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Abstract 
Option pricing model is a wildly interested topic in an area of financial Ma-
thematics. The pioneer model was introduced by Fischer Black and Myron 
Scholes which is known as the Black-Scholes model. This model was derived 
under various assumptions such as liquidity and no transaction costs for 
which a underlying asset price in stock market might not be satisfied. With 
this fact, the underlying asset price models were remodeled, in order to de-
termine an option value. This research aims to extend the Black-Scholes 
model by relaxing the assumption of no transaction costs in illiquid markets. 
Also, jumps of asset price are considered in this work. To do this, a differen-
tial form of asset price with transaction costs and jumps in illiquid markets is 
introduced and then used to construct the extended option pricing model. 
Furthermore, a numerical result of a call option price under a new situation is 
provided. 
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1. Introduction 

Derivatives are financial instruments that give the right to buy or sell an under-
lying asset in the future. These contacts, such as future, forward, swap and op-
tion, were used for speculating and managing risks in an investment. For an op-
tion, it is a financial contract that gives option holders the right to buy or sell an 
underlying asset from option writers by a specified date and price. The contract, 
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giving option holders the right to buy an underlying asset, is called a call option 
while the contract that gives option holders the right to sell an underlying asset 
is called a put option. 

In 1973, Fischer Black and Myron Scholes [1] constructed the Black-Scholes 
model for determining prices of options. However, their model required various 
assumptions such as constant volatility, no transaction costs and perfect liquidi-
ty. However, purchasing on some stocks may be illiquid. Also, random jumps of 
prices of some underlying assets have occurred. With these reasons, the 
Black-Scholes assumptions may not fulfill the real financial market situations. 
Therefore, many researchers tried to extend the result of Black and Scholes by 
reducing some of the above assumptions (see, [2] [3] and [4]). 

In illiquid market, the investor’s trading in the stock market affects the stock 
price. This impact is called a price impact. The price impact is referred to the 
correlation between trading and subsequent price change. This may be a result 
from a bid trader who is able to move the price by his/her actions. 

In 2005, Hong Liu and Jiongmin Yong [5] examined the effects of price im-
pact in an illiquid market in replicating a European option. They investigated a 
generalized Black-Scholes pricing model in illiquid market. Moreover, the pres-
ence of the price impact has been studied and analysed in several researches. For 
example, Kristoffer Glover, Peter Duck, and David Newton [6] consider the ef-
fects of illiquidity on the Black-Scholes model. Traian Pirvu and Ahmadreza 
Yazdanian [7] investigated the effects of price impact in imperfect liquidity on 
the replication of a European Spread option. 

In 2013, Youssef El-Khatib and Abdulnasser Hatemi-J [8] applied a jump 
diffusion model to price process in Liu and Yong [5] and provided the 
Black-Scholes model in illiquid with Jump. Then, in 2016, Francis Agana, Olu-
wole D. Makinde and David M. Theuri [9] studied the combined effects of 
transaction costs and large trading in illiquid markets on options pricing model. 
They derived a generalized and nonlinear Black-Scholes model in an illiquid fi-
nancial market with transaction costs. However, none of the previous research is 
studied under the situation of existing transaction costs and jumps associated 
with illiquid markets. 

In this paper, we combined the idea of [8] and [9] by introducing a differential 
form of an asset price process related to transaction costs and jump diffusion 
term in an illiquid market. Also, we provide a European option pricing model 
with transaction costs and jumps in illiquid markets. This model extends results 
in [1] [5] [8] and [9] by reducing more assumptions. Moreover, numerical si-
mulations of an option price are shown by using the Monte Carlo simulation. 

The contents of this research are organized into four sections. In Section 2, the 
differential form of assets price with transaction costs and jumps in illiquid 
markets is introduced. Also, an asset price process is investigated and a simula-
tion example of option price is given in this section. In Section 3, a model of op-
tion pricing associated to the propose differential form is provided. Finally, con-
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cluding remarks are given in Section 4. 

2. Differential Form of Assets Price with Transaction Costs and  
Jumps in Illiquid Market 

In this section, we introduce the differential form of assets price with 
transactions costs and jumps for illiquid market. We consider a financial market 
having two types of assets; a risk-free asset and a risky asset. For 0t > , let tA  
and tS  be risk-free asset and risky asset prices at time t, respectively, T t−  be 
the time to maturity date, K be strike price and  
( ) ( ) { }max ,0T T Th S S K S K+= − = −  be the pay-off at time T. In 1973, Fischer 

Black and Myron Scholes [1] constructed the Black-Scholes model for option 
pricing. They assumed that the price of risk-free asset follows  

d dt tA rA t=                             (1) 

where r is the risk-free interest rate and assumed that the price of risky asset sa-
tisfies  

( )d d dt t tS S t Wµ σ= +                        (2) 

where µ  and σ  are the constant drift and constant volatility, respectively, 

tW  is a standard one-dimensional Brownian motion. In 2005, Hong Liu and 
Jiongmin Yong [5] extended the result of Black and Scholes [1]. They derived a 
generalized Black-Scholes pricing model in illiquid market. In [5], Hong Liu and 
Jiongmin Yong assumed that the price of risk-free asset and the price of risky 
asset follow  

( )d , dt t tA r t S A t=  and                      (3) 

( ) ( ) ( )( )d , d , d , dt t t t t t tS S t S t t S W t Sµ σ λ θ= + +              (4) 

where ( ), tr t S  is the interest rate, the drift and the volatility, respectively, de-
pending on time t and tS , ( ), tt Sλ  is price impact function of the trader 
(non-negative) and tθ  is the number of shares. They also assumed that  

d d dt t t tt Wθ η ζ= +                         (5) 

where tη  and tζ  are adapted process to a filtration ( ) 0t t>
  generated by the 

Brownian motion. After that, in 2013, Youssef El-Khatib and Abdulnasser Ha-
temi-J [8] applied a jump diffusion model to price process in Liu and Yong 
model [5]. The price of risky asset is assumed as  

( ) ( )( ) ( )( )d , d , d d , dt t t t t t t tS S t S t t S W a M t Sµ σ λ θ= + + +         (6) 

where a is a real constant and t tM N tρ= −  is the compensated Poisson 
process where tN  is a Poisson process with deterministic intensity ρ . They 
assumed further that  

( )d d d dt t t t tt W b Mθ η ζ= + +                     (7) 

where b is a real constant. In 2016, Francis Agana and et al. [9] added the term 
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of transaction costs to price process in Liu and Yong model [5]. They assumed 
that the price of risky asset satisfies  

( ) ( ) ( ) ( )( )d , d , d , d , dt t t t t t t t tS S t S t t S W t S t Sµ σ λ θ κ θ= + + +        (8) 

where ( ), tt Sκ  is the transaction costs. In this work, we combined the idea of 
[8] and [9] to construct a model of option pricing. We assume that the price of 
the risky asset is generated by the following stochastic differential equation:  

( ) ( )( ) ( ) ( )( )d , d , d d , d , dt t t t t t t t t tS S t S t t S W a M t S t Sµ σ λ θ κ θ= + + + +    (9) 

and tθ  satisfies  

( )d d d d .t t t t tt W b Mθ η ζ= + +                     (10) 

Thus, by (9) and (10), the price process of the risky asset satisfies the following 
differential form: 

( ) ( ) ( )(
( ) ( ) ( )
( ) ( ) ( ) )

d , , , d

  , , , d

  , , , d .

t t t t t t t

t t t t t t

t t t t t t

S S t S t S t S t

t S t S t S W

a t S b t S b t S M

µ λ η κ η

σ λ ζ κ ζ

σ λ ζ κ ζ

 = + + 

 + + + 

 + + + 

          (11) 

In solving Equation (11), we apply the Ito lemma in [8] with ( ), lnt tG t S S= . 
We obtain   

( ) ( ) ( )(
( ) ( ) ( ) )

( ) ( ) ( )( )

( ) ( ) ( )( )( )( )
( ) ( ) ( )( )

0 0

2 2 2

0

ln ln ln , , ,

, , , ln

1 , , , ln
2

ln , , , ln d

, , , ln d

t
t s s s s s s s

s s s s s s x s

s s s s s s xx s

s s s s s ss s

t
s s s s s s x s s

S S S s S s S s S

a s S b s S b s S S S

s S s S s S S S

S a s S b s S b s S S S s

s S s S s S S S W

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

− −

= + ∂ + + +

 − + + ∂ 

+ + + ∂

+ + + + − 

+ + + ∂

∫

∫

 

( ) ( ) ( )( )( )( )
( ) ( ) ( )(

( ) ( ) ( ) )

( ) ( ) ( )( )

0

0 0

2 2
2

ln , , , ln d

ln , , ,

1, , ,

1 1, , ,
2

t
s s s s s s ss s

t
s s s s s

s s s s s s
s

s s s s s s
s

S a s S b s S b s S S S M

S s S s S s S

a s S b s S b s S S
S

s S s S s S S
S

σ λ ζ κ ζ

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

− −+ + + + −

= + + +

 − + + 

− + +

∫

∫
 

( ) ( ) ( )( )( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )( )(
)( )

0

0

ln 1 , , , ln d

1, , , d

ln 1 , , ,

ln d d

s s s s ss s

t
s s s s s s s

s

t
s s s s ss

ss

S a s S b s S b s S S s

s S s S s S S W
S

S a s S b s S b s S

S N s

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ

ρ

− −

−

−

+ + + + − 

+ + +

+ + + +

− −

∫

∫
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( ) ( ) ( )(

( ) ( ) ( ) )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

0 0

2

0

0

ln , , ,

, , ,

1 , , , d
2

, , , d

ln 1 , , , d

t
s s s s s

s s s s s

s s s s s

t
s s s s s s

t
s s s s s s

S s S s S s S

a s S b s S b s S

s S s S s S s

s S s S s S W

a s S b s S b s S N

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ


= + + +



 − + + 

− + + 

+ + +

+ + + +

∫

∫

∫  
(12) 

The Poisson integral in (12) can be computed in terms of the waiting times 

kT . Thus, we have  

( ) ( ) ( )(

( ) ( ) ( ) )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

0 0

2

0

1

ln ln , , ,

, , ,

1 , , , d
2

, , , d

ln 1 , , ,
t

k k k k k

t
t s s s s s

s s s s s

s s s s s

t
s s s s s s

N

k T k T T k T T t
k

S S s S s S s S

a s S b s S b s S

s S s S s S s

s S s S s S W

a T S b T S b T S N

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ
=


= + + +



 − + + 

− + + 

+ + +

+ + + + ∆

∫

∫

∑

    (13) 

where 1tN∆ = , that is the Poisson process has a jump at time t. Hence, the asset 
price tS  at time t is given by  

( ) ( ) ( )(

( ) ( ) ( ) )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

0 0

2

0

=1

exp , , ,

, , ,

1 , , , d
2

, , , d

1 , , ,
t

k k k k k

t
t s s s s s

s s s s s

s s s s s

t
s s s s s s

N

k T k T T k T T
k

S S s S s S s S

a s S b s S b s S

s S s S s S s

s S s S s S W

a T S b T S b T S

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ

σ λ ζ κ ζ

 
= + + 



− + +  

− + + 


+ + + 


× + + +

∫

∫

∏

       (14) 

Next, a Monte Carlo simulation for a call option price is presented. This 
computation is obtained as a special case when the coefficients , , , , , ,a bµ λ κ η ζ  
and ρ  are constants. By Equation (14), the stock price at maturity date T can 
be simplified as  

( ) ( )

( ) ( )

2
0

1exp
2

1 T

T

N
T

S S a b b T

W a b b

µ λη κη ρ σ λζ κζ σ λζ κζ

σ λζ κζ σ λζ κζ

 = + + − + + − + + 
 


+ + + × + + +



   (15) 

and the price of a call option with strike price K at maturity date T is computed 
as  
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( )e rT
TE S K +− −                           (16) 

If we set 0 40S = , 0.05r = , 0.02µ = , 0.2σ = , 44K = , 0.0001λ = , 
0.01κ = , 0.001η = , 0.05ζ = , 0.1a = , 0.3b =  and 1ρ = , the simulation 

results are shown below. In Figure 1, a Monte Carlo simulation result of asset 
price followed the Equation (15) with 1T = , the number of time steps 100m =  
and the number of realizations 500n =  is shown. The average of the asset price 
from the simulation result is depicted in Figure 2. In Figure 3, a call option 
price in Equation (16) is simulated. 
 

 
Figure 1. The simulation of the asset price. 

 

 
Figure 2. The average of the asset price. 

 

 
Figure 3. The simulation of European call option price. 
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It can be seen form the above figures that there are wide ranges of values in a 
number of paths being result form jumps, transaction costs and price impacts. 
However, the average of the asset price lies between 39 and 41. Although the si-
mulated price at expiration date is less than the strike price which is 44, the si-
mulated option price is still positive due to the definition of pay-off. This can be 
explained that if an investor plans to buy and then hold an option, which an un-
derlying asset price follows Equation (9), to its expiration date, the option fair 
price at current time is positive because of positive jumps of the underlying asset 
price. 

3. Option Pricing Model with Transaction Costs and Jumps  
in Illiquid Markets  

In this section, we construct a partial differential equation for option pricing by 
using a arbitrage pricing technique [10] consisting of the following steps:  

1) Constructing a self-financing portfolio with the risk-free asset and the risky 
asset. 

2) Providing a differential form of option price by applying Ito’s lemma to op-
tion price function depending on t and tS . 

3) Comparing the coefficients in the above differential form by using arbitrage 
pricing technique. This is, comparing the coefficients in random and non random 
parts in the replicating portfolio from step 1. 

(Step 1) For [ ]0,t T∈ , let tV  is the wealth process and tψ  is the number of 
units invested in the risk-free asset. The value of the portfolio tV  satisfies  

.t t t t tV A Sψ θ= +                           (17) 

Assume that the trading portfolio is self-financing. Then,  

d d d .t t t t tV A Sψ θ= +                         (18) 

and we have the following Proposition.  
Proposition 1. If the portfolio is self-financing, then the wealth process in 

(18) follows the stochastic differential equation:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

d , , , , , d

 , , , d

 , , , d .

t t t t t t t t t t t

t t t t t t t t

t t t t t t t t

V r t S V S t S r t S t S t S t

S t S t S t S W

S a t S b t S b t S M

θ µ λ η κ η

θ σ λ ζ κ ζ

θ σ λ ζ κ ζ

 = + − + + 

 + + + 
 + + + 

  (19) 

Proof. By (3), (11), (17) and (18), we have  

( )( ) ( ) ( ) ( )(
( ) ( ) ( )
( ) ( ) ( ) )

d d d d d

, d , , , d

, , , d

, , , d

t t t
t t t t t t t t

t

t t t
t t t t t t t t t

t

t t t t t t

t t t t t t

V S
V A S A S

A
V S

r t S A t S t S t S t S t
A

t S t S t S W

a t S b t S b t S M

θ
ψ θ θ

θ
θ µ λ η κ η

σ λ ζ κ ζ

σ λ ζ κ ζ

−
= + = +

−
 = + + + 

 + + + 

 + + + 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

, , , , , d

, , , d

, , , d .

t t t t t t t t t t

t t t t t t t t

t t t t t t t t

r t S V S t S r t S t S t S t

S t S t S t S W

S a t S b t S b t S M

θ µ λ η κ η

θ σ λ ζ κ ζ

θ σ λ ζ κ ζ

 = + − + + 

 + + + 
 + + + 

 

Therefore, the proposition is proved.                                □ 
The following theorem gives the partial differential equation for option pric-

ing with transaction costs and jumps in illiquid markets. In this theorem, we 
combine the step 2 and step 3 in arbitrage pricing technique.  

Theorem 2. Let ( ), tf t S  be the price of the European call option at time 
[ ]0,t T∈  and tS  satisfies the Equation (11). Then the partial differential equa-

tion of the option price is given by  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )(

( ) ( ) ( ) ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )( ) ( )( )

2 2 2

, , , , ,

, , , ,

   , , , ,

1   , , , ,
2

   , 1 , , , ,

t t t t t t t t t t

t t t t t t t

t t t t t t S t

t t t t t t SS t

t t t t tt t

r t S V S t S r t S t S t S

f t S t S t S t S

a t S b t S b t S S f t S

t S t S t S S f t S

f t S a t S b t S b t S f t S

θ µ λ η κ η

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

ρ σ λ ζ κ ζ− −

 + − + + 
= ∂ + + +

 − + + ∂ 

+ + + ∂

+ + + + −

   (20) 

with the terminal condition ( ) ( ), T Tf T S h S= .  
Proof. (Step 2) Let [ ] [ ]( )1,2 0, ,C T × −∞ ∞  be the continuously differentiable 

functions. Assume that function ( ) [ ] [ ]( )1,2, 0, ,tf t S C T∈ × −∞ ∞ , that is the first 
derivative with respect to t and the first and second derivative respect to S of 
function f are exist and continuous. Also assumed that ( ), tf t S  be the price of 
a European option and the stock price tS  satisfies the Equation (11). By Ito 
lemma in [8] with ( ) ( ), ,t tG t X f t S= . We obtain the differential form of op-
tion price satisfies the following stochastic differential equation:  

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )( )(

2 2 2

d , , , , ,

  , , , ,

1  , , , ,
2

  , 1 , , ,

t t t t t t t t

t t t t t t S t

t t t t t t SS t

t t t t tt

f t S f t S t S t S t S

a t S b t S b t S S f t S

t S t S t S S f t S

f t S a t S b t S b t S

µ λ η κ η

ρ σ λ ζ κ ζ

σ λ ζ κ ζ

ρ σ λ ζ κ ζ−

= ∂ + + +

 − + + ∂ 

+ + + ∂

+ + + +

 

( ))
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )( )(
( ))

, d

, , , , d

, 1 , , ,

, d

t

t t t t t t S t t

t t t t tt

tt

f t S t

t S t S t S S f t S W

f t S a t S b t S b t S

f t S M

σ λ ζ κ ζ

σ λ ζ κ ζ

−

−

−

− 
+ + + ∂

+ + + +

−

 

(21) 

(Step 3) By arbitrage pricing technique, this implies that ( )d d ,t tV f t S= . 
Thus, we can compare the coefficients for d tW  in Equations (19) and (21), we 
have  

https://doi.org/10.4236/jmf.2021.113020


P. Seelama, D. Thongtha 
 

 

DOI: 10.4236/jmf.2021.113020 369 Journal of Mathematical Finance 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

, , , ,
t t t t t t t

t t t t t t S t

S t S t S t S

t S t S t S S f t S
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If ( ) ( ) ( ), , , 0t t t t tt S t S t Sσ λ ζ κ ζ+ + ≠ , the above equation implies that  
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Similarly for the coefficient of d tM , we have  
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which implies that  
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Consider Equations (22) and (23), we can see that the tθ  in Equation (22) 
has no jumping variable but that in Equation (23) depends on jump. Hence, by 
comparing the coefficients of d tW  and d tM , we obtain the different values of 
the number of shares tθ . That is, we cannot find the number of shares tθ  that 
lead to the value ( ) ( ),T T TV h S f T S= = . Thus, we consider an equation given 
by the term belonging to dt in (19) and (21). This gives the partial differential 
equation of the option price.  
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with the terminal condition  

( ) ( ), T Tf T S h S=                         (25) 

The theorem is proved.                                            □ 
The theorem below shows the finding the number of shares tθ  invested in 

risky asset in Equation (24).  
Theorem 3. The number of shares tθ  that minimizes the distance between 

the wealth TV  and the option price ( ) ( ), T Tf T S h S=  is given by  
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Proof. Since we can not find the number of shares tθ  directly. Therefore, in 
order to find the number of shares tθ  invested in risky asset, we minimize the 

https://doi.org/10.4236/jmf.2021.113020


P. Seelama, D. Thongtha 
 

 

DOI: 10.4236/jmf.2021.113020 370 Journal of Mathematical Finance 
 

distance between the wealth TV  and the option price ( ) ( ), T Tf T S h S=  at 
time T. So, we consider  

( )( )2
min .T TE h S V
θ

 −  
                       (27) 

Applying Ito integral to the wealth process TV  in (19), we have  
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Similarly for the option price ( ), Tf T S  in (21), we get  
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(29) 

By (28), (29) and (24), we have  
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By Ito isometry [11], we obtain  
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where  
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To find the critical point, we setting ( ) 0tl θ′ = , we obtain  
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By second derivative test, we obtain  

( ) ( ) ( )2 22 22 2 0tl S S a b bθ σ λζ κζ ρ σ λζ κζ′′ = + + + + + >        (32) 

thus, the function has a minimum at critical point. Hence, we have the Theorem.  
□ 

Note from the above result that if there is no jump (i.e. 0a b= = ), we have  

t S fθ = ∂                             (33) 

and the PDE of the option price in Equation (24) is reduced to the equation ob-
tained in [9]. Similarly, If the no transaction cost assumption is assumed (i.e. 
( ), 0tt Sκ = ), the Equation (31) becomes  
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and the Equation (24) is reduced to a form as in [8]. The Black-Scholes model is 
obtained when ( ) ( ), , 0t ta b t S t Sκ λ= = = = .  

4. Conclusion  

In this paper, a new differential form of assets price is introduced and a Euro-
pean option pricing model with transaction costs and jumps in an illiquid mar-
ket is derived. This extends the assumptions of the Black-Scholes model by com-
bining the jump-diffusion and existence of transaction costs in illiquid markets. 
This approach might be more realistic to the financial market. 
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