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Abstract 
The aim of this review is to investigate the application and latest develop-
ments of the Diffusive Gradients in-thin films (DGT) with a focus on the 
mobility and bioavailability of heavy metals in soil. Soil chemical extractions 
are extensively used to predict nutrients elements in the soil. However, these 
measurements have their weaknesses and shortcomings. Comparing DGT 
with conventional extraction methods, DGT is a sampling technique with 
significant advantages; including speciation capabilities, sensitivity, time-in- 
tegrated signal, low risk of contamination and time averaged concentrations. 
These findings have strengthened the usefulness of the DGT technique as a 
potential monitoring tool for soil with heavy metal contamination. Studies 
which have used the DGT technique to evaluate processes important to bio-
availability have been booming in the last 13 years, especially its application 
in soils science. Some recent studies have shown a good relationship between 
the measurement of metals concentrations in soil and plant by DGT, and co-
hesive results have been obtained from these measurements when they are 
based on the DGT technique. DGT is a newly established procedure to assess 
the bioavailability of trace elements in sediments and soils, and its applica-
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tions are still in the early stage of testing. Therefore, future application of 
DGT is likely to include the studies of HMs contamination in soil for risk as-
sessment and transfer rates to the food chain, as some studies have indicated 
the potential of DGT in these areas. 
 

Keywords 
DGT, Gels, Mobility, Bioavailability, Soil, Heavy Metals 

 

1. Introduction 

Heavy metals (HMs) such as cadmium (Cd), copper (Cu), lead (Pb) and zinc 
(Zn) generally refer to metals and metalloids having densities greater than (>5 
g/cm3). Although HMs may occur naturally in nature, humans may promote 
HMs pollution through agriculture, urbanization, industrialization, and mining 
(Alloway, 2013; Wuana & Okieimen, 2011; Zimmerman & Weindorf, 2010). The 
convertible, persistent and irreversible pollution not only degrades the quality of 
the atmosphere, water bodies, and soil, but also threatens the health of animals 
and human beings by transport through the food chain (Manisalidis et al., 2020; 
Sethi & Gupta, 2020). As the major sink for HMs in terrestrial ecosystem, soils 
polluted with HMs have been attracting more and more interests. However, as-
sessment of eco-environmental and human risks remains limited.  

The mobility of HMs such as Cd, Cu, Pb and Zn, and their bioavailability to 
sensitive receptors in terrestrial environments, is strongly influenced by sepa-
rating the metal between the solid and dissolved fractions of the soil (mostly 
speak of as the Kd) (Dočekalová et al., 2012; Rieuwerts, 2015; Warnken et al., 
2006). The measurement of the total metal concentration is not always, or even 
usually, appropriate for considerations of metal mobility and bioavailability 
(Dočekalová et al., 2015; Li et al., 2009a; Speir et al., 2007). These metals frac-
tions may occur differently in the soil, and their mobility and bioavailability are 
governed by physical-chemical soil properties (Glaser et al., 2002) and its chem-
ical compositions (Camobreco et al., 1996). Determining the bioavailability of 
heavy metal in contaminated environment is a crucial step in risk assessment for 
metal-polluted soils (Sungur et al., 2015; Wu et al., 2021). Metals toxicity is 
usually predicted from the relationships with the soil solution concentration, 
free metal ion in soil solution, or some functionally defined extractable fraction 
(Athar & Ahmad, 2002; Oorts et al., 2021; Soriano-Disla et al., 2010). It is neces-
sary therefore, to understand the impact of the presence of heavy metals in soils 
and be able to develop techniques to determine its potential risks from soil con-
tamination. In this context, the Diffusive Gradients in thin-Films (DGT) tech-
nique based on the diffusion of metals from the soil solution can be considered 
as an effective alternative compared to other traditional sampling procedures 
(Hooda et al., 1999; Zhang et al., 2001).  

The use of DGT technique in soils and sediments provides unique informa-
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tion relating to the system dynamic. The DGT technique was developed for 
in-situ measurements of trace metals elements such as: Cd, Cu, Co, Ni, Pb, Zn 
(Denney et al., 1999; Gao et al., 2021), which have been used to characterize 
soils (Cattani et al., 2008; Dočekalová et al., 2012; Nolan et al., 2005; Nowack 
et al., 2004), and have been extended to the measurement of metal fluxes in 
sediments and soils (Noh et al., 2016; Zhang et al., 2001). Since the extension 
of DGT to soils and sediments, the technique has been evaluated extensively 
in several studies of geochemical and health discipline (Nolan et al., 2005; 
Zhang et al., 2001). A good Predicting element availability to plants with DGT 
measurement has been witnessed in numerous studies (Degryse et al., 2009; 
Pérez and Anderson, 2009; Tandy et al., 2011). From these studies, DGT has 
been recognized to be suitable for the evaluation of metal bioavailability for 
plants. Based on the usefulness, the DGT technique has proven to be more 
accurate and robust than the conventional methods (Conesa et al., 2010). The 
DGT technique has been shown to be an effective technique for determining 
labile metal species in soils and sediments (Martin, 2008), and has its applica-
tion to a broad suite of metals common to mine-influenced environments 
(e.g., Cu, Ni, Zn, Cd, Pb, Hg). The Metal values obtained using DGT also have 
been shown to conform reasonably well to predict the labile metal fraction 
using speciation models (Arevalo-Gardini et al., 2017; Unsworth et al., 2006). 
However, the work efficiency of DGT flux can reach higher levels when the 
soils moisture is at the maximum water holding capacity (MWHC) levels. The 
DGT technique is a relatively simple research tools which allows testing bio-
available metals and help to understand how the biota cooperate with their 
environment. In this review, the applications and advances of DGT technique 
in soil are disgussed. The work begins with a brief introduction of the theory 
of DGT and then discusses the gels used in DGT as a key part, and the recent 
advances in bioavailability and toxicity of heavy metals assessed by DGT. Fi-
nally, the study makes outlook the possible aspects of DGT application in soil 
in future. 

2. Theory of DGT  

The DGT technique is based on the involvement of a polypropylene device 
comprising of two pieces, the piston and the cap. The piston works to support 
the gel layer that is placed inside the devices; a membrane, diffusive layer and a 
functional binding layer, which may vary based on the procedures and the tar-
geted analyst being sampled (Menegário et al., 2017; Tafurt-Cardona et al., 
2015). The base of the piston and membrane or diffusive layer is enclosed by the 
cap, which ensures the pathway of ions from the bulk solution to the inner layer 
through a well-defined area; while the diffusive layer forces ion transport to oc-
cur completely by diffusion, thus allowing analyst concentration to be deter-
mined (Amauri Antonio Menegário et al., 2017). DGT samplers are very easy to 
install and easy to use at a reasonable cost. However, detail on installation, dep-
loyment time, storage, calibration and other procedures can be varied according 
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to the needs, and environments (Ernstberger et al., 2002; Mengistu, 2009). For 
the deployment of the devices in soil, the unit is placed in close contact with wet 
soils using twist and turns methods or inserted into sediments (Hanousek et al., 
2016). The labile forms of chemical elements diffuse through the filter and diffu-
sive gel and are absorbed on the binding gel (Zhang and Davison, 2001, 2015). 
As the unit is being deployed, there is a diffusive boundary layer (DBL) that is 
formed between the diffusive layers, the diffusive gel and filter membrane and 
the resolution (Zhang et al., 2014b). After all the deployment time, a linear con-
centrations gradient is well established between the solution and the binding gel 
(Martin, 2008; Mason et al., 2005). The DGT technique works with Fick’s first 
law of diffusion, which monitored the diffusion of dissolved species such as Cd, 
As, Mn, Cu, Pb, Zn, etc. By adding a membrane-diffusive layer, which could also 
control and restrict the flux accumulated in an ion-exchange resin (Luo et al., 
2010; Zhang et al., 2014b). Assuming the concentration gradient of the ions re-
mains constant during deployment time (t), the flux F (mol·cm−2·s−1) of an ion 
through the diffusive gel layer is given by (Equation (1)) and the concentration 
of ions measured by the DGT (CDGT) can be calculated using Equation (2) 
(Huynh et al., 2012). 

F = DC/∆g                         (1) 
CDGT = M∆gDtA                      (2) 

where D is the diffusion coefficient (cm2·s−1) for a given metal ion, C is the bulk 
concentration of an ion, A, the area of hydrogel membrane (cm2) exposed to the 
bulk solution, and M, the mass of metals (ng) accumulated in the diffusive layer 
over time, t(s).  

Until now, various types of materials have been evaluated as diffusive layers 
within the DGT samplers for the purpose of assessing the labile species of heavy 
metals in soil (Dočekalová & Divis, 2005; Menegário et al., 2017). 

3. Development of Binding Gels for Measurements  

As discussed above, the first demonstration of DGT potential as predictor of 
bioavailability was shown in 1999 (Hooda et al., 1999), and its application for 
bioavailability assessment in soil is still in its early stage of development. There 
are several different materials that have been defined and proposed by many re-
searchers for application as DGT binding layers (Table 1). These binding layer 
however, comprises of solid resins that are combined into a gel matrix, for ex-
ample, polyacrylamide to form a binding layer (Heidari et al., 2016). In expand-
ing the range of analyst determined in a single DGT deployment, mixed binding 
layer (Mason et al., 2005), and multiple binding layer (Naylor et al., 2004) sam-
plers have been developed. In order to use solid material as a binding agent 
within a DGT binding layer, the material must be meaningfully small particle 
size to allow simple and evenly combined into a gel matrix. As shown in Table 1 
with different binding agents, many options are employed to consider which 
binding layer can be used for a particular geometry. The DGT suitability  
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Table 1. Development of binding gels for measurements of various dissolved chemicals in soil. 

Analyst(s) Binding gel Binding capacity or max. Concentration References 

Metals Chelex-100 resin 5 × 10−4 M Cd, 10-h deployment 
(Zhang and Davison, 
1995) 

Phosphorus Ferrihydrite 
(Fe oxide, based on Fe (NO3) 3.9H2O) 2 μg P cm−2 (0.4 mg·L−1),  
24-h deployment 

(Ding et al., 2010;  
Zhang et al., 1998a) 

Sulphide Silver iodide (AgI) 1 μmolcm−1 (62.6 μmol·L−1, 15 h) (Teasdale et al., 1999) 

Radioactive  
caesium 

Ammonium 
molybdophosphate 2.3 mg of stable Cs (equivalent to 7 GBq137Cs  
or 108 GBq134Cs) 

(Murdock et al., 2001) 

Phosphorus Zr oxide (based on ZrOCl2.8H2O) > 100 μg P cm−2 (>20 mg·L−1), 24 h deployment (Ding et al., 2010) 

Sulphide 
(simultaneous  
measurements with metals) 

AgI in gel (combined use with Chelex × 100 resin) N/A 
(Motelica-Heino et al., 
2003) 

Arsenic,  
phosphorus  
and metals 

Titanium dioxide (Metsorb~12 μg P cm−2 (2.5 - 5 times higher than ferrihydrite) (Bennett et al., 2010) 

Phosphorus  
and cations 

Ferrihydrite and 
Chelex-100 

(mixed binding layer, MBL)12 μg Pongel (2.52 cm2, 850 μg·L−1;  
75 μg Mn in gel (3 mg·L−1), 24 h deployment 

(Mason et al., 2005) 

Phosphorus  
and sulphur 

Zr oxide-silver iodide (AgI) ~80 μg P cm−2 (>20 mg·L−1), 24 h deployment (Ding et al., 2012) 

Potassium  
and phosphorus 

Mixed Amberlite and  
ferrihydrite 

450 μg K on gel (2.54 cm2); 1.2 mg P L−1, 8-h, deployment (Zhang et al., 2013) 

Phosphorus  
and iron 

Zr oxide-silver iodide (AgI) 90 μg P cm−2 and 75 μg Fe cm−2 (Xu et al., 2013) 

Arsenic Zr oxide 159 μg As (III) and 434 μg As (V) in Fresh water per (Sun et al., 2014) 

 
study have revealed that, binding layer suitability depends on the environment 
in which it will be deployed, with many of the binding layer only appropriate to 
freshwaters owing to the high concentrations of potentially competing ions 
present in more complex environments like seawater (Conesa et al., 2010; Panther 
et al., 2013b). The Solute measured by DGT accurately relies on the strength of 
interaction with the binding layer. However, these binding layers have been 
compared with different materials to assess trace metals in sediments and soils. 
It is not possible to show all the working performances of every binding layer 
described; only the binding layer which have gained a widespread and applica-
tion which have stood the test of time are considered. These includes: Cha-
lex-100, ferrihydrate, Metsorb, zirconium dioxide (ZrO2), 3-mercaptopropyl 
functionalized silica, AG50W-X8 and XAD18. These DGT binding layers have 
been extensively evaluated with different materials in several researches for trace 
elements (Fang et al., 2021). This is done to determine whether these binding 
materials are capable of accumulating analysts of concern (Uptake). For exam-
ple, (Panther et al., 2010) evaluated Metsorb and Ferrihydrite DGT for measur-
ing dissolved reactive phosphorus in freshwater environment for deployment 
time up to four days. Their work revealed that, while both techniques (binding 
layer, ferrihydrite and Metsorb) accurately measured the analysts of concern 
over the four days deployment period, only Metsorb DGT was capable of mea-
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suring the Dissolve Reactive Phosphorus (DRP) in seawater after four-days. 
However, the ferrihydrite DGT techniques underestimated the DRP in the fresh-
water by 31%. (Bennett et al., 2010) work revealed that the measurements of Mn 
by chalex-100 experienced similar limitations in synthetic seawater, underesti-
mating Mn concentration by 49% after four-days of deployment. They con-
cluded that accurate measurement of Mn was possible with longer deployment 
time, up to 48h. Suggesting that the short-term validations reported in many li-
teratures may not reveal these limitations of the binding layer. Of all the above 
mentioned DGT binding layers, the chalex-100 DGT have stood the test of time 
to measure heavy metals in soils. Chalex-100 as a DGT binding layer has proven 
to be effective in measuring heavy metals in contaminated soils. 

4. Resin Gel 

Originally, the DGT technique was developed for in situ measurements (Davison 
& Zhang, 2012; Scally et al., 2003). Since then, the DGT technology has devel-
oped rapidly. Significant progress has been made within two aspects of the 
technology, which include the development of new binding gel and the 2D high- 
resolution measurements (Davison & Zhang, 2012; Sochaczewski et al., 2007). It 
is well established that the Chelex resin can take up trace metals, as it contains 
paired with iminodiacetate ions which act as chelating groups in the binding 
polyvalent metals ions. Accordingly, the binding agent for the first DGT was the 
chelex resin (Davison & Zhang, 2012; Mason et al., 2005). After that, the ferri-
hydrite gel with a strong affinity for phosphorus was used to measure labile 
phosphorus (Zhang et al., 2014a; Zhang and Davison, 2015) and silver iodide 
was included in the gel to take up sulphide (Teasdale et al., 1999). However, the 
radioactive caesium was adsorbed by a gel containing ammonium molybdo-
phosphate (Li et al., 2009b; Murdock et al., 2001; Puy et al., 2014).  

4.1. Oxyde Gel 

In recent study, (Sun et al., 2014; Zhang et al., 2014a) Zr oxide gel was developed 
to measure phosphorus and inorganic arsenic with high capacities. The hydrous 
zirconium oxide (Zr oxide) has been combined with silver iodide to measure 
both phosphorus and sulphide (Sun et al., 2014; Sun et al., 2013); and combined 
with Chelex to measure phosphorus and iron (Xu et al., 2013). The mixed Am-
berlite and ferrihydrite gel has been recently developed to measure potassium 
and phosphorus (Zhang et al., 2013, 2014b). Recently, it has been found that the 
capacities of the Zr oxide DGT for As in freshwater and seawater were 5 - 19 
times and 3 - 13 times more than those reported for the commonly used ferrihy-
drite and Metsorb DGTs, respectively (Sun et al., 2014; Zhang and Davison, 
2015). In addition, a titanium dioxide gel-assembled DGT has been used to si-
multaneously measure arsenic, phosphorus and metals in soil (Bennett et al., 
2010; Fauvelle et al., 2015; Panther et al., 2013a; Zhang et al., 2014a). The first 
material used in DGT to fabricate the binding layer was the polyvalent metal 
chelating resin Chelex-100 (Dočekalová and Divis, 2005). It needs to be men-
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tioned that the DGT method has recently been developed to measure organic 
and inorganic compounds (Sun et al., 2014; Sun et al., 2013). However, the DGT 
technique measures directly the mean flux of labile species in soils to the device 
during deployment. Thus, providing a novel and promising approach for the 
measurement of bioavailable metal concentrations in soils (Lehto et al., 2006; 
Zhang and Davison, 2015).  

4.2. Other Gels 

In addition to measuring individual chemical elements, DGT techniques for 
concurrent measurements of multiple elements have been established, that is, 
Zn, Mn, Fe, and As (Naylor et al., 2004; Zhang et al., 2014a). Two separate gels 
of silver iodide and Chelex-100 were used together to measure sulphide and 
metals in sediments (Motelica-Heino et al., 2003; Zhang et al., 2014a). A mixed 
binding layer (MBL) containing a mixture of ferrihydrite and Chelex-100 was 
developed to measure phosphorus and cations (Mason et al., 2005; Zhang et al., 
2014a). Furthermore, various types of materials (e.g. polyacrylamide gel, agarose 
gel, dialysis membrane, Nafion membrane, chromatography paper and filter pa-
per) have been evaluated as diffusive layers within the DGT samplers (Me-
negário et al., 2017). Recently, the development of DGT methods has been to use 
ion imprinted binding layers, wherein the analysts is sorbed to the ligand to im-
prove species retention, this approach has been successfully carried out for Cd 
(II) Pb(II) (Dong et al., 2014; Stanley et al., 2016; Sui et al., 2016). The develop-
ment of new binding gels enables DGT technique to analyze diverse analysts in 
an environment, particularly those of environmental importance (Davison and 
Zhang, 2012; Huang et al., 2016). In addition, the primary limitations of the 
technique include the limited functional pH range (pH 5-9) and the limited ap-
plication to certain metals/metalloids (Divis et al., 2009; Martin, 2008). However, 
(Galceran and Puy, 2015) show that it is possible to interpret quantitatively the 
proportions of metals penetrating into the rear of the binding layer in terms of 
the dissociation kinetics of metal complexes with humic substances using DGT. 
Even though the application of DGT for metals analyses is well established, it 
still needs to be extended to other elements. Despite all the above-described 
DGT advantages on the study of bioavailability, the development of a DGT 
technique and its validation by an established model for interpreting data ob-
tained from a particular measurement remains a challenge in the study of DGT. 
Therefore, a comprehensive and standardized DGT method is required to ensure 
that the DGT results are measured using different binding gels in different envi-
ronment. 

5. Metals Bioavailability and Toxicity in Soil Using DGT  
5.1. Bioavailability  

The applications of DGT to assess the bioavailability of heavy metals in soils 
have received attention worldwide. A trend that can be observed linked to the 
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development of new methods based on the DGT technique, is the prediction of 
available metals based on the comparison of the DGT results with others me-
thods for specific analysts (Menegário et al., 2017). Presently, there is an in-
creasing body of research focusing on the use of the DGT technique for predict-
ing the bioavailability of metals and toxicity (Menegário et al., 2017). The Labile 
and small complexes of metals are the forms that allowed metal to be able to pass 
through cell membranes and therefore, they are commonly the most bioavailable 
and harmful to biota (Turner et al., 2012). However, as these metals are the ones 
sampled by the DGT technique, some studies have been carried out to assess the 
possibility to use DGT to predict the bioavailable metals and their toxicity to 
human (Tandy et al., 2011; Tella et al., 2016). Some recent studies on bioavaila-
ble metals in soil using DGT and some plant species (Table 2). The DGT tech-
nique has been developed mostly for toxic cationic divalent trace metals but, it 
has also been expanded to test the bioavailability of plant nutrients such as: 
phosphate, potassium, uranium, methyl mercury, arsenate, molybdate, and most  
 

Table 2. Examples of recent studies on metals availability in soil using DGT and some. 

Elements Species/soils Findings References 

Mn 
Different  
Scandinavian  
agriculture soils 

It is unlikely that the DGT techniques can be used to accurately predict the plant 
availability of Mn in crop production. DGT prediction of plant availability was best 
in anaerobic compared to aerobic soils. However, DGT can be a valuable tool in 
understanding factors affecting Mn availability. 

(Mundus et al., 2012) 

Cd, Cu, Pb and 
Zn 

Sorghum bicolour; 
Lactuca sativa 

The DGT technique was fairly predictive of bioavailability in the greenhouse but 
not in the field. 

(Agbenin and Welp, 
2012) 

Pb, Zn, Cu and 
Cd 

Triticum aestivum 
DGT and leachate concentrations in combination with bioassays in undisturbed  
soil cores can be used to account for metal bioavailability in soil. 

(Mundus et al., 2012) 

Cd, Zn 
Taraxacum  
officinale and  
Plantago lanceolate 

DGT did not perform better than soil solution, as Cd and Zn uptake in the plant 
was not limited by diffusion 

(Muhammad et al., 
2012) 

Cd, Zn Rice (Oryza sativa) 
Due to the inherent heterogeneity of the rice rhizosphere soils, deployment of DGT 
in dried and homogenized soils offers the best possibility of a soil screening tool. 

(Williams et al., 
2012) 

Cu, Zn and Cd Various vegetables 
DGT can be used for the general evaluation of the risks associated with soil  
contamination with Cu, Zn and Cd in field conditions. 

(Senila et al., 2012) 

Hg Rice (Oryza sativa) 
DGT can predict the bioavailability of methyl mercury in rice paddy soil, and the 
DGT method can provide a quantitative description of the rate of uptake of this 
bioavailable methyl mercury. 

(Liu et al., 2012) 

Zn and Cd Salix smithiana clone 
Single extraction with the DGT value of Cd was not able to predict shoot Cd  
removal on the tested soils. 

(Puschenreiter et al., 
2013) 

Cu Soil solution  
The DGT allowed a representative estimation of the amount of Cu available in the 
soil. 

(Garrido and  
Mendoza, 2013) 

Cu Fontinalis  
antipyretica 

Tatiana Garrido and 
Jorge 

The DGT approach was demonstrated to be a dynamic in-situ measuring technique 
that can be used as a surrogate of bio-indicators if the cationic correction is taken 
into account. 

(Ferreira et al., 2013) 

Phosphorus 
Lycopersicon  
esculentum,  
Triticum aestivum 

P deficiency assessed by yield response to P fertilizers; DGT provided excellent 
separation of responsive and nonresponsive soils. 

(Mason et al., 2008; 
Mason et al., 2010) 
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recently been used to understand the effect of nanoparticles in the soil environ-
ment (Davison and Zhang, 2012; Dočekalová et al., 2015; Huang et al., 2017). 
The concentration of these heavy metals measured by DGT is associated with la-
bile species, including free ions and kinetic resupply of ions from the solid phase, 
which are considered to be bioavailable (Zhang et al., 1998b). Recently, Zhang 
and Davison (2015) reviewed the use of DGT for studies of speciation and bio-
availability. During this study, however, key reports over decades were examined 
and discussed, by giving an environmental perspective to the theory of DGT 
(relating to measurements of metal complexes) and the ability of DGT to obtain 
in situ information was discussed. In addition, the relationships between DGT 
measurements in soil and plant uptake were deeply discussed. In order to de-
termine trace element species, the methods based on the DGT technique are 
mostly used (Menegário et al., 2010; Menegário et al., 2017). While it is true that, 
DGT might not be expected to be a universal tool to predict bioavailable metals 
in soil and sediment, for examples, the measurement of labile species have aided 
predictions to where it have emerged (Degryse et al., 2009; Smolders et al., 2009). 
In a recent study, (Johnson et al., 2012; Menzies et al., 2005) reported that, the 
redox-driven layering in sediments makes them a particularly challenging envi-
ronment for predicting and assessing bioavailability and toxicity, but, again, 
there are some encouraging recent results (Zhang and Davison, 2000). (Salzberg 
et al., 2012; Simpson and Batley, 2003) also reported that, there is no single tech-
nique that can be expected to imitate the range of processes that may be operat-
ing during biological uptake. Many studies involving bioavailability of trace ele-
ments to DGT measurement have been investigated thoroughly with focused on 
the uptake of trace metals such as: Cd, Cu, Zn, Ni and Pb by plants, using stan-
dard DGT device with a chelex resin layer, but very few studies have compared 
bioavailability with DGT for other elements (Shahid et al., 2016; Tandy et al., 
2011; Wang et al., 2016). For example, (Wang et al., 2014) measured as concen-
trations in forty-three different soils collected in China with different extractions 
procedures, including DGT and soil solution measurement. It was concluded 
that, the DGT-measured and soil solution concentrations of As give a good pre-
diction of the plant As concentrations and show much better than the acid di-
gestion extraction procedures. It has been recognized by many researchers that, 
in the conventional methods of testing soil solution, metal speciation may 
change during sampling and extraction and the kinetics of metal resupply from 
the solid phase to solution are not considered (Koster et al., 2005; Zhang et al., 
2014a). Furthermore, the bioavailability of metals in a given soil is reliant on 
both, their concentrations in the soil solution and their rate of transport through 
the soil (Zhang and Davison, 2000; Zhang and Davison, 2001). With little exclu-
sions, most of the reports concerning with DGT and bioavailability in soils have 
focused on measuring the concentrations rather than uptake fluxes (Ahmed et 
al., 2013; Luo et al., 2013). Up till now, it has been used by (Mason et al., 2010; 
Menzies et al., 2005) for predicting yield responses of tomato cultivated at high P 
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levels and for predicting wheat responses to different P fertilizers formulations 
(Menzies et al., 2005). Recently, (Mason et al., 2010; McBeath et al., 2007) 
showed that the DGT technique was able to predict the growth response of 
wheat when cultivated under a range of P conditions.  

5.2. Metals Toxicity and DGT 

Previous studies by measuring Cd uptake using spinach in solution in the ab-
sence or presence of synthetic ligands concluded that, at constant free ion activ-
ity and constant total Cd concentration, the uptake of metal increased with in-
creasing dissociation rate of the complex, and correlated well with DGT meas-
ured concentrations, which strongly suggest that Cd uptake by spinach was li-
mited by diffusion (Degryse et al., 2012). They further reported that, direct up-
take of the complex was predicted to be a major contribution only at milli molar 
concentrations of the complex or at very large ratios of complex to free ion con-
centration. The “true Km” for uptake of Cd2+ Zn2+ was estimated at <5 NM. Up-
take of Cd by spinach in nutrient solution and the DGT-measured diffusion flux 
as function of free ion concentration for solutions with 40mMNaNO3 or NaCl. 
The free ion concentration was identical; the total Cd concentration was three-
fold larger NaCl solution with 68% of Cd complexes with chloride. Similar ob-
servations were made for Cd uptake by rapeseed Brassica napus (Dai et al., 2017; 
Sungur et al., 2015). Although the uptake is related to the DGT measurements 
for both plant species, there were differences in uptake between the plant spe-
cies. In non-buffered solutions, the Cd uptake flux was larger for spinach than 
for rapeseed. In buffered solutions with slowly dissociating complexes, the up-
take flux was larger for rapeseed. The other way of saying this is that, the con-
tribution of the slowly dissociating complexes to the uptake, relative to the con-
tribution of the free ion, was larger for rapeseed than for spinach (Degryse et al., 
2012). (Tandy et al., 2011; Wang et al., 2016; Yao et al., 2016) reported that the 
DGT method predicted the responsiveness of Cd bioavailability in complex 
contaminated soil. They concluded that the DGT technique is a physical surro-
gate for plant uptake, thus offering the possibility of a simple test procedure for 
measurement of bioavailable metals in soil. A few studies have compared Cu 
concentration with DGT-measured concentrations as well as other potential 
predictors (Tella et al., 2016). For example, (Sun et al., 2010) examine the total 
Cu and soil solution concentration. In this study, it was demonstrated that there 
are strong correlations between DGT and plant concentrations in a wide range 
of soil for Cu uptake by plants. The author further concluded that, Cu concen-
tration in shoots of wheat were rather weakly correlated with DGT-measured 
concentrations and were, surprisingly, better correlated with the total Cu in the 
soil. (Agbenin and Welp, 2012; Balistrieri and Blank, 2008; Luider et al., 2004) 
compared the labile Cu determined by DGT technique with the uptake of Cu in 
trout gills. However, it was then concluded that, there was an influence of or-
ganic matter in Cu uptake by trout gills as well as Cu concentrations determined 
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by DGT. Similar results were reported for Cu binding to organic matter meas-
ured by DGT and fish gill bio-indicators (Luider et al., 2004). Commonly, the 
plant availability of Cu, Zn, and P in soil is highly dependent on kinetics of re-
lease from the solid phase, the DGT technique is expected to be superior to ex-
traction techniques especially when diffusional supply is limited (Larner et al., 
2006). So far Cu and Zn have only been measured by this technique in contami-
nated soil e.g. (Song et al., 2004; Tandy et al., 2011) and not in agricultural soils 
with trace levels of these elements. DGT assessment of bioavailability is mostly 
accurate under conditions where the diffusive transport of an element from the 
soil to the plant roots is rate-limiting for it uptake (Degryse et al., 2009; Zhang et 
al., 2014a). If the uptake by plant is low, competitive cations may affect the plant 
uptake, while they have no effect on the DGT flux (Zhang et al., 2014a), whereas 
the labile complexes do not contribute to the plant uptake but they are measure 
by the DGT technique. This denotes that, when the plant has little affinity for the 
element or when the supply is large and the plant uptake is saturated, the DGT 
flux and plant uptake may not correlate well (Zhang et al., 2014b). 

6. Summary and Outlook  

The DGT techniques have been considered as a potential monitoring tool for 
soil with heavy metal contamination. The technique involves using a specia-
lized-designed passive sampler that houses a binding gel, diffusive gel and filter 
membranes. During deployment, the elements or compounds pass through the 
membrane filter and diffusive gel and are assimilated by the binding gel in a 
rate-controlled manner. However, the post-deployment analysis of the binding 
gel can be used to determine the bulk solution concentrations of elements or 
compounds using a simple equation. There is no reverse diffusion of the analyst 
back into the solution which is assumed to occur during deployment of the DGT 
device. Bearing in mind the difficulty of environmental chemistry, it is not sur-
prising that the ability of DGT to predict bioavailability and toxicity is variables. 
High solute concentrations are usually associated with conditions of toxicity. 
There is a substantial literature shows that under these conditions the biotic li-
gand model applies, which denotes that uptake is affected by the free ion con-
centration and competition with other ions for the biotic ligand.  

In conclusion, there is great promised for the use of DGT in soils, particularly 
with respect to help understand the uptake processes and for predicting the up-
take, or requirements for, nutrients when their concentrations are low, which 
indicates deficient conditions. As a surrogate of plants, DGT is capable of mea-
suring heavy metal concentrations in the soil. However, DGT is not considered 
to be a universally tool for the prediction of bioavailability of metals in soil and 
sediments. Moreover, there is no single technique that is expected to imitate the 
wide range of processes that may be functioning during biological uptake. DGT 
is no exclusion, but it does imitate some significant processes that may be do-
minant in some situations. Future applications of DGT are likely to include the 
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studies of heavy metals contamination in soil for risk assessment and transfer 
rates to the food chain, as some studies have indicated the potential of DGT in 
these areas. Further investigation in these areas will help the development of 
DGT as a tool for assessing metals bioavailability in soils and sediments and the 
risk associated with its contamination which poses health issues on human and 
animals. The DGT technique has also been used, in combination with some ma-
terials to assess the bioavailability of heavy metals in soils. There is a great 
promise for the use of DGT in soil, particularly understanding the uptake 
processes and for predicting the uptake, or requirements for nutrients when the 
concentrations are low, which indicates deficient conditions 
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