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Abstract 
Deep learning (DL) has seen an exponential development in recent years, 
with major impact in many medical fields, especially in the field of medical 
image. The purpose of the work converges in determining the importance of 
each component, describing the specificity and correlations of these elements 
involved in achieving the precision of interpretation of medical images using 
DL. The major contribution of this work is primarily to the updated charac-
terisation of the characteristics of the constituent elements of the deep learn-
ing process, scientific data, methods of knowledge incorporation, DL models 
according to the objectives for which they were designed and the presentation 
of medical applications in accordance with these tasks. Secondly, it describes 
the specific correlations between the quality, type and volume of data, the 
deep learning patterns used in the interpretation of diagnostic medical images 
and their applications in medicine. Finally presents problems and directions 
of future research. Data quality and volume, annotations and labels, identifi-
cation and automatic extraction of specific medical terms can help deep learn-
ing models perform image analysis tasks. Moreover, the development of mod-
els capable of extracting unattended features and easily incorporated into the 
architecture of DL networks and the development of techniques to search for 
a certain network architecture according to the objectives set lead to perfor-
mance in the interpretation of medical images. 
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1. Introduction 

The medical data most used in medical practice are medical images and for this 
reason most deep learning algorithms have targeted this category of medical in-
formation for the realization of medical applications. 

This paper presents a methodical review of the literature [1] with the objective 
of carrying out an analysis of the importance of the relationship between the 
types and characteristics of scientific data and their use of deep learning models 
in the interpretation of medical images. We have defined a methodology for semi- 
automating the production of relevant articles and eliminating those with low 
impact in the scientific community, by applying inclusive and exclusive quality 
criteria in the fields of medicine and information technology [2]. The major 
contribution of this work lies primarily in the updated characterization of the 
characteristics of the constituent elements of the process of deep learning from 
data to applications in medicine. Secondly, it describes the specific correlations 
between data, deep learning models used in the interpretation of diagnostic medi-
cal images and their applications in medicine. Finally presents problems and fu-
ture research directions [3].  

The uniqueness of the work is defined by the description of all the constituent 
elements, namely: data, identification and extraction of automatic standardiza-
tion of specific medical terms, representation of medical knowledge, incorpora-
tion of medical knowledge labeling, description of deep learning (DL) architec-
tures in relation to the objectives for which they were created and in correlation 
with the other constituent elements of the DL process, presentation of the appli-
cations for which they were constituted. Problems in the analysis of the medical 
image can be classified as follows: identification and extraction and automatic 
standardization of specific medical terms; representation of medical knowledge; 
incorporation of medical knowledge. Problems in medical image analysis are re-
lated to the following aspects: medical images provided as data for deep learning 
models require: quality, volume, specificity, labelling; the provision of data from 
doctors, descriptive data, labels are ambiguous for the same medical and non- 
standard references; laborious time in data processing are problems to solve in 
the future; lack of clinical trials demonstrating the benefits of using DL medical 
applications in reducing morbidity and mortality and improving patient quality 
of life [4]. 

In this paper, we aim to achieve an updated characterization of the specifics of 
the constituent elements of the deep learning process, scientific data, methods of 
incorporation of knowledge, DL models according to the objectives for which 
they were designed and presentation of medical applications according to these 
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tasks. Secondly, we will describe the specific correlations between the quality, type 
and volume of data and their importance in achieving the performance of the 
deep learning models used in the interpretation of medical diagnostic images [3]. 
We will also make a structural and functional description of DL models and their 
applications in medicine. 

A large number of medical images are stored in open access databases have 
private databases of some ceding institutions. These medical images are filed in 
connection with imaging reports or medical video image reports and, along with 
language processing from natural images, they have a great contribution to im-
age analysis [5]. Annotation and labelling of the medical image, representing 
data from doctors, used through methods of integration into deep learning mod-
els, consumes time and requires specialized knowledge [3].  

The large volume of training data and properly labeled determines the per-
formance of the deep learning modeling in the interpretation of medical images 
[3]. Because manual image labelling requires time and specialized training, stan-
dardized, organized labelling has been used which has the risk of over-labeling 
with unnecessary information [2]. 

In the absence of a large amount of data, the problem of over-assembly can be 
eliminated by adding abandonment. The deep learning model can have increased 
preformation in these conditions by optimizing a large number of hyper-para- 
meters (size and number of filters, depth, learning rate, activation function, num-
ber of hidden layers, etc.) [1] [6]. 

In medical image analysis the data types have a high variability and can be 
exemplified by image captures from different regions [7], different types of data 
included in a phase [8], different types of images [9], data from doctors have er-
rors and require time for processing [10] small sample sizes [11]. 

A large number of medical images are stored in open access databases have 
private databases of some ceding institutions. These medical images are filed in 
connection with imaging reports or medical video image reports and, along with 
language processing from natural images, they have a great contribution to im-
age analysis [12]. Annotation and labelling of the medical image, representing data 
from doctors, used through methods of integration into deep learning models, 
consumes time and requires specialized knowledge. 

The large volume of training data and properly labeled determines the per-
formance of the deep learning modeling in the interpretation of medical images. 
Because manual image labelling requires time and specialized training, standar-
dized, organized labelling has been used which has the risk of over-labeling with 
unnecessary information [6]. 

In the absence of a large amount of data, the problem of over-assembly can be 
eliminated by adding abandonment. The deep learning model can have increased 
preformation in these conditions by optimizing a large number of hyper-para- 
meters (size and number of filters, depth, learning rate, activation function, num-
ber of hidden layers, etc.) [1] [13]. In medical image analysis the data types have 
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a high variability and can be exemplified by image captures from different re-
gions [7], different types of data included in a phase [14], different types of im-
ages [9], data from doctors have errors and require time for processing [10], 
small sample sizes [15]. 

Computer-assisted diagnostics (CAD) in medical imaging and diagnostic ra-
diology through the use of deep learning architectures has progressed to satis-
factory results with multiple applications, namely, early detection and diagnosis 
of breast cancer, lung cancer, glaucoma and skin cancer [3] [16] [17] [18]. 

The types of images used in the analysis of medical images are: CT, MRI, X- 
ray, Ultra-sound, PET, Wave images, Biopsy, Mammography and Spectrography 
[1]. In the process of images analysis of the tasks of extracting characteristics, 
reducing size, augmentation, segmentation, grouping or classification are deci-
sive for the efficiency and precision of integration methods [5] [14] [19] [20]. 

Larger datasets, compared to the small size of many medical datasets, result in 
better deep learning models [3] [21]. 

There are many large-scale and well-annotated data sets, such as ImageNet 1 
(over 14 million images tagged in 20 k categories) and COCO 2 (with over 200 
images annotated in 80 categories), medical datasets (open source), such as 
ChestX-ray14 and Deep-Lesion containing medical images tagged over 100 k, 
the others, contain only a few thousand or even hundreds of medical images [3] 
(Figure 1), and medical applications have developed properly in the medical 
fields. 

The knowledge of experienced clinical-imaging physicians (radiologists, oph-
thalmologists and dermatologists, etc.) follows certain characteristics in images, 
namely, contrast, color, appearance, topology, shape, edges, etc., help and are 
used by deep learning models to perform the main tasks of medical image analy-
sis [3]. 

The type and volume of medical data, the labels, the category of field know-
ledge and the methods of their integration into the DL architectures implicitly 
determine their performance in medical applications. 

2. State of Arts 

The current state of performance of deep learning models and architectures (DL) 
depends on the nature and quality of the data used in their training. This sec- 
tion shows the data types and DL model description and classification accor- 
ding to medical data types used, objectives and performances in medical appli- 
cations. 

2.1. Scientific Data and Dataset 

We will further expose, the types of images and medical data used for diagnosis: 
natural images, medical images, High-level medical data (diagnostic pattern), 
low-level medical data (areas of images, disease characteristics), manual features 
used for medical image analysis. 
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Imaging Number of Images Type Purpose Name Datasets 

Multiple 1921 patients Brain Classification ADNI 

MRI 539 patients Brain Classification ABIDE 

MRI 150 patients Cardiac Classification ACDC 

X-ray 
112,120 images - 30,805 

patients 
Chest Detection Chest X-ray14 

CT X-ray 1018 patients Lung Detection LIDC-IDRI 

CT 888 images Lung Detection LUNA16 

X-ray 
40,895 images - 14,982 

patients 
Musculo- 
skeletal 

Detection MURA 

MRI 542 images Brain Segmentation BraTS2018 

SLO 400 images Eye Segmentation STARE 

Mammography 2500 patients Breast 
Classification 

Detection 
DDSM 

CT 
32,735 images - 4427 

patients 
Multiple 

Classification 
Detection 

Deep-Lesion 

MRI 7980 images - 33 cases Cardiac 
Classification 
Segmentation 

Cardiac MRI 

Dermoscopy 13,000 images Skin 
Classification 

Detection 
Segmentation 

ISIC 2018 

Figure 1. Types of medical images and datasets. Acronyms: MRI Magnetic Resonance 
Images, CT Computed Tomography, SLO Scanning Laser Ophthalmoscopy images, The 
alzheimer’s disease neuroimaging initiative (ADNI), Automated cardiac diagnosis challenge 
(ACDC), The autism brain imaging data exchange (ABIDE), Hospital-scale chest X-ray 
database and benchmarks on weakly-supervised classification and localization of common 
thorax diseases (Chestx-ray14), The lung image database consortium (lidc) and image 
database resource initiative (idri) (LIDC-IDRI), Algorithms for automatic detection of 
pulmonary nodules in computed tomography images (LUNA16), Large dataset for abnor- 
mality detection in musculoskeletal radiographs (MURA) [3], Machine learning algorithms 
for brain tumor segmentation, progression assessment, and overall survival prediction in 
the brats challenge (BraTS2018) [3], Locating blood vessels in retinal images (STARE), 
Digital database for screening mammography (DDSM), Automated mining of large-scale 
lesion annotations and universal lesion detection with deep learning (DeepLesion), Cardiac 
Magnetic Resonance Images (Cardiac MRI), International skin imaging collaboration 
(ISIC). 

[CATEGORY 
NAME]

[PERCENTAGE]

X-ray
72%

CT
16%

Multiple
1%

SLO
0%

Mammography
1%

Dermoscopic
6%
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Natural images—from natural datasets, ImageNet 1 (over 14 million images 
tagged in 20 k categories) and COCO 2 (with over 200 images annotated in 80 
categories). Large natural images (ImageNet) are incorporated for the detection 
of objects in the medical field and are used in applications for the detection of 
lymph nodes [22], detection of polyp and pulmonary embolism [23], detection 
of breast tumors [24], detection of colorectal polyps [25] [26]. Natural Images, 
ImageNet, PASCAL VOC “static data” set, Sports-1M video datasets, which is 
the largest video classification indicator with 1.1 million sports videos in 487 
categories [3] [27]. 

Medical images from external medical datasets of the same diseases in similar 
ways (e. g. SFM and DM) [28], medical images from external medical datasets of 
the same diseases [3] in different ways (DBT and MM, ultrasound) [29] or from 
different diseases [30]. Medical images are used in multiple applications. Mul-
ti-modal medical images, PET images are incorporated for the detection of le-
sions in CT scans of the liver [31]. Multimodal medical images are also used in 
another model in the detection of liver tumors [32]. Multimodal medical images 
(mammographic data) are used to detect breast masses [33]. Medical images, 
(CT, MRI, angio-CT, butt eye images), annotated retinal images, used to help 
segment the heart vessel without annotations [3] [34]. External medical data and 
images of other diseases, such as the union dataset (3DSeg-8) by aggregating 
eight sets [3] of 3D medical segmentation data [35]. 

Medical data from doctors: high-level medical data (diagnostic pattern) and 
low-level medical data (areas of images, disease characteristics). High-level and 
low-level medical data, i.e. anatomical aspects of the image, shape, position, ty-
pology of lesions integrated into segmentation tasks, example of the ISBI 2017 
dataset used in skin injury segmentation. The use of additional medical datasets 
in different ways has also proven to be useful, although most applications are li-
mited in using MRI to help segmentation tasks in CT images [3] [36]. Specific 
data identified by doctors (attention maps, hand-highlighted features) increase 
the diagnostic performance of deep learning networks (no comparative studies 
have been conducted). Medical data from doctors, handmade features, hand- 
crafted features, invariant LBP, as well as H & Components, are calculated first 
from the images [3]. The use of the BRATS2015 data set in applications in which 
these features are used is achieved performance in image segmentation by in-
put-level fusion. However, anatomical priorities are only suitable for segmenta-
tion of fixed-shaped organs [3] such as the heart or lungs [35]. 

Manual features used for medical image analysis is a series of measurements 
(X-ray projections in CT or spatial frequency information in MRI). The methods 
based on deep learning have been widely applied in this area [37] [38]. Exam-
ples: image reconstruction with optical diffuse tomography (DOT), reconstruc-
tion of magnetic resonance imaging by compressed detection (CS-MRI) [39], 
reconstruction of the image with diffuse optical tomography (DOT) of limited- 
angle breast cancer and limited sources in a strong scattering environment [40], 
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recovery of brain MRI images, target contrast using GAN. Content-based image 
recovery (CBIR) can be great help to for the clinicians to navigate these large 
data sets. Some deep learning methods [3] adopt transfer learning to use know-
ledge from natural images or external medical datasets [41] [42] [43], for exam-
ple, metadata such as age and sex of patients, characteristics extracted from 
health areas, decision values of binary traits and texture traits in the process of 
thoracic X-ray recovery [3]. 

Medical data used to generate medical reports, subtitling medical images, tem-
plates from radiologist reports, visual characteristics of medical images, gene-
rating reports using the IU-RR dataset. 

2.2. Addressing Label Noise in the Formation of Deep Learning  
Patterns in Medical Image Analysis 

The noise of the label in the formation of deep learning models is important in 
their performance for medical image analysis. The approach of the label noise 
was achieved by: cleaning and pre-processing labels, improving the network ar-
chitecture with noise layer, the endowment of networks with loss functions, data 
re-weighting, data and label consistency, training procedures. 

Cleaning and pre-processing labels 
In chest X-ray scans in the classification of thoracic diseases, the smoothing of 

labels was used to handle noisy labels and led to improvements of up to 0.08 in 
the area below the characteristic receptor operating curve (ASC) [44]. 

Network Architectures 
In the case of network architectures, the noise layer proposed by [45] im-

proved the accuracy in detecting breast lesions in mammograms. 
Loss functions 
The enhancement of networks with loss functions that cause annotations to 

dilate with a small and large structuring element to generate noisy masks for the 
foreground and background, e.g. parts of the ring union image were marked as 
unsafe regions that were ignored during training [46]. 

Re-weighting data 
The method of re-weighting data to cope with noisy annotations in cancer 

detection was achieved by training models on a large group of noisy label patches 
using calculated features from a small set of clean label patches and increased 
model performance by 10%. [47]. This strategy was used to classify skin lesions 
in noisy label images [48], for segmentation of the heart, clavicles and lung in 
chest X-rays [10], for segmenting the skin lesion from highly inaccurate annota-
tions [49] proposed a specific characteristic of pixels. 

Consistency of data and labels 
For segmentation of the left atrium in THE MRI from tagged and unlabeled 

data it was proposed to form two separate models: a teacher model that pro-
duced noisy labels and labeled maps with non-certainties on unlabeled images 
and a student model that was trained using the noisy labels generated, while 
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taking into account the uncertainty of the label and making correct predictions 
on the clean data set in accordance with the teacher's model on the label, with 
uncertainty below the threshold. 

Training procedures  
For segmentation of the bladder, prostate and rectum in MRI, a model was 

trained on a clean label data set and used it to predict segmentation masks for a 
separate set of unlabeled data, and a second model was instructed to estimate a 
confidence map to indicate regions where predicted labels were more likely to be 
accurate and reliable paper used to sample the main model with a 3% improve-
ment in the Dice similarity coefficient (DSC) [50]. A rather similar method has 
been used to classify aortic valve defects in MRI [51]. 

2.3. DL Model Description and Classification According to Medical  
Data Types Used, Objectives and Performances in Medical  
Applications 

We will synthesize in Figure 2 classification of DL models according to the cha-
racteristics and tasks for which they were designed, classification of DL models 
according to the characteristics and tasks for which they were designed. 

DL architectures can be divided into three categories: [1] 
• Supervised 
• Unsupervised 
• Semi-supervised 

Supervised DL models: [1] 
• Recurent neural networks (RNN), short-term memory (LSTM), closed recur-

ring unit (GRU), 
• Convolutional neural networks (CNN) and 
• Network of generational opponents (GAN). 

Unsupervised deep learnirng models: [1] 
• Deep Faith Networks (DBN), 
• Deep Transfer Network (DTN), 
• Tensor Deep Stack Networks (TDSN), 
• Autoencoders (AE). [1] 

2.3.1. Below We Describe the DL Models 
CNN (convolutional neural network) are popular in areas where the shape of an 
object is an important feature, such as image analysis [4] [52] [53] [54] [55] [56], 
particularly in the study of cancers and bodily injuries in the medical sector [57] 
[58] and video analysis [4] [59]. 

CNN contains convolutive layers, grouping layers, dropout layers, and an 
output layer, hierarchically positioned that each learn stun specific characteris-
tics in the image [14]. 

CNN in image analysis has low performance when high-resolution datasets 
are considered [60] and when localization over large patches is required, espe-
cially in medical images [61]. 
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Figure 2. Classification of DL models according to the characteristics and tasks for which they were designed. Acronyms: Deep 
Network of Beliefs (DBN), Deep Network of Distribution and Target, Deep Info Max (DIM), AutoEnconder (AE), Generative 
Adversarial Network (GAN), Tensor Deep Stacking Network (TDSN), Convolutional Neural Network (CNN), Visual Geometry 
Group Network (VGG Net), Deep Layers Network (GoogLeNet), Fully Convolutional Network (U-Net), Residual Neural Network 
(ResNet), Deep Segmentation-Emendation Network (SegNet), Region Proposal Net (RPN), You Only Look Once (YOLO), Deep 
Triage (DT), deep learning-based algorithmic framework (DeepSEA), Holistically-Nested Edge Detection (HED), Graph Convo- 
lutional Natural Net (GCNN), Recurent Neuronal Network (RNN), Deep Dynamic Neural Network (Deep Care), Gated Recurrent 
Network (GRN), Recurrsive RNN (RvNNs), Long Short-Term Memory (LSTM), Bidirectional RNN (BRNN), Restricted Boltzmann 
Machine (RBM). 

 
Image analysis performance is enhanced by the use of the following architec-

tures: AlexNet, VGGNet and ResNet, YOLO or U-net that we describe below: 
AlexNet was proposed by [58] [59] for the ImageNet Large Scale Visual Rec-

ognition Challenge (ILSVRC) in 2012 [4].  
AlexNet consists of 8 layers, 5 layers of convolution and 3 dense, fully con-

nected layers, overlapping overlay, abandonment, data augmentation, ReLU ac-
tivations after each convolutive layer and fully connected, SGD with impulse [1] 
[62]. AlexNet is used for image recognition in image analysis and is usually ap-
plied to issues involving semantic segmentation and high-resolution data classi-
fication tasks [63] [64]. 
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VGG (Visual Geometry Group): Consists of 13 convolution layers (in VGG16) 
& 16 convolution layers (in VGG19), 3 dense layers, pooling and three RELU 
units, very small responsive fields [1] [65]. VGG is used for object recognition, 
classification of medical images [66] [67] and image segmentation [68]. VGG 
loses accuracy when the depth becomes too high. 

ResNet (Residual Neural Network): Contains closed units or closed recurring 
units and has a strong similarity to recent successful elements applied in RNNs 
[1]. ResNet is characterized by: residual mapping, identity function, and a two- 
layer residual block, one layer learns from the residue, the other layer learns 
from the same function and has high level of performance in image classification 
(Saravanan et al., Saravanan) and audio analysis tasks [4] [69]. 

GoogLeNet is built from 22 deep LAYERS CNN and 4 million parameters and 
contains several layer filters and stacked convolution layers [70] It was used for 
batch normalization, image distortions, and RMSprop [1]. 

U-Net, developed by Ronneberger [4] [61], addresses the problem of locating 
images of a standard CNN by extracting data features followed by reconstruction 
of the original dimension through an up-sampling operation. U-Net is a type of 
Enconder-Decoder network in which the codoficator output belongs to the input 
space [4]. U-Net is used in single-stage segmentation and classification [71], spe-
cifically in the locatio;n of cancerous lesions [72] [73] [74]. SegNet [75] is a U- 
Net variant that uses maximum grouping indices in the upsampling step that 
reduces the complexity of U-Net space. 

RNNs were developed by Rumelhart et al. [4] [76] using with efficiency the 
correlations existing between input data of a prediction problem, through which 
they process sequential data in relation to text analysis [77] [78] [79], in elec-
tronic medical records to predict diseases [4] [80] [81] and speech recognition 
[82]. RnN variants are: one-way, learning from the past and predicting the fu-
ture and bidirectional that uses the future to restore the past. RNN has the fol-
lowing variants: short-term memory (LSTM) and closed recurring units (GRU), 
recursive neural networks (Recursive NNs), two-way RNNs (BiRNN). Short- 
term memory LSTMs were introduced by [4] [67] [83] and consist of: the gate of 
oblivion that alleviates the escape and explosion gradient, the entrance gate and 
the exit gate, the last two track the flow of data coming in and out of the cell. 
They were used in speech recognition [84], path prediction [85] and medical di-
agnosis [86], in which the authors proposed an LSTM network, called DeepCare, 
combining different types of data to identify clinical diseases. 

GURs (recurring unit gated) created by [87] [88] solve the problem of in-
creasing the time complexity of LSTM, when large amounts of data are used [4]. 
The GRU consists of a reset gate in which it is decided how much information 
from the past is transmitted in the future, and an update gate that decides how 
much information from the past can be forgotten. GRU and LSTMs have similar 
applications especially in speech recognition [89]. 

The two-way recurring neural network and the Boltzmann BRNNs [4] intro-
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duced by [90] [91] are characterized by the fact that the hidden state is updated 
by using past information, as in a classic RNN, and by using information related 
to future moments [4]. They were applied in handwriting and speech recogni-
tion, where they are used to detect missing parts of a sentence in a knowledge of 
the other words [92] [93]. 

BM models, introduced by [94] [95], are a family of RNNs that are easy to im-
plement and that reproduce many probability distributions, BMs are used in 
image classification [4]. BMs combined with other models are used to locate ob-
jects, [96] [97]. In the classification of images, BMs are used to identify the 
presence of a tumor [98]. BM models are slow and ineffective when the data size 
increases exponentially due to the complete connection between neurons [99]. A 
restricted BM was proposed in which relaxing the connections between neurons 
of the same or one-way connection between neurons would solve the problem of 
the classic BM model [100]. 

AEs, developed by [101] [102], consisting of encoder and decoder, with the 
aim of reducing the size of the data through significant representations and 
learning data characteristics for the reconstruction of outputs. They are used in 
applications in medical image analysis [4] [103], natural language processing 
[104] and video analysis [105]. 

Additional variants of AE that can be found in the literature are variational 
AE (VAE). In a VAE, the encoder is represented by the probability density func-
tion of the input into the feature space and, after the encoding stage, a sampling 
of the new data using the PDF is added. Differently from the DAE and the SAE, 
a VAE is not a regularized AE, but is part of the generation class [4]. 

GAN it is used to generate synthetic training data from original data using la-
tent distribution [1] [106]. It consisted of two networks, a generator estimates 
false data from input data, and a discriminator, which differentiates fake data 
from real data and separates it in order to increase the quality of the data gener-
ated. GAN has two problems: the problem of the collapse of the mode, and the 
fact that, can become very unstable. 

The DBN (Deep Network of Beliefs), created by Hinton [107], consists of two 
networks that build each other: of beliefs represented by an acyclic graph com-
posed of layers of stochastic binary units with weighted and respectively weighted 
connections, restricted Boltzmann Machines which is a stochastic [1]. DBNs are 
applied in image recognition and speech recognition, in classification to detect 
lesions in medical diagnosis and, in video recognition to identify the presence of 
persons [108], in speech recognition to understand missing words in a sentence 
[109] and in application on physiological signals to recognize human emotion 
[110]. 

DTN contains a characteristic extraction layer, which teaches a shared feature 
subspace in which marginal source distributions and target samples are drawn 
close and a layer [1] of discrimination that match conditional distributions by 
classified transduction [111]. It is used for large-scale problems [1]. 
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TDSN contains two parallel hidden representations that are combined using a 
bilinear mapping [1] [112]. This arrangement provides better generalization 
compared to the architecture of a single module. The prejudices of the genera-
lisers with regard to the learning set shall be inferred. It works effectively and 
better than an eco-validation strategy when used with multiple generalisers com-
pared to individual generalisers [1]. 

Deep InfoMax (DIM): Maximizes mutual information between an input and 
output of a highly flexible convolutive encoder [113] by forming another neural 
network that maximizes a lower limit on a divergence between the marginal 
product of encoder input and output. Estimates obtained by another network 
can be used to maximize the reciprocal information of the features in the input 
encoder. The memory requirement of the DIM is lower because it requires only 
encoder not decoder [1]. 

2.3.2. Combinations of Different DL Models Depending on the Type of  
Data Involved in the Problem to Be Solved 

DL models can be combined in five different ways depending on the type of data 
involved in the problem to be solved [1] [4]. Of these, three types of HA (hybrid 
architectures), namely the integrated model, the built-in model and the whole 
model. 

In the integrated model, the output of the convolution layer is transmitted di-
rectly as input to other architectures to the residual attention network, the re-
current convolutive neural network (RCNN) and the model of the recurrent re-
sidual convolutive neural network (IRRCNN) [114]. 

In the built-in model (the improved common hybrid CNNBiLSTM), the size 
reduction model and the classification model perform together, the results of 
one represent the inputs for the other model. In the model (EJH-CNN-BiLTM), 
several basic models are combined. 

In the learning transfer model (TL) is trained and uses the same type of prob-
lem. CNN models that use the TL model are VGG (e.g. VGG16 or VGG19), 
GoogLeNet (e.g. InceptionV3), Inception Network (Inception-v4), Repiuled Neural 
Network (e.g. ResNet50), AlexNet. Joint AB based DL combines max pooling, 
and careful sharing [1]. 

2.3.3. Combinations of Different DL Models to Benefit from the  
Characteristics of Each Model with Medical Applications Are:  
CNN + RNN, AE + CNN and GAN + CNN  

CNN + RNN are used for the capabilities of the CNN feature extraction model 
and the RNNs [15]. Because the result of a CNN is a 3D value and an RNN 
works with 2D-data, a remodeling layer is, associated between CNN and RNN, 
to convert THE production of CNN into an array [4]. CNN + RNN have been 
successfully applied in text analysis to identify missing words [115] and image 
analysis to increase the speed of magnetic resonance image storage [116] [117]. 
CNN + RNN variants are obtained by replacing the Standard RNN component 
[4] with an LSTM component [24] [118]. 
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The AE + CNN architecture combines AE as a pre-training model when using 
data with high noise levels, and a CNN as a feature extractor model [4]. AE + 
NVs have an application in image analysis to classify noisy medical images [119] 
and in the reconstruction of medical images [120] [121]. 

GAN + CNN combines GAN as a pre-workout model to moderate the prob-
lem of over-mounting, and a CNN, used as a feature extractor [4]. It has applica-
tions in image analysis [11] [122]. 

The DL architectures applied especially in image analysis are CNN, AE and 
GAN. NVs preserve the spatial structure of the data, and are used as feature ex-
tractors (especially U-Net), AEs reduce the characteristics of complex images in 
the analysis process, and GANs are pre-training architectures that select input 
categories to control overfitting.  

2.4. Applications in Medicine and the Performance of DL Models  
Depending on the Therapeutic Areas in Which They Were  
Used 

We further highlight the acquisitions in the study of deep learning and its appli-
cations in the analysis of the medical image, between 2017 and 2020 [4]. You can 
easily identify references to image labeling and annotation, developing new deep 
learning models with increased performance, and new approaches to medical 
image processing: 
• diagnosis of cancer by using CNN with different number of layers [123], 
• studying deep learning optimization methods and applying in the analysis of 

medical images [124], 
• development of techniques used for endoscopic navigation [125], 
• highlighting the importance of data labelling and annotation and knowledge 

of model performance [126] [127], 
• perfecting the layer-wise architecture of convolution networks [1], lesson the 

cost and calculation time for processor training [128], 
• description of the use of AI and its applications in the analysis [1] of medical 

images [129], 
• diagnosis in degenerative disorder using depp learning techniques [130] and, 
• detection of cancer by processing medical images using the medium change 

filter technique [131], 
• classification of cancer using histopathological images and highlighting the 

rapidity of Theano, superior tensor flow [131], 
• development of two-channel computational algorithms using DL (segmenta-

tion, extraction of characteristics, selection of characteristics and classifica-
tion and classification, extraction of high-level captures respectively) [132], 

• malaria detection using a deep neural network (MM-ResNet) [8]. 
We will exemplify in Table 1 [2] applications in medicine and the perfor-

mance of DL models depending on types of medical images and the therapeutic 
areas in which they were used. We included most relevant papers about the most 
used medical investigations, respectively medical images. 
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Table 1. Applications and the performances of the DL models depending on the types of medical images and the therapeutic area 
[2]. Acronyms: AMD, age-related Macular Degeneration, CAD, Computer Aided Diagnosis, CNN, Con-volutional Neural 
Network, MRI, Magnetic Resonance Images, PET, Photon Emission Tomogra-phy, CT, Computed Tomography, OCT, Optical 
Coherence Tomography, D, dimensions, AUC, Area Under the Curve, MSE, Mean Squared Error, RMSE, Root Mean Square 
Error, DSC, Dice Similarity Coefficient [2]. 

 Type of Data Sample Objective Model Design Results Therapeutic Area Paper 

Mammography 

Mammography 
images 

45,000 images 

Detect malign solid 
lesions and prevent 
overtreatment in false 
positives [2] 

CNN AUC of 0.90 Oncology [89] 

Mammography 
667 benign and 
333 malignant 

Mammography  
diagnosis of early  
malignant breast 

Stacked AE Accuracy of 0.89 Oncology [96] 

Digital  
Mammography 
images and the 
biopsy result of 
the lesions [2] 

1000 malignant 
masses and 600 
cysts images and 
their biopsy [2] 

Discriminate benign 
cysts from malignant 
masses 

CNN AUC of 0.80 Oncology [97] 

Mammography 
images 

840 images of 
mammograms 
from 210 different 
patients 

Breast arterial  
calcification on  
mammograms  
classifier to evaluate 
the risk of coronary 
disease [2] 

CNN 
Misclassfied cases 
of 6% 

Cardiovascular [101] 

Digital  
mammograms 

661 from 444  
patients 

Computer automated 
estimation of breast 
percentage density [2] 

CNN AUC of 0.981 Oncology [151] 

Mammography 
images 

Mammograms 
from 604 
women 

Segment areas of dense 
fibroglandular tissue in 
the breast [2] 

CNN Accuracy of 0.66 Oncology [116] 

Digital  
mammograms 
images 

29,107 left  
mediolateral  
oblique, right 
mediolateral  
oblique, left  
cranial-caudal  
and right  
cranial-caudal 
mammograms 
images 

Probability of cancer 
on mammograms [2] 

CNN AUC of 0.90 Oncology [121] 

Ultrasound 

Image of the  
heart 2D 

400 images with 
five different heart 
diseases and 80 
normal  
echocardiogram 
images 

Segment left ventricle 
images with greater 
precision 

Deep belief 
networks 

Hammoude  
distance of 0.80 

Cardiovascular [152] 

Ultrasound  
imaging 

306 malignant and 
136 benign tumors 
images 

CAD system to detect 
and differentiate breast 
lesions with ultrasound 

CNNs inspired in 
AlexNet, U-Net 
and LeNet 

Best F-measure of 
0.91 and 0.89  
depending on the 
data 

Oncology [2] [24] 

Transesophageal 
ultrasound  
volume and 3D 
geometry of the 
aortic valve  
images 

3795 volumes from 
the aortic valves 
from 150 patients 

Diagnose, stratification 
and treatment planning 
for patients with aortic 
valve pathologies 

Marginal space 
deep learning 

Position error of 
1.66 mms and 
mean corner  
distance error of 
3.29 mms 

Cardiovascular [2] [84] 
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Continued 

Radiography 

Radiography 
images 

7821 subjects with 
6 monitoring 
phases 

CAD for diagnosis of 
knee osteoarthritis 

Deep Siamese Accuracy of 0.66 Traumatology [115] 

Radiography 
images 

420 radiography 
images (219  
control group, 201 
ostearthritis) [2] 

Radiographies CAD for 
hip osteoarthritis  
diagnosis 

CNN Accuracy of 0.92 Traumatology [153] 

Radiography 
images 

112,120 frontal 
view chest  
radiographs from 
30,805 patients and 
17,202 frontal view 
chest radiographs 
with a binary class 
label for normal vs 
abnormal 

Abnormality detection 
in chest radiographs 

CNN 

AUROCs of 0.960 
and 0.951.  
AUROCs of 0.900 
and 0.893 

Radiology [145] 

Slide image 

Pathology cancer 
images  
(hematoxylin and 
eosin) 

5202 images  
tumor infiltrating 
lymphocytes 

Study of tumor tissue 
samples. Localize areas 
of necrosis and  
lymphocyte infiltration 

Two CNNs AUC of 0.95 Oncology 
[2]; 

[76] 

Giemsa-stained 
thin blood smear 
slides cell images 

27,558 cell images 
150 infected and  
50 healthy patients 

Create a screening 
system for Malaria 

CNN Accuracy of 0.94 Infectious Disease [80] 

Microscopy  
image patches 

249 images  
belonging to 20 
histologic  
categories 

Classification of  
breast cancer histology 
microscopy images 

CNN with a  
Support Vector 
Machine (SVM) 

Accuracy of 0.77 
for four class  
classification and 
an accuracy of 0.83 
for carcinoma 
/noncarcinoma 

classification 

Oncology [109] 

Microscopy  
histopathological 
images 

7909 images of 
eight subclasses of 
breast cancers 

CAD for breast  
cancer  
histopathological  
diagnosis 

CNN Accuracy of 0.93 Oncology [110] 

Microscope  
images 

200 female subjects 
aged from 22 to 64 

Cervix cancer  
screening 

Multiscale CNN 
Mean and standard 
deviation of 0.95 
and 0.18 

Oncology [122] 

Whole-slide 
prostate  
histopathology 
images 

2663 images from 
32 whole slide 
prostate  
histopathology 
images 

Whole-slide  
histopathology images 
to outline the  
malignant regions 

CNN 
Dice coefficient of 
0.72 

Oncology 
[2]; 

[154] 

Ocular fundus 

2D Ocular  
fundus images 

243 retina images 
Diagnose retinal  
lesions 

CNN 

Precision recall 
curve of 0.86 in 
microaneurysms 
and 0.64 in  
exudates 

Ophthalmology 
[2]; 

[78] 

Ocular fundus 
images 2D 

Over 85,000  
images 

Diabetic retinopathy 
detection and stage 
classification 

Bayesian CNN AUC value of 0.99 Ophthalmology [88] 
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Continued 

 

Color ocular 
fundus images 

6679 random  
sampling images 
from Kaggle’s 
Diabetic  
Retinopathy  
Detection 

Detect retinal  
hemorrhages 

CNN 
AUC of 0.894 and 
0.972 

Ophthalmology [95] 

Ocular fundus 
images 

168 images with 
glaucoma and 428 
control 

System to detect and 
evaluate glaucoma 

CNN: ResNet and 

U-Net 
AUC of 0.91 and 
0.84 respectively 

Ophthalmology [98] 

Ocular fundus 
images 

90,000 images with 
their diagnoses 

Predict the evolution of 
diabetic retinopathy 
with fundus images 

CNN AUC of 0.95 Ophthalmology [155] 

Fundus images 
7000 colour fundus 
images 

Image quality in the 
context of diabetic 
retinopathy 

CNN Accuracy of 100% Ophthalmology [156] 

AREDS (age 
related eye disease 
study) image 

130,000 fundus 
images 

Diagnosis of 
Age-related Macular 
Degeneration 

CNN 
94.97 sensitivity 
and 98.32%  
specificity 

Ophthalmology [157] 

Fundus images 

219,302 from 
normal  
participants  
without  
hypertension, 
diabetes mellitus 
(DM), and any 
smoking history 

Predict age and sex 
from retinal fundus 
images 

CNN AUC 0.96 Ophthalmology 
[2]; 

[158] 

Dermoscopy 

Dermoscopy 
images 

350 images of 
melanomas and 
374 benign nevus 

Dermoscopy CAD 
system for acral  
lentiginous melanoma 
diagnosis 

CNN 
Accuracy of over 
0.80 

Oncology 
[2]; 

[99] 

Patient  
demographics 
and clinical  
images 

49,567 images 
Recognize nails  
nychomycosis lesions 

Region-based- 

CNN 

AUC of 0.98, AUC 
of 0.95, AUC of 
0.93, AUC value  
of 0.82 in the  
different  
datasets 

Dermatology [120] 

Stress 
99mTc-sestamibi 
or tetrofosmin 
myocardial  
perfusion  
images 

1638 patients 
Obstructive coronary 
disease automatic  
prediction system 

CNN 
Sensitivity value of 
0.82 and 0.69 for 
both use cases 

Cardiovascular [159] 

Arterial labeling 
Arterial spin 
labeling (ASL) 
perfusion images 

140 subjects 
Monitoring cerebral 
arterial perfusion via 
spin labeling 

CNN AUC of 0.94 Cardiovascular [91] 

Frames from 
endoscopy 

Frames from 
endoscopy videos 

205 normal and 
360 abnormal 
images 

Detection and  
localization system  
of gastrointestinal 
anomalies via  
endoscopy 

CNN AUC of over 0.80 Gastroenterology [103] 
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Continued 

Tracking  
dataset  
multi-  
instrument  
Endo-Visceral 
Surgery and 
multi-  
instrument in 
vivo 

Single-  
instrument  
Retinal  
Microsurgery 
Instrument 
Tracking dataset, 
Multi-instrument 
Endo-Visceral 
surgery and  
multi-instrument 
in vivo images 

940 frames of the 
training data (4479 
frames) and 910  
frames for the test 
data (4495 frames) 

Detect the 
two-dimensional  
position of different 
medical instruments  
in endoscopy and  
microscopy surge 

Convolutional 
Detection  
regression  
network 

Accuracy of 0.94 Robotic Surgery 
[2]: 
[119] 

CT/PET- 
CT/SPECT 

Nuclear MRIs 3D 
124 double echo 
steady state from 
17 patients 

Diagnose possible soft 
tissue injuries 

DeepResolve, a 
3D-CNN model 

MSE of 0.008 Traumatology 
[2] 
[160] 

Retinal 3D  
images obtained 
by Optical  
Coherence  
Tomography 

269 patients with 
AMD, 115 control 
patients 

Retina age-related 
macular degeneration 
diagnostic 

CNN AUC of 0 Ophthalmology [77] 

123I-fluoropropyl 
carbomethoxy- 
iodophenyl  
nortropane  
single-photon 
emission  
computed  
tomography 
(FP-CIT SPECT) 
2D images 

431 patient cases 
Automatic  
interpretation system 
in Parkinson’s disease 

CNN Accuracy of 0.96 
Neurology- 
Psychiatry 

[79] 

Abdominal CT 
3D images 

231 computed 
abdominal 

CAD system to  
classify tomographyes 
and evaluate the  
malignity degree in 
gastro-intestinal 
stromal tumors 
(GISTs) 

Hybrid system 
between  
convolutional 
networks and 
radiomics 

AUC of 0.882 Oncology [161] 

CT image patches 
2D 

14,696 images 
from 120 patients 
with proven  
diagnose 

CAD system to  
diagnose interstitial 
lung disease 

CNN Accuracy of 0.85 Pneumology [85] 

3D MRI and PET 

93 Alzheimer  
Disease, 204 MCI 
Mild Cognitive 
Impairment  
converters and 
normal control 
subjects 

CAD for early  
Alzheimer disease 
stages 

Multimodal DBM 
Accuracy of 0.95, 
0.85 and 0.75 for 
the three use cases 

Neurology- 
Psychiatry 

[2]; 
[92] 

CT/PET- 
CT/SPECT 

CT images, MRI 
images and PET 
images 

6776 images for 
training and 4166 
for tests 

Classify medical  
diagnostic images 
according to the  
modality they were 
produced and classify 
illustrations according 
to their production 
attributes 

CNN and a  
synergic signal  
system 

Accuracy of 0.86 Various 
[2] 
[108] 
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Continued 

 

CT image 2D 
63,890 patients 
with cancer and 
171,345 healthy 

Discriminate lung 
cancer lesions in  
adenocarcinoma, 
squamous and small 
cell carcinoma 

CNN 
Log-Loss error  
of 0.66 with a 
sensitivity of 0.87 

Oncology [118] 

CT 2D images 
3059 images from 
several parts of 
human body 

Speed up CT images 
collection and rebuild 
the data 

Dense Net and a 
deconvolution 

model 
RMSE of 0.00048 Various [11] 

CT images 3D 

6960 lung nodule 
regions, 3480 of 
which were  
positive samples 
and rest were  
negative samples 
(nonnodule) 

CAD to diagnose lung 
cancer in low-dosage 
computed tomography 

Eye tracking  
sparse attentional 
model and  
convolutional 
neural network 

Accuracy of 0.97 Oncology [162] 

CT images 2D 
and text (reports) 

9000 training and 
1000 testing  
images 

Processing text from 
CT reports in order to 
classify their respective 
images 

CNN 

Accuracy of 0.95, 
0.70 and 0.58  
respectively for the 
three use cases 

Various [12] 

Computed  
tomography (CT) 

Three datasets: 
224,316, 112,120 
and 15,783 

Binary classification of 
posteroanterior chest 
xray 

CNN 92% accuracy Radiology 
[2] 

[163] 

MRI 

Diffusion- 
weighted imaging 
maps using MRI 

222 patients. 187 
treated with rtPA 
(recombinant 
tissue-type  
plasminogen  
activator) 

Decide Acute Ischemic 
Stroke patients’  
treatment through 
volume lesions  
prediction 

CNN AUC of 0.88 
Neurology- 

Psychiatry 

[2]; 

[81] 

Magnetic  
resonance  
images 

474 patients with 

schizophrenia and 
607 healthy  
subjects 

Schizophrenia  
detection 

Deep discriminant 
autoencoder  
network 

Accuracy over 0.8 
Neurology- 

Psychiatry 
[83] 

Gadoxetic  
acid-enhanced 2D 
MRI 

144,180 images 
from 634 patients 

Staging liver fibrosis 
through MR 

CNN 
AUC values of 
0.84, 0.84, and 0.85 
for each stage 

Gastroenterology [86] 

Resting state 
functional  
magnetic  
resonance  
imaging 
(rs-fMRI), T1 
structural cerebral 
images and  
phenotypic  
information 

505 individuals 
with autism and 
520 matched  
typical controls 

Identify different  
autism spectrum  
disorders 

Denoising AE Accuracy of 0.70 
Neurology- 

Psychiatry 
[92] 

3D MRI and PET 

93 Alzheimer  
Disease, 204 MCI 
Mild Cognitive 
Impairment  
converters and 
normal control 
subjects 

CAD for early  
Alzheimer disease 
stages 

Multimodal DBM 
Accuracy of 0.95, 
0.85 and 0.75 for 
the three use cases 

Neurology- 

Psychiatry 

[2]; 

[93] 
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Continued 

MRI 

Clinical  
characteristics 
and MRI 3D 

135 patients with 

short-medium and 

long-term survival 

Predict the survival  
of patients with  
amyotrophic lateral 
sclerosis 

CNN Accuracy of 0.84 
Neurology- 

Psychiatry 

[2] 

[104] 

Optical coherence 
tomography  
images 

52,690 AMD  
patients’ images 
and 48,312 control 

Differentiate 
Age-Related Macular 
Degeneration lesions in 
optical coherence  
tomography 

Modification of 
VGG16 CNN 

AUC of 0.92, AUC 
of 0.93 and AUC of 
0.97 for the  
different use cases 

Ophthalmology [105] 

Lung computed 
axial tomography 
2D images and 
breast ultrasound 
lesions 

520 breast  
sonograms from 
520 patients (275 
benign and 245 
malignant lesions) 
and lung CT image 
data from 1010 
patients (700  
malignant and 700 
benign nodules) 

CAD system to classify 
breast ultrasound  
lesions and lung CT 
nodules 

Stacked denoising 
AE 

AUC of 0.94 Oncology [164] 

MRI 2D 
444 images from 
195 patients with 
prostate cancer 

CAD to prevent errors 
in diagnosing prostate 

CNN AUC of 0.94 Oncology [165] 

MRI 2D 

MICCAI 2009 left 
ventricle  
segmentation 
challenge database 

Determinate limits 
between the  
endocardium and 
epicardium of the left 
ventricle 

RNN with  
automatic  
segmentation 
techniques 

Accuracy of 1.0 in 
the 

best case 
Cardiovascular 

[2]; 

[107] 

MRI 

CT images, MRI 
images and PET 
images 

6776 images 

Classify medical  
diagnostic images 
according to the  
modality they were 
produced and classify 
illustrations according 
to their production 
attributes 

CNN and a  
synergic signal 
system 

Accuracy of 0.86 Various 
[2] 

[108] 

Functional MRI 

68 subjects  
perform 7  
activities, and a 
state of rest 

Analyze cerebral  
cognitive functions 

3D CNN, resting 
state networks 

Accuracy of 0.94 
Neurology- 

Psychiatry 
[15] 

Liver MRIs 

522 liver MRI cases 
with and without 
contrast for known 
or suspected liver 
cirrhosis or focal 
liver lesion 

Screening system for 
undiagnosed hepatic 
magnetic resonance 

images 

CNN 

Reduces negative 
predictive value 
and leads to  
greater precision 

Gastroenterology [117] 

MRI images 

1064 brain images 
of autism patients 
and healthy  
controls. MRI  
data from 110 
multiple sclerosis 
patient 

Automatically  
evaluate the quality of 
multicenter structural 
brain MRI images 

CNN AUC 0.90 and 0.71 Radiology 
[2] 

[166] 
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3. Conclusions 

Doctors interpret images descriptively (contour, contrast, appearance, localiza-
tion, etc.) by using data from different excipients and successive stages in the 
analysis of medical images. These handcrafted features consume time and do not 
have a standardized character. 

Data quality and volume, annotations and labels, identification and automatic 
extraction of specific medical terms can help deep learning models perform in 
the tasks of image analysis [3]. Incorporating these features, labels, into DL ar-
chitectures increases their performance. 

High-level domain knowledge is incorporated as input images [3], and low-level 
domain knowledge is learned using specific network structures [35] and, toge- 
ther with direct networking, low-level domain knowledge information can also 
be used to design training commands when combined with the easy-to-use train-
ing model [3] [133]. 

DL can be a support in solving complex problems of interpretation of medical 
images and provides the doctor with support in making medical decisions and 
time for patient care. 

4. Research Problems 

Problems in medical image analysis can be categorized as follows: 
• identification and automatic extraction and standardization of specific med-

ical terms, 
• representation of medical knowledge, 
• incorporation of medical knowledge. 

Problems in medical image analysis are related to: 
• medical images provided as data for deep-street models require: quality, vo-

lume, specificity, labelling. 
• providing data from doctors, descriptive data, labels are ambiguous for the 

same medical and non-standard references. 
• laborious time in data processing are problems to solve in the future. 
• lack of clinical trials demonstrating the benefits of using DL medical applica-

tions in reducing morbidity and mortality and improving patient quality of 
life [4]. 

5. Future Challenges 

These consist of adapting the domain consisting of transferring data from one 
domain to another domain by using labels; knowledge graph characterized by 
the incorporation of multimodal medical data; generating models capable of ex-
tracting features unsupervised and easily incorporated into the architecture of 
DL networks; techniques to search for a particular network architecture accord-
ing to the defined objectives. 

The adaptation of the domain consisted of transferring information from a 
source domain to a target domain [3], such as adversarial learning [134], and 
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makes it restrict the domain change between source and target [3] domain in 
input space [135], feature space [136] [137] and output space [138] [139]. It can 
be used to transfer knowledge about one set of medical data to another [3] [140], 
even when they have different modes [3] of imaging or belong to different dis-
eases [141] [142]. UDA (unsupervised domain adaptation), which uses medical 
labels, has demonstrated performance in disease diagnosis and organ segmenta-
tion [3] [140] [143] [144] [145]. 

The knowledge graph has the specifics of incorporating multimodal medical 
data and achieves performance in medical image analysis [3] and the creation of 
medical reports [146]. The graphs of medical knowledge describing, the rela-
tionship between different types of knowledge, the relationship between differ-
ent diseases, the relationship between medical datasets and a type of medical da-
ta, help deep learning models work [147]. 

Generating models, GAN and AE are mainly used for segmentation activities. 
GAN uses MRI datasets to segment CT images [142] [143]. GAN is a type of 
unsupervised deep learning network used in medical image analysis [3] [167]. AE 
are used in extracting features, shape priorities in objects such as organs or le-
sions, completely unsupervised and are easily incorporated into the network 
formation process [35] [148]. 

Network Architecture Search Technique (NAS) can automatically identify a 
specific network architecture in computer tasks [149] and promises that utility 
and performance in the medical field [150]. 
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