiro-Wilk test results, and the fact that the authors were evaluating 
o-cresol by examining its association with hippuric acid (not necessarily its li-
near association), we recommend that the results for Spearman’s coefficient be 
used: ˆ 0.58sρ =  with a 95% CI of (0.34, 0.82). Thus, the association between 
o-cresol and hippuric acid appears to be quite a bit weaker than that claimed by 
Amorim and Alvarez-Leite (r = 0.777). 

The use of Spearman’s coefficient as the measure of association for these data 
is consistent with Amorim and Alvarez-Leite’s use of the nonparametric Krus- 
kal-Wallis test to compare the level of urinary o-cresol across the three groups of 
toluene-exposed subjects in their study: workers in shoe factories, painting sec-
tors of metal industries, and printing shops. If the primary goal of the authors 
had been to examine the linear association between urinary hippuric acid and 
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urinary o-cresol, we would recommend that the ML-based estimates be used in-
stead of the Spearman-based estimates. Even though the BVN assumption ap-
pears to be violated for the data in this study, we feel it would still be safe to use 
the PCC to estimate the degree of linear relationship since our simulation results 
show that the ML-based method is preferable to any of the other methods of es-
timating the PCC when LODs are present in both variables, regardless of the bi-
variate distribution of X and Y. 

R code for computing each of the point estimates and corresponding confi-
dence intervals described in this article is available from the second author. 

5. Discussion 

In this article, we compared 5 methods that can be used to obtain a confidence 
interval for the correlation between two variates X and Y, both of which are left 
censored. Other authors have recently proposed that alternative methods be 
considered; for example, Weaver et al. [14] considered a Bayesian approach. In 
this article, we restrict our attention to estimators based on the frequentist ap-
proach. Some authors have considered estimation of the elements of a cova-
riance matrix of dimension p x p under left censoring [15] [16]. The estimation 
problem considered in the present article corresponds to the case p = 2. Jones et 
al. [15] did consider p = 2; however, their focus was on the bias of the point es-
timate of ρ and they did not consider confidence interval estimation as in the 
present article. Pesonen et al. [16] considered p = 3 and p = 10, so their results 
are not applicable to the present article. Other recent publications have consi-
dered the estimation of Lin’s concordance correlation coefficient (CCC) in the 
presence of left censoring [17] [18]. Domthong [17] proposed a new class of bi-
variate survival functions and examined their usefulness in estimating the CCC. 
Lapidus et al. [18] examined the use of multiple imputation to estimate the CCC. 
The PCC considered in the present article is a special case of the CCC, so our 
future work will focus on adapting these methods to the estimation of the PCC. 

Our simulation results showed that when the simulated data were from a BVN 
distribution, the ML-based CIs had median CP above 92.5% under all conditions 
that we considered except when p1 = p2 = 0.9 or ρ = −0.9. Furthermore, the 
ML-based CIs were superior to all other CI methods in terms of median CP un-
der all simulation scenarios using BVN data. Interestingly, for non-BVN simu-
lated data, the ML-based CIs were still superior to those based on other estima-
tion methods for almost all scenarios that we considered. Spearman-based CIs 
performed acceptably as long as |ρs| was small or moderate, the sample size was 
not too large (i.e., less than 500), and the censoring proportions for X and Y 
were not too large and there was little or no imbalance. The Spearman-based CIs 
generally performed better for non-BVN data than for BVN data. 

The complex substitution method was proposed by Lynn [8] for use when 
only one of the variables is subject to NDs and McCracken [9] extended the me-
thod to the situation in which both variables are subject to NDs. The CPs of CIs 
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based on this method were acceptable for some settings of the simulation para-
meters. However, complex substitution-based CIs were typically inferior to those 
based on either the MLE or the Spearman coefficient or both. The distribution of 
the simulated data (either BVN or non-BVN) had only a minimal impact on the 
performance of complex substitution-based CIs. The CP of these CIs was gener-
ally superior to that of CIs based on simple substitution, but they were compara-
ble for many of the settings of the simulation parameters that we considered. Con-
fidence intervals based on the random imputation method were greatly inferior to 
the CIs based on all of the other methods for almost all settings of the simulation 
parameters, and rarely achieved the 92.5% acceptability criterion for CP. 

The simple substitution-based CIs generally did better in terms of CP when 
the data were not BVN. However, these intervals did not yield acceptable CP ex-
cept in the presence of no censoring (Table 1) or when the population correla-
tion was zero (Table 2). Handelsman and Ly [19] recommended simple substi-
tution with 2LOD  when estimating bivariate correlations for serum steroid 
measurements; however, their study only considered situations in which either X 
or Y but not both are left censored. 

For several of the simulation scenarios we included, the ML method failed to 
produce a point estimate of ρ (and hence a confidence interval) due to the failure 
of the optimization routine to converge. In case this happens with a real data set, 
we recommend using a Spearman-based CI if one wishes only to measure the 
strength of association between X and Y, and not to measure the strength of li-
near association between X and Y. If estimation of ρ (as a measure of linear as-
sociation) is the primary aim of the analysis, and the MLE cannot be obtained 
due to lack of convergence, we recommend that complex substitution be used to 
estimate ρ. However, for some combinations of the simulation settings that we 
considered, complex substitution-based CIs performed extremely poorly in terms 
of CP. Under these conditions, the CI based on the CS method should be consi-
dered as only a rough approximation. 

Li et al. [20] also examined the use of the ML method to estimate a bivariate 
correlation in the presence of left censoring of both X and Y. They provided R 
code for implementing this method and thoroughly evaluated its performance in 
a simulation study in which they used several of the same parameter settings as 
in our simulation study [9]. Their results for the CP of 95% CIs based on the ML 
method under assumptions of both BVN and non-BVN data are comparable to 
ours. However, Li et al. did not provide a comparison of ML-based CIs with 
those based on other methods, as we have done here. The results we have pre-
sented in Tables 1-3 enable the analyst to select an estimation method that is 
likely to give acceptable results for the CP depending on the degree of censoring, 
the true value of ρ, and the sample size, as we illustrated in the Example. 
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