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Abstract
For the polynomial P(z)=2ajzj , aza,, 3>0, j=12--n,
j=0

a, >0, a classical result of Enestrom-Kakeya says that all the zeros of P(z)

lie in

z| <1. This result was generalised by A. Joyall and G. Labelle, where

they relaxed the non-negativity condition on coefficients. It was further ge-
neralized by M.A Shah by relaxing the monotonicity of some coefficients. In
this paper, we use some known techniques and provide some more generali-
zations of the above results by giving more relaxation to the conditions.
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1. Introduction

n .
If P(Z) = Zajz’ is a polynomial of degree n. Then Enestrom-Kakeya [1] [2]
=0

proved the following interesting result.

Theorem A: Let P(z)= Zajzj be a polynomial of degree n such that

j=0

a,>a,, 28 >0,then P(z) hasallitszerosin |z|<1.

For example: The Polynomial 10z°+82° +7z* +72z° +62z° +2z+1 has all ze-
ros in |Z| <1.

In the literature, there exist several extensions and generalizations of this
theorem. Joyal et al [3] extended Theorem A to the polynomials whose coeffi-

cients are monotonic but not necessarily non-negative. In fact, they proved the
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following result.

Theorem B: Let P(z)=)_ a; z' be a polynomial of degree n such that
=0

a,>a,,>-->a >a,,then P(z) hasallits zeros in the disk

s

For example: Consider the Polynomial 4z°+32° +2z* -2 -z-3
Here n=6,a,=4 and a,=-3

)
1
—(Jan[ -2 +[a]). (1)

Then the zeros of this polynomial lie in
/< 4-(-8)+3 4+3+3 _10_5
B 4 4 4 2

Le. |Z| <25

The above results were generalised by M.A. Shah [4]. In fact he proved the
following result.

Theorem C: Let P(z)=a,z"+a,,2"" +---+a,z" +a,,2" " +---+az+a, be

a polynomial of degree n satisfying

n
a,>a, ;>--->a2a,p=012--nand M, = ‘Zl|aj —aH|,
j=p+

then all the zeros of P(z) lie in the disc

o< M, Jrapa—a0 +|a0|.

n

(2)

. _ n n-1 p p-1
Theorem D: Let P(z)=a,z"+a,,z" " +---+a,2" +a, ;2" " +---+ a7 +4,

be a polynomial of degree n satisfying

a,>a,,; 2> >a,p=0L2--nand M = Zn: |aj—aH|,

p p
j=p+1

then P(z) does not vanish in

2| < minlil 2 } (3)

'|an|+Mp+ap—a0

In literature [5]-[12], there exist several other generations and extensions of
Enestrom-Kakeya Theorem. Our main purpose is to relax some conditions on
the monotonicity of coefficients and obtain some interesting generalizations of
known results.

2. Main Results

This paper provides some further generalizations of the Enestrom-Kakeya theo-
rem and the above results. In this direction, we first prove the following result.
Theorem 1. Let

1

— n n-1 p p- q q-1
P(z)=a,z"+a,,2" " +---+a,z" +a,,2" " +---+a,2' +a, ;2" +---+a, +a, be

a polynomial of degree n satistying

a,>a,; >-->a,p=q.
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n

Mp:z

j=p+1

q
aj—aH| and Mq=2|aj—aH|,
i
then all the zeros of P(z) lie in the disk
7| <

Proof. Consider the polynomial

F(2)=(1-2)P(2)

:(1—2)(51"2n +a,, 2" +era 2P ag 2P

M, +M,+a, -2 +|a0|

)
al

+a 2% +a 2"+ az+a)
=-a "™ +[(an —a,,)z"+(a,,—-a,,)z"" +--~+(ap+l —ap)zp+1
+(a,—a,,)2" +(a,,—a, ,) 2"+ +(ay,, —a, ) 2"
+(aq—aq71)zq+(aq71—aq72)zq‘1+---+(a1—ao)z+ao]
This gives
F(2)|=]a,||2]"" - [( a,,)2" +(a, ,—a, ,)z" "+ +(a,, —a, )27
( pl) (pl apz)z"1+ +(aq+1 a)zq+1
+(ay —ag4) 20 +(ag —a, , )2+ + (3 - 1) z+a0|]

e[l s~ 5t

|p+1

ap+l_ap||z

+|ap —a,,4||7° +|ap7l —a,, |z|p_l |q+1

G+

p—1|| aq+l_aq||z

+|aq —aq71||z|q +| 831~ 8-, |Z|qi1 +---+|a1 —a0||z|+|a0|]

a_, -a_ la, -a, |
2|Z|n {|an||2|—[|an—an1|+| n 1|Z| n 2|+,..+ Tz|n_; 1 F

TN Iaol]

2™ C—

Now let |Z| >1, so that

1 .
] <1,0< j<n, then we have

|F(z)| >z [|an||z|—(|an —an71|+|an71—an72|+---+|ap —ap71|+---
+lay —ag |+ +fa —ag | +ag )|
= [2I"[[au|[2] = (8 = @yo] +[a0s =2y o[+ +

+a, —a, A, —a, +|aq —aq71|+---+|al—a0|+|a0|)J

n
-l £ -l Sl -2, ol

:|Z|n [|an||z|_(Mp +M,+a, -a, +|a0|)

A~ ap|

>0, if [z][a,] >(Mp +M,+a, -8, +|a0|)
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Le. if

n q
where M = > |aj —aH| and M, =Z;|aj —aH|.
J:

j=p+l
Thus all the zeros of F(z) whose modulus is greater than 1 lie in the disk
M, +M,+a, —a, +|a|
2|

IN

2

But the zeros of F(z) whose modulus is less than or equal to 1 already sa-
tisfy the above inequality and all the zeros of P(z) are also the zeros of F(z).
Hence it follows that all the zeros of P(z) lie in the disk
M, +M,+a, —a, +|a|

2]

|z <

This completes the proof of the Theorem.
For example: Consider the polynomial
102° - 2° +22° -3z +42° +32° +22* - 2* +32° -2z +1
Here n=10, a, =10, p=6, q=3, a,=4, a,=-1, a;=1, M =26
and M, =12
26+12+4+1+1
s ——
10
|7|<4.4

Remark. For p=n and =0, theorem 1 reduces to theorem B.
Applying theorem 1 to the polynomial p(tz), we get the following result
Corollary. Let

1 q q-1
+e+a,2% +a,,2% +--+a +a, be

= _
P(z)=a,z"+a,,2" " +---+a,2" +a,,2"
a polynomial of degree n such that for any t>0,

p p-1 q+1 q
t'a, >t"ta, > 21", >t%,

then all the zeros of P(z) lie in the disk
q |ta j—a j—l|

n | t
< X 2 +

n—j+1 n—j+1 n
ST e Cfa

ta, —aH| Pa, —t'a, +|a,|

(5)

Remark. for q=0 the above theorem reduces to theorem C.

Next, we prove the following result concerning the zero-free region of a poly-
nomial. In fact we prove the following:

Theorem 2. Let

_ n n-1 p p-1
P(z)=a,z"+a,,2"" +---+a,2" +a,,7

+--+a,2" +a,,42Z +--+a, +4, be
a pO]VHOIHi&] Ofdﬁ‘éfl‘ ee n satist [/Illg
apzaPJZ"'Zaq,qu.

n

q
M, = > |aj—ajfl| and M, =Z;|aj—ajfl|
J:

j=p+l
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then P(z) does not vanish in

|z|<min{

L 2]
M, + M, +a, —a, +|a,|

(6)

Proof. Consider the reciprocal polynomial
R(z)= z"p(%J: 82" +az" +--+a,2" -+ 2" P+ ka7 +a,.
Let

5(2)=(1-2)R(2)

(1—z)[aoz” +a 7" e+, 2 4 2" +~--+an_1z+anJ

=—a,2"" + (2 —a,) 2"+ + (8, -3, ) 2" o+ (3, -2y, ) 2"

+--+(a,,—a,)z+a,.
This gives
5(2) 2 agl |2 ~[ [ a2 +---+

WY AR

+la, —ayalf 7+, a2 +[a
a,,—a, |a —a|
=[2]"| [aol 2]~ | [a ~ ] # -+ 4 =2 4
7 7

|ap—1 _ap| |ap —8py

PR P +"’+|an71;1an|+@ :
7 7 A

Now let |Z| >1, so that

7 <L0< j<n, then we have

q

a+1—aq|+---

522 T [l (12 -l +-+]an.-a,

+|ap71—ap|+|ap —a

p+l +“'+|an—l_an|+|an|>:|

n q
Z|ef {|a0||z|— j:zp+1|aj ~a,, +§|a,. —ag|+ a2,

+8y,, g oAy, —a) ,+a, —a +|an|}

=l [Jaollzl-(M; + M, +[a,|+a, -,

>0, if |z]jag| > (M, +M, +a, -3, +[a,|)

Le. if
|2|> M, + M, +a, —a; +a,|
3]
where Mp = Zn: a;—a;, ,and Mq :Zq:|ai _aj*1| :
j=p+l =1
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Thus all the zeros of S(z) whose modulus is greater than 1 lie in
M, +M,+a,—a, +[a,|
2

Hence all the zeros of S(z) and hence of R(z) liein

|z <

M, +M,+a, -a, +|an|

|a|

|z|smax 1

Therefore all the zeros of P(z) liein

|z| = min| 1, [2
M, M, +a, -3, +|an|_

Thus the polynomial P(z) does not vanish in

|z|<min 1, |a°|
M, +M, +a, -, +|an|_

This completes the proof of the Theorem.

For example: Consider the polynomial 2z° —5z" +72° +22° - 22% + z° -3z +10

Here n=8, a,=2, p=5, q=3, a,=2, a,=-2, g, =10, M, =24
and M, =20

|z|<min 1, |a0|
|Mp+Mq +a, —a, +|a,|

ie, |z|<min[1 10 }

"244+20+2+2+2
ie, |z| < min[l,g}
50

ie, |z| <min(1,0.2)

Le., |Z| <0.2

3. Conclusion and Suggestions

We can obtain several known results from the above results as special cases. If
we apply monotonicity to all the coefficients, we can easily obtain all the pre-

vious known results in addition to Enestrom-Kakeya theorem.
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