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Abstract 
In this paper, we present a unified approach to decomposing a special class of 
block tridiagonal matrices ( ),K α β  into block diagonal matrices using si-

milarity transformations. The matrices ( ), pq pqK α β ×∈  are of the form 

( ) [ ]block-tridiag, , ,K B A Bα β β α=  for three special pairs of ( ),α β : ( )1,1K , 

( )1,2K  and ( )2,2K , where the matrices A and B, , p pA B ×∈ , are gener-

al square matrices. The decomposed block diagonal matrices ( ),K α β  for 
the three cases are all of the form:  

( ) ( ) ( ) ( )1 2, , , ,qK D D Dα β α β α β α β= ⊕ ⊕ ⊕

 , 

where ( ) ( )( ), 2cos ,k kD A Bα β θ α β= + , in which ( ),kθ α β , 1,2, ,k q=  , 

depend on the values of α and β. Our decomposition method is closely related 
to the classical fast Poisson solver using Fourier analysis. Unlike the fast 
Poisson solver, our approach decomposes ( ),K α β  into q diagonal blocks, 
instead of p blocks. Furthermore, our proposed approach does not require 
matrices A and B to be symmetric and commute, and employs only the ei-
genvectors of the tridiagonal matrix ( ) [ ]tridiag, , ,T b a bα β β α=  in a block 
form, where a and b are scalars. The transformation matrices, their inverses, 
and the explicit form of the decomposed block diagonal matrices are derived 
in this paper. Numerical examples and experiments are also presented to 
demonstrate the validity and usefulness of the approach. Due to the decoupled 
nature of the decomposed matrices, this approach lends itself to parallel and 
distributed computations for solving both linear systems and eigenvalue 
problems using multiprocessors. 
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1. Introduction 

In this paper, we present explicit similarity transformations to decompose block 
tridiagonal matrices ( ), pq pqK α β ×∈  of the following form: 

( ),

A B
B A B

K
B A B

B A

α

α β

β

 
 
 
 =
 
 
  

  
                 (1) 

for some special pairs of ( ),α β , where , p pA B ×∈ , into block diogonal ma-
trices. The ( ),α β  pairs to be considered in this paper include (1,1), (1,2), and 
(2,2). We shall show that the transformations ( ),K α β  for these three ( ),α β  
pairs all lead to the block diagonal matrices ( ),K α β  of the following single 
unified form: 

( ) ( ) ( ) ( )1 2, , , ,qK D D Dα β α β α β α β= ⊕ ⊕ ⊕

            (2) 

where the operation symbol ⊕  denotes the matrix direct sum and the diagonal 
submatrices ( ) ( )( ), 2cos ,k kD A Bα β θ α β= +  in which ( ),kθ α β , 1,2, ,k q=  , 
are explicitly known, although they depend on the values of α  and β . Our 
decomposition method is closely related to the classical fast Poisson solver [1] [2] 
using Fourier analysis. 

The block decomposition scheme to be addressed has been presented by the 
author in [3] and formal proof was given for ( )1,1K . The decompositions for 
the other two cases were simply mentioned without derivations. Unfortunately, 
that paper consists of two errors. First, the eigenvectors used to form the trans-
formation matrix for decomposing ( )2,2K  and the decomposed submatrices 
are incorrect, which will be addressed in Theorem 2 of Section 2 in this paper. 
Second, the transformation matrix Q for ( )1,2K  is not orthogonal, although 
the eigenvectors and the decomposed submatrices presented are correct, meaning 
that the expression TQ KQ  should read 1Q KQ− . The main purposes of this 
paper include the following tasks. 

1) We show that the transformation matrix for decomposing ( )1,1K  is or-
thogonal in Theorem 1. 

2) We take this opportunity to correct the errors made in our previous paper 
by providing formal proof with the transformation matrix formed by the correct 
eigenvectors for decomposing ( )2,2K  in Theorem 2. 

3) We also present a formal derivation for the decomposition of ( )1,2K  into 
a block diagonal matrix in Theorem 3. 

4) Numerical examples and experiments for all three cases will be given in 
Section 3 to demonstrate the validity and the advantages of the decompositions. 

The block decompositions are all based on similarity transformations with 
known eigenvectors of certain tridiagonal matrices and they all yield a single 
unified form of block diagonal matrices. Since similarity transformations pre-
serve all eigenvalues, the eigenvalues of the original matrix ( ),K α β , which is 
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of size pq by pq, can be obtained from the q diagonal blocks ( ),kD α β , each of 
size only p by p. This block decomposition scheme provides a much more effi-
cient means for solving eigenvalue problems with this type of coefficient matric-
es. It can also be employed for solving linear systems with efficiency because the 
transformation matrices are explicitly known. In addition, the decoupled struc-
ture of the transformed matrix lends itself to parallel computation with 
coarse-grain parallelism. 

2. Decompositions 

In this following, we present our key observations that lead to the proposed 
block decomposition method for this class of matrices ( ),K α β  using trans-
formation matrices whose entries are inherent in the special block tridiagonal 
form of ( ),K α β . Whenever there is no confusion, we shall simply use K to 
denote ( ),K α β . Throughout the paper, the operation symbols ⊕  and ⊗  
are used to denote the matrix direct sum and the Kronecker product. 

Theorem 1. When 1α β= = , the block tridiagonal matrix ( ),K α β  is or-
thogonally similar to the block diagonal matrix 1 2 qD D D D= ⊕ ⊕ ⊕ ,  

( )2cosk kD A Bθ= + , where 
1k

k
q

θ
 

=  + 
π , 1,2, ,k q=  . 

Proof. Let ( ) ( ) ( )T 2 sin , sin 2 , , sin
1k k k kv q

q
θ θ θ =  +

  and k k pV v I= ⊗ ,  

1,2, ,k q=  , where pI  is the identity matrix of dimension p and the symbol 
⊗  denotes the Kronecker product. It has been shown in [3] that 

( ) ( ) ( )T T 2cos for
2cos

0 otherwise
i

i j i j j
A B i j

V KV v v A B
θ

θ
 + = = + =   

 

by stating that T
i jv v  is orthonormal. This paper will skip the proof and just 

provide the details to show that T
i jv v  is indeed orthonormal. To this end, we 

need the following formula [4]: 

( ) ( )
1

1cos 1 ,
2

q

k
kx S x

=

= −  ∑  

( )
( )( )( )

( )
sin 2 1 2

.
sin 2

q x
S x

x

 +
=  
  

 

Let ijt  and iju  denote ( )i jθ θ−  and ( )i jθ θ+ , respectively. We have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

1 1

1

2 1sin sin cos cos
1 1

1 1cos cos .
1 2 1

q q

i j i j i j i j
k k

q

ij ij ij ij
k

v v k k k k
q q

kt ku S t S u
q q

θ θ θ θ θ θ
= =

=

 = = − − + + +

 = − = − + +

∑ ∑

∑
 

Note that, by L’Hospital’s rule, 

( ) ( )
( )( )( )

( )
cos 2 1 2

2 1
cos 2

q x
S x q

x

 +
= +  
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if ( )sin 2 0x = . This will be the case when 2x k= π  for any integer k. Now 

since ( ) ( ) ( )1 1q i j q− − ≤ − ≤ − , we have 
1ij i j

i jt
q

θ θ −
− < = − = <

+
π π π . The  

denominator of ( )ijS t  will be equal to zero only if i j= . When i j= , we 
have 

( ) ( )0 2 1.ijS t S q= = +  

When i j≠ , ( )ijS t  can be simplified as 

( )
( )( )( )

( )
( )( )( ) ( ) ( )( )( ) ( )

( )
( )( ) ( ) ( )( ) ( )

( )
( )( ) ( ) 1

sin 2 1 2

sin 2

sin 2 1 2 cos 2 cos 2 1 2 sin 2

sin 2

sin cos 2 cos sin 2

sin 2

cos 1

ij
ij

ij

ij ij ij ij

ij

ij ij

ij

i j

q t
S t

t

q t t q t t

t

i j t i j t

t

i j − +

+
=

+ − +
=

− − −
=

= − −

π

π =

π

−

 

since ( )sin 0i j− =π , where we have uesd the fact that  
( )sin sin cos sin cosx y x y y x− = − . Therefore, 

( )
( )

2 1 for

1 otherwiseij i j

q i j
S t −

+ == 
− −

                  (3) 

Likewise, since ( )0 2i j q< + ≤ , we have 

20 2 .
1ij i j

i ju
q

θ θ + −
< =

+
π= < π+  

The denominator of ( )ijS u  will never be equal to zero. Accordingly, 

( ) ( )( ) ( ) 1cos 1 .i j
ijS u i j + += −π= − +                 (4) 

Finally from (3) and (4), we obtain 

( ) ( ) ( )2 1 for
0 otherwiseij ij

q i j
S t S u

+ =
− = 


 

and, therefore, 

( ) ( ) ( )T 1 for1
0 otherwise2 1i j ij ij

i j
v v S t S u

q
= = − =  + 

 

indicating the vectors iv  are orthonormal. Accordingly, we have 

( )T 2cos for

0 otherwise
j

i j

A B i j
V KV

θ + == 


 

This completes the proof. 
Theorem 2. When 2α β= = , the block tridiagonal matrix ( ),K α β  is sim-

ilar to the block diagonal matrix 1 2 qD D D D= ⊕ ⊕ ⊕ , ( )2cosk kD A Bθ= + ,  
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where 1
1k

k
q

θ
 −

=  − 
π , 1,2, ,k q=  . 

Proof. This block diagonalization was mentioned previously in Corollary 2 in 
[3] without a proof. Unfortunately, the eigenvectors T

kv  used to form the 
transformation matrix Q and the decomposed submatrices Dk consist of errors,  

in which 1) the vector ( ) ( ) ( )2 cos ,cos 2 , ,cosk k kq
q

θ θ θ    as stated in that 

paper should be replaced by ( ) ( ) ( )( )2 1, cos , cos 2 , , cos 1
1 k k kq

q
θ θ θ − −

  

with 1
1k

k
q

θ
 −

=  − 
π ; and 2) the expression ( )sin kθ  in Dk should read ( )cos kθ .  

In this paper, we give a formal proof with the correct eigenvectors and provide 
the explicit form of the inverse of the transformation matrix Q for ( )2,2K . 

Let ( ) ( ) ( )( )T 2 1,cos ,cos 2 , ,cos 1
1k k k kv q

q
θ θ θ = − −

 . Let also  

k k pV v I= ⊗ , 1,2, ,k q=  ; and 1 2, , , qQ V V V =   . We now show that the si-
milarity transformation 1Q KQ−  block-diagonalizes K into D. It deserves men-
tioning that Q in this case is not orthogonal. 1Q− , however, exists and is explicitly 
known. Therefore, It suffices to show that j j jKV V D=  for all 1,2, ,j q=  . 

( )

( )( )
( )( )

( )
( ) ( )

( ) ( ) ( )

( )( ) ( )( ) ( )( )
( )( ) ( )( )

2

cos
2

1
cos 2

cos 12

2cos

cos 1 cos 2

cos 2 cos cos 32
1

cos 2 cos 3 cos 1

cos 1 2cos 2

j

j

j

j

j

j j

j j j

j j j

j j

IA B

IB A B

KV
q

q IB A B

q IB A

A B

A B

A B

q

q A q q B

q A q

θ

θ

θ

θ

θ θ

θ θ θ

θ θ θ

θ θ

  
  
  
  
 =  

−   
−  

  
−     

+

 + + 
 + + =

−

 − + − + − 
− + −



  



B

 
 
 
 
 
 
 
 
 
 
  

 

Applying the identities: 

( ) ( ) ( ) ( ) ( ) ( )21 cos 2 2cos  and cos cos 2cos cosx x x y x y x y+ = + + − =  

and noting that: 

( )( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( )

cos 2 cos 1 cos sin 1 sin

cos 1 cos

j j j j j

j j

q q q

q

θ θ θ θ θ

θ θ

− = − + −

= −
 

where we have used the fact that ( )( ) ( )( )sin 1 sin 1 0jq jθ− − π= = , we obtain 
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( )
( )

( )( )
( )( )

( )( )

cos

cos 22 2 cos .
1

cos 2

cos 1

j

j
j j j j

j

j

I

I

I
KV A B V D

q

q I

q I

θ

θ
θ

θ

θ

 
 
 
 
 

= + = −  
 − 
 − 



        (5) 

Equation (5) holds for all j, 1 j q≤ ≤ . Accordingly, by arranging all jV  to-
gether to form the matrix Q, we obtain KQ QD= . In other words, the trans-
formation 1Q KQ−  block-diagonalizes the matrix ( )2,2K : 

1Q KQ D− =                            (6) 

where 1 2, , , qQ V V V =    and 1 2 qD D D D= ⊕ ⊕ ⊕ . 
This is a similarity transformation and, therefore, all eigenvalues of ( )2,2K  

are preserved in the decomposed matrix D. It is worth mentioning that obtain-
ing all the eigenvalues from D is far more efficient than from the original matrix 
K since D consists of only q diagonal blocks: , 1, ,jD j q=  . When it comes to 
solving linear systems in the transformed space that involves Q, however, one 
needs to employ the LU decomposition of Q or to find 1Q− . Normally, finding 
the LU decomposition is more efficient and preferred. However, it does not 
make sense to find the LU decomposition of Q if the inverse of Q is readily 
available. In the following, we show that 1Q−  can be obtained explicitly. 

Let C be the matrix formed by kv : 1 2, , , qC v v v =   , whose explicit form is 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2

2 1

1 1   1 1
1 1,1   1, 2 1
1 2,1   2, 2 12

  1
1 2,1   2, 2 1

1 1   1 1

q

q q

u u q
u u q

C
q

u q u q q −

− −

 
 − − 
 −
 =  −
 

− − − − 
 

− − −  













 

where the symbol ( ),u i j  denotes cos
1

ij
q


π


 − 
. It is well known that 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1

2

2 1

  
1,1   1, 2
2,1   2, 22

  1
2,1   2, 2

1 4 1 2 1 2 1 4
1 2 1 2
1 2 1 2

1 1 2

  

2

1 4 1 2 1 2 1 4

q

q q

u u q
u u q

C
q

u q u q q

−

−

− −

 
 − 
 −
 =  −
 

− − − − 
 

− −  

−

−













 

Let ( )diag 2,1, ,1, 2S =  , a diagonal matrix. It can easily be seen that 

1 2 2 .C S CS− − −=  
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Recall that , 1, 2, ,k k pV v I k q= ⊗ =  ; and 1 2, , , qQ V V V =   , which can be 
expressed as: 

1 2

1 2

, , ,

, , , .

p p q p

q p p

Q v I v I v I

v v v I C I

 = ⊗ ⊗ ⊗ 
 = ⊗ = ⊗ 





 

Therefore, 

( ) ( )
( )( )( )
( ) ( )

11 1 2 2

2 2

2 2

p p p

p p p

p p

Q C I C I S CS I

S I C I S I

S I Q S I

−− − − −

− −

− −

= ⊗ = ⊗ = ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗

 

where we have used the following two properties of Kronecker products [5]: 

( ) ( ) ( )( )1 1 1  and .A B A B AB I A I B I− − −⊗ = ⊗ ⊗ = ⊗ ⊗  

Note that 2
pS I− ⊗  is a diagonal matrix and is almost an identity matrix except 

the 1st and the last blocks. This shows that 1Q−  is almost the same as Q. Com-
putationally, 1Q−  can be obtained directly from 1C− , which is explicitly known, 
since 1Q−  is simply a block structure of 1C− . Note that C is symmetric, but not 
orthogonal. 

Theorem 3. When 1α =  and 2β = , the block tridiagonal matrix ( ),K α β  
is similar to the block diagonal matrix 1 2 qD D D D= ⊕ ⊕ ⊕ ,  

( )2cosk kD A Bθ= + , where 2 1
2k
k

q
θ

 −
=  
 

π , 1,2, ,k q=  . 

Proof. Let ( ) ( ) ( )T 2 sin ,sin 2 , ,sink k k kv q
q

θ θ θ =   ; k k pV v I= ⊗ ,  

1,2, ,k q=  ; and 1 2, , , qQ V V V =   . We have 

( )
( )

( )( )
( )

( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( )
( ) ( )( )

sin

sin 2
2

sin 1

sin2

sin sin 2

sin 2 sin sin 3
2

sin 1 sin 2 sin

sin 2sin 1

j

j

j

j

j

j j

j j j

j j j

j j

IA B

IB A B

KV
q

q IB A B

q IB A

A B

A B

q
q A q q B

q A q B

θ

θ

θ

θ

θ θ

θ θ θ

θ θ θ

θ θ

  
  
  
  
  =
  
   −  
      

 +
 
  + +  
 =

  − + − + 
 + − 

  









 

Using the identities ( ) ( ) ( )sin 2 2sin cosx x x=  and  
( ) ( ) ( ) ( )sin sin 2sin cosx y x y x y+ + − =  yields 
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( )
( )

( )( )
( )

( )( )

sin

sin 2
2 2cos

sin 1

sin

j

j

j j j j

j

j

I

I

KV A B V D
q

q I

q I

θ

θ

θ

θ

θ

 
 
 
 

= + = 
 

− 
 
  

  

where we have used the fact that  
( )( ) ( ) ( ) ( ) ( ) ( ) ( )sin 1 sin cos cos sin sin cosj j j j j j jq q q qθ θ θ θ θ θ θ− = − =  since  

( ) 2 1cos cos 0
2j
jqθ − 




π= =


. Note that the matrix Q  here is not orthogonal  

either. It can be shown that 1Q−  exists. The transformation 1Q KQ− , therefore, 
block-diagonalizes K into D. 

In the following, we show that 1Q−  is almost identical to TQ  and, therefore, 
can be explicitly obtained from TQ  without any difficulty. Again, let C be the 
matrix formed by kv : 1 2, , , qC v v v =   , k k pV v I= ⊗ , and 1 2, , , qQ V V V =    
as was done in the previos section. We have in this case: 

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )
( ) 1

1,1 1,2 1,
2,1 2,2 2,

2 .
1 ,1 1 ,2 1 ,

1 1 1 q

s s s q
s s s q

C
q s q s q s q q

−

 
 
 
 =  

− − − 
 

− −  











 

whose inverse is: 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

1

1 2

1 2

1,1 2,1 1 ,1 |

1, 2 2,2 1 ,2 |2
|

1, 2, 1 , | 1 2q

s s s q

s s s q
C

q

s q s q s q q

−

−

 −
 

− − 
=  

 
 − − 





 



 

where the symbol ( ),s i j  denotes ( )sin jiθ  with 2 1
2j
j
q

θ
 −

=  
 

π . If C is par-

titioned as R
r

 
  

, with R consisting of the first ( )1q −  rows and r being the last 

row of C, we clearly see that 1 T T1|
2

C R r−  =   
. In other words, 1C−  is the  

same as TC  except the last column. Now let ( )diag 1, ,1, 2S =  , a diagonal 
matrix. We have 1 2 2C S CS− − −= . Following the same derivation as we have done 
in Theorem 2, we conclude that: 

( ) ( ) ( )11 1 2 2
p p p pQ C I C I S I Q S I

−− − − −= ⊗ = ⊗ = ⊗ ⊗  

since pQ C I= ⊗ . Note that C in this case is neither symmetric nor orthogonal. 

3. Numerical Experiments 

To demonstrate the validity and advantage of this block decomposition ap-
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proach, we present numerical experiments for all three cases of the ( ),α β  pair 
discussed in this paper. Our main task in the experiments is to find all the ei-
genvalues of the following matrix ( ), pq pqK α β ×∈ , with 4p =  and 5q = : 

( ),

A B
B A B

K
B A B

B A

α

α β

β

 
 
 
 =
 
 
  

  
                 (7) 

where, 
4 2 1
2 8 2 2

 and 
2 8 2 2

2 4 1

A B

− −   
   − − −   = =
   − − −
   

− −   

 

The unshown entries in A and B are all zeros. The matrix ( )1,1K  can be ob-
tained from a finite element discretization of the heat or membrane equation 
over a rectangular domain, subject to Dirichlet boundary condition along two 
opposite sides of the boundary [6]. The matrices ( )1,2K  and ( )2,2K  can be 
obtained from discretization of the same problem subject to certain Neumann 
boundary conditions. The values of p and q depend on the number of grid lines 
in the discretization domain. 

We intentionally keep the dimension of A and B small so that one can easily 
see that AB BA≠  by explicit multiplications. In other words, the matrices A 
and B do not commute and, therefore, the traditional fast Poisson solver fails to 
simultaneously decompose A and B. Using the block decomposition approach 
presented in the previous section, it is not difficult to see that ( ),K α β  is simi-
lar to a block diagonal matrix ( ),K α β  of the form: 

( ) ( ) ( ) ( )1 2, , , ,qK D D Dα β α β α β α β= ⊕ ⊕ ⊕

  

for all three cases where, 

( )

( )
( )

( )
( )

4 2cos 2
2 8 4cos 2

,
2 8 4cos 2

2 4 2cos

k

k
k

k

k

D

θ
θ

α β
θ

θ

 − −
 − − − =  − − −
 

− −  

  (8) 

with 

( ) ( )

( ) ( )

( ) ( )

   for , 1,1
1

1    for , 2, 2
1

2 1   for , 1, 2
2

k

k
q

k
q

k
q

α β

θ α β

α β

 
π = + 

 −= π = − 
 − π =  

, 1,2, ,k q=  . 

In the following, we present the results from our experiments, which were 
performed using the Octave software. Specifically, the Octave built-in function 

( )eig X  is used to obtain the eigenvalues of a square matrix X. For comparison 
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purposes, we first display the eigenvalues computed from the original matrices 
( ),K α β  (Equation (7)) without applying the block decomposition for all three 

( ),α β  cases. Note that each ( ),K α β  is a 20 by 20 matrix. The numerical re-
sults are listed in Table 1 where all eigenvalues are listed in the order produced 
by Octave without reordering. 

We then present in Table 2, Table 3, and Table 4 the eigenvalues obtained 
directly from the decomposed diagonal blocks D1 through D5 (Equation (8)) of 

( )1,1K , ( )1,2K , and ( )2,2K , respectively, where each kD  is a 4 by 4 matrix. 
As can be seen from these tables, all eigenvalues are preserved after the block 
decomposition. For example, all the eigenvalues shown in Table 2 are identical 
to those of ( )1,1K  in Table 1, except for the ordering. This is due to the fact 
that all of the three block decompositions are similarity transformations. The 
advantage of using the decomposed matrices to compute the eigenvalues is ap-
parent because the diagonal blocks of the decomposed matrix are explicitly 
known and need only A, B, and kθ , without the need of forming the 
block-tridiagonal matrix ( ),K α β . 

To close this section, it deserves mentioning that the computational complex-
ity of finding all eigenvalues of a square matrix of size n n×  is ( )3n  in gen-
eral. For the matrices ( ),K α β  presented in this paper, n pq= . Without de-
compositions, the computational complexity is ( )3 3p q . With the proposed  
 
Table 1. Eigenvalues computed from the original matrices ( ),K α β  without decompo-

sition. 

( ),K α β  Eigenvalues 

( )1,1K  0.40 1.44 1.48 2.30 2.76 3.39 4.00 4.41 4.47 4.86 

 5.25 5.56 7.24 7.33 8.70 9.00 10.33 10.61 12.53 13.95 

( )1,2K  14.28 12.87 10.61 10.65 9.32 0.15 8.37 1.19 1.28 7.24 

 7.01 2.10 2.76 3.39 5.42 5.28 5.06 4.66 4.21 4.15 

( )2,2K  14.47 13.33 10.83 10.61 9.75 0.00 0.86 1.17 1.84 7.92 

 2.76 7.24 6.83 3.39 4.00 5.53 4.49 5.17 4.91 4.90 

 
Table 2. Eigenvalues computed directly from D1 through D5 of ( )1,1K . 

kD  from ( )1,1K  Eigenvalues of kD  

1D  0.40 1.48 4.41 7.33 

2D  1.44 2.30 5.56 8.70 

3D  2.76 3.39 7.24 10.61 

4D  4.00 4.47 9.00 12.53 

5D  4.86 5.25 10.33 13.95 
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Table 3. Eigenvalues computed directly from D1 through D5 of ( )1,2K . 

kD  from ( )1,2K  Eigenvalues of kD  

1D  0.15 1.28 4.15 7.01 

2D  1.19 2.10 5.28 8.37 

3D  2.76 3.39 7.24 10.61 

4D  4.21 4.66 9.32 12.87 

5D  5.06 5.42 10.65 14.28 

 
Table 4. Eigenvalues computed directly from D1 through D5 of ( )2,2K . 

kD  from ( )2,2K  Eigenvalues of kD  

1D  0.00 1.17 4.00 6.83 

2D  0.86 1.84 4.90 7.92 

3D  2.76 3.39 7.24 10.61 

4D  4.49 4.91 9.75 13.33 

5D  5.17 5.53 10.83 14.47 

 
decomposition, the computational complexity reduces to only ( )3qp , a sig-
nificant saving in computation. The advantage of the decomposition is obvious, 
not to mention the additional advantage that can be exploited from the 
coarse-grain parallelism offered by the block decomposition when the problem 
is to be solved using multiple processors. 

4. Conclusions 

In this paper, we have presented a unified block decomposition scheme for three 
special cases of block tridiagonal matrices of the form ( ),K α β , as shown in 
Equation (1). This class of block tridiagonal matrices arises frequently from the 
finite difference approximation to solving certain partial differential equations 
such as the Laplace’s, Poisson’s, or Helmholtz equations using five- or nine-point 
schemes, over a rectangular or cubic domain [7]. They can also arise from some 
finite-element discretization of the same equation [8] and from surface fitting 
with the B-spline functions [9]. The values of α  and β  typically depend on 
the boundary conditions of the physical problem: 1α β= =  for Dirich-
let-Dirichlet conditions, 1α =  and 2β =  for Dirichlet-Neumann conditions, 
and 2α β= =  for Neumann-Neumann conditions. 

The block decompositions presented are all based on similarity transforma-
tions with known eigenvectors of tridiagonal matrices of the same form as 

( ),K α β , with the submatrices A and B replaced by scalars a  and b . We have 
also derived the explicit decomposed block diagonal matrices ( ),K α β  for all 
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of the three cases ( ( )1,1K , ( )1,2K , and ( )2,2K ): 

( ) ( ) ( ) ( )1 2, , , ,qK D D Dα β α β α β α β= ⊕ ⊕ ⊕

  

where ( ) ( )( ), 2cos ,k kD A Bα β θ α β= +  in which ( ),kθ α β , 1,2, ,k q=  , 
depend on the values of α  and β , as can be seen in Section 2. The availability 
of the explicit decomposed matrices offers great computational and program-
ming advantages. Numerical experiments have been conducted using the soft-
ware Octave to demonstrate its validity and advantages. Although analogous to 
the classical fast Poisson solver, this approach does not require matrices A and B 
be symmetric and commute. This approach also exploits large-grain parallelism 
and lends itself to parallel and distributed computations for finding the solution 
of both linear systems and eigenvalue problems. 
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