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Abstract 
Recently, huge awareness has been accorded to potential circulation of SARS- 
CoV-2 through water systems. This work deals with this problem and re-
searches the behavior of coronaviruses (CoVs) in water media, with specific 
interest on the new data on the fresh SARS-CoV-2. The examination of the 
natural persistence of CoVs and the performance of the disinfection technol-
ogies are also discussed. All CoVs have a restricted stability in water media: 2 
- 5 days in tap water and 2 - 6 days in wastewater were judged enough for 
2-log reduction of SARS-CoV-2 titer. SARS-CoV-2 is distinguished by a weak 
construction and is vulnerable to traditional disinfection technologies that 
have been demonstrated to be very efficient in their neutralization. Approx-
imately 5 min of exposure to sodium hypochlorite (1%), ethanol (70%), 
iodine (7.5%), soap solution and additional usual disinfectants was enough for 
reaching 7 - 8-log of SARS-CoV-2 titer decrease. Thermal treatment is effica-
cious in SARS-CoV-2 demobilization: 30 min at 56 or 5 min at 70˚C were 
enough for attaining the total depletion of the infectivity. Further, SARS-CoV-2 
remains vulnerable to sunlight and quickly demobilized by UV radiation. 
UV-C at 254 nm and intensity of 2.2 mW/cm2 yields 3-log of SARS-CoV-2 
titer decrease in less than 3 s of application. Consequently for SARS-CoV-2 
disinfection, usual injections of killing agents remain required for sanitation 
and for wastewater treatment. Relating to controlling CoVs diffusion and ap-
plying disinfection technologies, vigilance remains essential. 
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1. Introduction 

At the end of 2019, a fresh human coronavirus (CoV), called severe acute respi-
ratory syndrome coronavirus-2 (SARS-CoV-2), was discovered in Wuhan (Chi-
na) [1]. SARS-CoV-2 has provoked an epidemic of respiratory illness named 
COVID-19 [2] [3]. SARS-CoV-2 is a member of the Coronaviridae family that 
includes enveloped and single-stranded ribonucleic acid (RNA) viruses with siz-
es ranging from 60 to 220 nm [4] [5] [6]. Surrounding the viral RNA, the viral 
protein capsid is enveloped by a lipid bilayer membrane that holds proteins or 
glycoproteins and crown-like spikes on the surface [7] [8]. CoVs could conta-
minate birds, rodents, felines, canids, chiropters, and other mammals compris-
ing humans [9] [10] [11]. Related to the zoonotic transmission, the first ani-
mal-to-person transfer of CoV seems to have happened through a natural genet-
ic mutation authorizing the virus to pass infection to human beings [9] [12] [13]. 
In due course, the person-to-person transfer took place via inhaling infected 
aerosols and respiratory droplets [14] [15]. Nevertheless, additional probable 
ways of SARS-CoV-2 transmission have been proposed comprising transmission 
via fomites [16], ocular surfaces [17] and the fecal–oral path [18] [19]. 

During the 1960s, CoVs were primarily recognized and until now seven hu-
man CoVs have been mentioned [1]. Three of them spectacularly appeared late-
ly: SARS-CoV, Middle East respiratory syndrome-CoV (MERS-CoV), and 
SARS-CoV-2 [1]. Controlling human mortality related to CoVs transmission 
and the number of people needing hospitalization imposes the implementation 
of rigorous isolation actions in the regions touched by the contagion. Through-
out outbreaks, the elevated rate of transmission of human CoVs has mainly 
happened by the transfer of infected respiratory droplets [1] [14] [15]. Prior the 
arrival of SARS-CoV (below designated as SARS-CoV-1 to avert confusion with 
the SARS-CoV-2) during 2002 (in China), CoVs were seen as solely respiratory 
pathogens. Nevertheless, SARS-CoV-1 could also touch the human enteric tract 
[20]. Wastewater could be immediately polluted with CoVs through contami-
nated feces [21]. It is well-known that CoVs stay in water from few hours to few 
weeks, even if their viability and infectivity highly rely on many parameters. 

It is hard to estimate the influence of waterborne viral infections, so the action 
of such infections is frequently disregarded as was the case during the SARS ep-
idemic in Hong Kong in 2003 [1]. Bioaerosols, formed from the aeration in sew-
er pipelines and not subject to particular disinfection treatments, were recog-
nized to be source of the SARSCoV-1 spreading in Amoy Gardens (a private 
housing estate in Hong Kong) [22]. The random sharing of ponds by ducks, pigs 
and humans was mentioned as origin and hot spots of resurgence of the in-
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fluenza A virus subtype H5N1 (an enveloped virus with spike-like proteins on 
surface similar to those of CoVs) [23]. The spillover transmission of H5N1 virus 
to humans happened from ducks, the original host species for the virus, through 
pigs as an intermediate species [23]. Animals have as well been confirmed to be 
reservoirs for the fresh SARS-CoV-2. Indeed, the virus has been observed to be 
efficiently replicant in cats and ferrets and comparatively and poorly replicant in 
dogs, pigs, chickens and ducks [1]. 

SARS-CoV-2 has been very quickly catching throughout the globe [1] [3] [24]. 
Likewise to respiratory dysfunctions, the virus causes grave enteric symptoms 
and has been observed in the feces of contaminated patients [3] [25]. Therefore, 
the digestive system has been seen as a possible way of contagion [3] and the vi-
rus RNA finished in wastewater. Urine and feces of patients touched by 
COVID-19 have been demonstrated epidemic, via assessing the viable SARS- 
CoV-2 virus particles in suitable host cells [26]. Nonetheless, regardless of the 
elevated levels of the RNA of the virus throughout the globe detected in waste-
waters and the possible worries associate, new studies on the infectivity have 
pointed out a rare perseverance of the virus in such aquatic media [1] [27]. 

On the contrary, information on the presence of SARS-CoV-2 traces in 
wastewater could be employed by epidemiologists and government authorities 
for estimating the magnitude of propagation of the virus in the population asso-
ciate to a water sanitation network [1] [2]. Numerous nations have started na-
tional wastewater surveillance programs [1]. 

Because of the likely diffusion of the virus through wastewater, its occurrence 
in this aquatic media represents a possible risk [28] [29] [30]. Furthermore, ob-
serving virus diffusion furnishes a strong tool in the hands of the scientific and 
health communities, as an epidemiological measure of the propagation of the 
virus, comprising the number of asymptomatic infections. In such circumstance, 
it is crucial the understanding of the state-of-the-art on the techniques for detec-
tion, quantification and determination of infectivity of the virus in aqueous ma-
trices. The perception of the virus in wastewater is not directly related to the infec-
tivity. Thus, Buonerba et al. [1] examined the technique for determination of the 
viable SARS-CoV-2 virions and the assessment of the probable hazards related. 

As seen above, a great interest is accorded on the likely propagation of SARS- 
CoV-2 through water systems. This work aims to review the fundamental com-
prehension of behavior and persistence of the SARS-CoV-2 in water. Besides this 
grasp, understanding performance of the processes for disinfecting water autho-
rizes establishing veritable hazards and the precise procedure for dealing with 
the expansion of virus through the water environment. 

2. Natural Persistence of CoVs 

The comprehension of the natural stability of pathogenic microorganisms (MOs) 
and the performance of usable disinfection processes render it easy to evaluate 
the dangers related to a contagion [1] [31] [32]. 
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Recently, aerosol persistence of CoVs (especially SARS-CoV-2) has been 
largely examined [33] [34] [35]. The usual demobilization of CoVs in the nature 
is a function of numerous parameters like temperature, relative humidity and, in 
water media, on pH, level of particulate, organic matter [36] [37] [38], chemi-
cals, and of antagonistic MOs [1] [39] [40]. 

2.1. Persistence of CoVs on Inanimate Surfaces 

It was pointed out that inanimate surfaces are possible sources of CoV infection. 
Such contagion may be both directly (via fomite transmission) and indirectly 
(via water media which came into contact with the infected surface) [1]. Further, 
the aerosolization of fomites has been showed to be efficient in the circulation of 
viruses like the Influenza A virus [1]. Therefore, in such circumstances it is vital 
to establish the stability of CoVs on different surfaces and the sufficiency of dis-
infection implements utilized to treat them [41] [42]. Following the natural cir-
cumstances, human CoVs have the potential to stay contagious on inanimate 
surfaces from 2 h up to even several weeks [1]. 

2.2. Persistence of CoVs in Water 

Humans need water for their daily activities (e.g., drinking, personal hygiene, 
washing, irrigation, food production, and recreational objectives) [43] [44] [45] 
(Figure 1). Utilized water (comprising stormwater and runoffs) is in the end 
gathered as wastewater [1] [46] [47]. Feces, urine, or vomit contaminated with 
pathogenic MOs come in the human sewage polluting consequently the urban 
water cycle [48] [49] [50]. Understanding the stability of those pathogens in  

 

 
Figure 1. Integrated water cycle [1]. 
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water permits to determine exactly the concentrations of dangers for both hu-
man beings and nature [51] [52] [53]. It is well-known that the formation of 
bioaerosols in aeration basins in wastewater treatment plants (WWTPs) forms a 
danger of contamination especially of enteric viruses [54] [55]. Researchers have 
explained that field workers are exposed to contagions from bioaerosols [56]. 
Studies affirmed that the existing disinfection methods employed in WWTPs 
(like oxidation with hypochlorite [57] [58] [59] or peracetic acid and demobili-
zation by ultraviolet (UV) irradiation) were enough to keep safe the health of 
WWTP operators and the public [1] [60] [61]. 

Typical CoVs (like human CoV 229E, cause of a frequent cold, and the feline 
infectious peritonitis virus (FIPV)) were tested defining the T99.9 (the period 
needed for the virus titer to decrease of 3-log (99.9%)) [1]. Such virus titer de-
crease was noted in dechlorinated and filtered tap water in 10 days at 23˚C and 
in 130 days at 4˚C. Demobilizing such CoVs happened faster in wastewater with 
a T99.9 of only 2-4 days. Below the identical circumstances, a non-enveloped virus 
(like the Poliovirus 1) was more solid than CoV 229E and FIPV [1]. CoV 229E 
depicted an identical persistence with 5-log of titer reduction during 9 days 
when suspended in minimum essential medium (MEM) containing antibiotics 
(penicillin and streptomycin), both in the presence and absence of 10% of fetal 
bovine serum. In a dried form, deposed on a polystyrene petri dish, 72 h were 
required [62]. 

The evaluation of viable virions of two surrogate CoVs, transmissible ga-
stroenteritis virus (TGEV) and murine hepatitis virus (MHV), was performed in 
reagent grade water, lake water, and pasteurized settled sewage by determining 
the T99 (in turn corresponding to 2 log) [39]. Therefore, 2-log of virus titer de-
crease was noted at 25˚C for TGEV and MHV in reagent grade water respec-
tively in 22 and 17 days; while at 4˚C, no notable decrease of the contagious titer 
for both viruses was noticed for 49 days. In a lake water sample at 25˚C, the 
identical infectivity decrease was discovered for TGEV and MHV respectively in 
13 and 10 days. At 4˚C, 1-log of titer reduction of TGEV was attained in 14 days, 
while the MHV resulted in comparison more persistent. In pasteurized settled 
sewage at 25˚C, 9 and 7 days were indispensable for 2-log of TGEV and MHV 
titer reduction, respectively [1]. 

The natural demobilization of SARS-CoV-1 in water, feces, and urine was 
tested in vitro [1] [63]. The virus titer was observed decreased of 5-log after 2 
days at 20˚C in dechlorinated tap water, domestic sewage, or hospital sewage; 
after 3 days in feces and 17 days in urine. By decreasing the temperature to 4˚C, 
the infectivity of SARS-CoV-2 continued for over 14 days in such media. Wet 
human specimens (blood serum, sputum, stool and urine) and biological media 
for cell and virus culture maintain quite well the infectivity of SARS-CoV-1 [62] 
[63] and that of other human CoVs [1]. The virus titer was decreased by 5-log in 
serum and sputum in 96 h and in urine in 72 h [1]. A slow rate of decrease of the 
titer at room temperature for SARS-CoV-1 of 0.5-log reduction over 9 days was 
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noted in serum-free cell culture medium, while below the identical circums-
tances, CoV E229 lost its infectivity totally. Phosphate-buffered saline solution at 
pH 7.4 was demonstrated to guarantee valid persistence to CoVs. In such me-
dium, E229 and OC43 remained during 3 days [64], whereas for SARS-CoV-1 
over 14 days were requested for 5-log of virus titer decrease [63]. Recently, Chin 
et al. [65] established that SARS-CoV2 is very persistent at 4˚C in virus transport 
medium: 0.7-log of titer reduction was noted after 14 day. 

CoVs could remain alive during 2-4 days in wastewater at room temperature 
and for a more prolonged time at lower temperatures like that of the winter [21] 
[39] [63]. The new SARS-CoV-2 was revealed infective in human stool samples 
[66] and observed through the globe in wastewater and surface water receiving 
wastewater [1]. The RNA of the virus was discovered in sewage during and even 
before the appearance of COVID-19 cases [67] [68]. Nonetheless, for the deter-
mination of viable viruses in WWTP influent and effluent wastewater, as well as 
in hospital wastewater and in river receiving contaminated wastewater, experi-
ments proved the restricted resistance of the virus in those water media. The find-
ings show that the latter water medium is mostly aggressive for SARS-CoV-2. In-
fecting wastewater with SARS-CoV-2, researchers [27] mentioned a persistence 
of 1.4 - 3.3 days for 1-log and of 2.9 - 6.5 days for 2-log of inactivation of the vi-
rus in this media. Nonetheless, these scientists noted an identical resistance for 
the virus in tap water. Indeed, at ambient temperature, the unforced decrease of 
the virus titer of 1-log and 2-log happened during 1.8 - 2.2 and 3.6 - 4.4 days, 
respectively [1]. Such result further asserts the restricted persistence of this virus 
in water media. 

3. Techniques for Demobilization of CoVs 

Lipid-enveloped viruses with elevated hydrophobicity [69] (like CoVs) remain 
less stable in water when juxtaposed to non-enveloped viruses (Figure 2) [1]. 
Ostensibly, the efficiency of water sanitation techniques for CoVs could be as-
sessed founded on the demobilization information of non-enveloped viruses 
with greater durability. Unlikely, the estimation of infectivity founded just on 
determination of viable CoVs in wastewaters is very simplified. The present 
guidelines for wastewater sanitation comprise the next important options: 1) 
thermal treatment [70], 2) UV irradiation [71] [72], 3) chemical disinfection 
[73] [74] [75], 4) holding wastewater for a prolonged time [76] [77] [78]; 5) se-
dimentation [79] [80] [81]; 6) membrane filtration [82] [83] [84]; and 7) attenu-
ation in subsurface [1] [85]. The efficiency of such disinfection techniques con-
cerning CoVs (especially SARS-CoV-2) from drinking water to wastewater ef-
fluent is reviewed in this Section. 

3.1. Thermal Demobilization 

Temperature is viewed as one of the most powerful parameters for demobilizing 
enveloped virus [62] [86] [87]. This is related to the fact that membrane and  
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Figure 2. Schematic representation of SARS-CoV-2 spread via the fecal-oral route [33]. 
 

capsid proteins are vulnerable to heat-induced denaturation [1]. Aqueous foods 
(e.g., milk and fruit juice) and potable water could be treated in pasteurization 
methods at moderate (56˚C - 65˚C for 30 min) or high temperature (80˚C - 
135˚C for 1 - 4 s), with a view to destroy or demobilize MOs, enzymes and vi-
ruses. Killing SARS-CoV-1 (-6-log) was realized at 56˚C, 67˚C, and 75˚C, re-
spectively within 90, 30, and 30 min [1]. Identical findings were mentioned on 
thermal inactivation of SARS-CoV-1 in vitro in media for cell or virus culture 
[62] [86]. A non-human CoV (the canine coronavirus (CCoV)) was observed to 
be contagious even at 56˚C; nonetheless, it was demobilized at temperatures 
higher than 65˚C [88]. 

The controversy about the impacts of environment temperature on the rate of 
transmission of SARS-CoV-2 stays still open [89] [90]. However, the neutraliz-
ing influence of heat on the virus is not questioned [1] [70] [91]. Chin et al. [65] 
examined the thermal influence on the infectivity of SARS-CoV2 in virus culture 
media at 56˚C and 70˚C, establishing that treatments of 30 min and 5 min were 
respectively enough for attaining 6-log of virus demobilization. In wastewater, 
2-log of virus reduction was achieved at 50˚C during 28 - 34 min; whilst 70˚C 
was observed adequate for 3.7 - 5.7 min [27]. 

3.2. Demobilization by Ultraviolet (UV) Radiation 

Presently, demobilizing pathogens via ultraviolet (UV) radiation becomes largely 
used for disinfecting surfaces, potable water, as well as in tertiary treatments of 
wastewater for the reduction of the loading of highly resistant species [92] [93] 

https://doi.org/10.4236/oalib.1107487


D. Ghernaout, N. Elboughdiri 
 

 

DOI: 10.4236/oalib.1107487 8 Open Access Library Journal 
 

[94]. A comparatively big number of the viruses, in most cases enteric ones (like 
noroviruses, rotaviruses, reoviruses, sapoviruses, astroviruses, enteroviruses, and 
adenoviruses) remain in the effluent of full-scale WWTPs with less than 2-log of 
loading removal [1] [95] [96]. Different from the aforesaid viruses, enveloped 
viruses seem to be more sensible to UV subjection. An extended subjection pe-
riod of 40 - 60 min was requested to reach a favorable level of demobilization for 
SARS-CoV-1 in vitro [86] [97]. Kariwa and Fujii [97] revealed 5-log of SARS- 
CoV-1 decrease at 134 μW/cm2 in 15 min and further 1-log after additional 45 
min. 

Scientists found SARS-CoV-2 vulnerable to sunlight [1] [98] [99] and fast 
demobilized by UV-C (λ = 100 - 280 nm) [100] [101], UV-B (λ = 280 - 315 nm) 
and UV-A (λ = 315 - 400 nm) radiation [98]. Scientists [101] determined in vitro 
the kinetics and the light fluence for SARS-CoV-2 demobilization by UV-C at λ 
= 254 nm and light intensity of 2.2 mW/cm2. The reduction of 3-log of viruses 
was noted in less than 3 s of irradiation, while for 5-log of demobilization were 
needed almost 50 s. 

3.3. Chemical Disinfection 

Traditional antiseptics and disinfectants, like halogenated compounds (chlorine, 
sodium hypochlorite, chloramine and povidoneiodine), alcohols (ethanol and 
2-propanol), aldehydes (formaldehyde and glutaraldehyde), quaternary ammo-
nium compounds, phenolic compounds, and other decontaminating agents, 
have been observed to be efficient in disinfecting the surfaces polluted by 229E 
and SARS- and MERS-CoVs [1]. The chemicals put out the infectivity during a 
short subjection period of 1 min [62] [102]. A considerable SARS-CoV-1 titer 
decrease of 1.6 - 5-log was noticed in vitro testing for 0.5 - 2 min utilizing disin-
fectants, like 2-propanol, formaldehyde, glutaraldehyde, Desderman, Sterillium, 
and Incidin plus [62] and of 6-log by employing for 1 min commercially availa-
ble disinfectant as povidone-iodine, isodine® solution, Isodine Scrub®, Isodine 
Palm®, Isodine Gargle® and Isodine Nodo Fresh® [97]. Traditional disinfectants, 
like sodium hypochlorite (1:99), ethanol (70%), iodine solution (7.5%), chlorox-
ylenol (0.05%), chlorhexidine (0.05%) and benzalkonium chloride (0.1%), were 
observed efficient in demobilizing SARS-CoV-2 in 5 min of treatment, with excep-
tion of the soap that requested bigger period for the reduction of 7 - 8-log [1]. 

Researchers tested the impact of pH on the persistence of CoVs for CoV 229E 
[103], MHV [104], TGEV [105], and the CCoV [88]. Because of the lipid acidic 
envelope, CoVs were discovered to be responsive to the change of pH and the 
bigger virus solidity was noted at slightly acidic pH degrees of 6 - 6.5 [106]. Re-
ciprocally, SARS-CoV-2 was observed extremely persistent in a large domain of 
pH levels (3 - 10) at ambient temperature [1] [65]. 

Founded on the information acquired from other viral indicators, employing 
chlorine for water disinfection remains the most efficient and economical solu-
tion for such issue [107] [108] [109]. Chlorine efficiently demobilizes the virus 
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via demolishing the viral envelope or capsid [58] [59] [76]. Specially, free chlo-
rine has been confirmed to touch directly the proteins existing in the viral 
envelope, rather than the less reactive lipidic material and the RNA core [1] 
[110] [111]. Further, chlorine could react with the ammonia existing in waste-
water to generate combined chlorine such as chloramines [112] [113] [114]. 
Such chemicals possess the potential to kill pathogens, even if throughout disin-
fection they are less performant and behave diversely from free chlorine [115] 
[116] [117]. As a consequence, it remains fundamental for every WWTP to as-
sess the chlorine species and their relative abundance throughout the disinfec-
tion stage [118] [119] [120]. 

Researches of the treatment of municipal water and wastewater utilizing chlo-
rine and its derivatives have affirmed notable demobilization performances for 
SARS-CoV-1 [1] [121] [122]. In hospital wastewater, domestic sewage, and 
dechlorinated tap water, the virus remained active only for 2 days [1] [31]. In 
addition, SARS-CoV-1 became more sensitive to disinfectants juxtaposed to 
Escherichia coli and f2 phage. For SARS-CoV-1 demobilization, free chlorine 
was more efficient juxtaposed to chlorine dioxide. Free residual chlorine ex-
ceeding 0.5 mg/L or chlorine dioxide exceeding 2.19 mg/L in wastewater secured 
the total demobilization of SARS-CoV [1]. In addition, extreme pH degrees (i.e., 
pH > 12 or pH < 3), formalin, and glutaraldehyde were confirmed to demobilize 
SARS-CoV-1 quite well [123]. Peracetic acid has been established to possess the 
capacity to demolish some non-enveloped viruses (like norovirus) that are 
known to be more resistant to chemical agents juxtaposed to enveloped viruses 
[124] [125] [126]. 

The certified occurrence of SARS-CoV-2 RNA in wastewater influents and 
sludge, as well as in effluents released from WWTPs have elevated the worry of 
the personnel of the WWTPs [1]. 

Investigations have proved that the virus is inclined to show restricted resis-
tance in wastewater [1] [27]. As a rule, studies on viable SARS-CoV-2 in real in-
fluents and effluents, both from domestic and hospital sewages, have conducted 
to negative findings [1] although the RNA molecules of the virus have been 
demonstrated to be greatly stable, even up to 50 days in wastewater at ambient 
temperature [27]. Worries have as well been elevated because of the environ-
mental dangers related to an immoderate usage of disinfectants for wastewater, 
such as the sodium hypochlorite that forms high levels of disinfection by-prod- 
uct residuals [127] [128] [129]. 

3.4. Impacts of Wastewater Holding 

The viral envelope of CoVs may be compromised by solvents, detergents and 
disinfectants, commonly existing in wastewater [1] [28] [91]. Furthermore, 
throughout the biological treatment step in WWTPs [48] [49] [130], the occur-
rence of antagonistic MOs could boost the demobilization rates of numerous vi-
ruses [30] [87] [131]. 
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It is well-known that the analysis of bacteriophages furnishes a convenient 
index for the behavior of enveloped viruses in sewages [21] [32] [132]. The in-
stant demobilization of bacteriophage Φ6 was adopted as a tolerable model for 
the survival and demobilization of enveloped human viruses [1] [133]. Such vi-
rus endures demobilization of 5-log in 2 and 6 days at 22˚C and 30˚C, respec-
tively. Greater holding periods, as safety measure, has to be considered at lower 
temperatures [50] [51] [134]. Surprisingly for a more aggressively enveloped vi-
rus (e.g. Ebola), scientists suggested holding wastewater in a reservoir for 7 days 
prior to further handling or transport as holding wastewater assisted diminish 
the viral activity [1] [52] [53]. 

Without disinfection applications, SARS-CoV-1 has been proved to keep its in-
fectivity in municipal and hospital wastewater until 2 days at 22˚C and for over 14 
days at 4˚C [1]. A decreased stability of the virus was mentioned in hospital 
wastewater in which is usually existing an elevated amount of disinfectants [1]. 

Regardless of the restricted resistance of the SARS-CoV-2 in sewages, fecal-to- 
oral way and aerosolization of these media may take place in the circulation of 
the virus [1]. The aerosolizations of contaminated urines and feces from sewage 
pipelines, as well as throughout the washing of urinals and toilettes, have been 
signaled as possible courses of SARS-CoV-2 transmission [34]. 

3.5. Sedimentation and Demobilization in Bioreactors 

Suspended solids [135] and particulate organic matter [36] [37] [136] in both 
water and wastewater participate in the physical protection of viruses, which 
could extend the infectivity of CoVs [1] [137] [138]. When the virus is adsorbed 
on the porous surface of the particulate, perhaps, it will be sterically preserved 
from the arid of hostile pathogens. Indeed, the elevated concentrations of sus-
pended solids and organic matter in primary wastewater ensure extended viral 
infectivity with respect to secondary wastewater effluents [1] [57] [139]. None-
theless, the elimination of suspended solids jointly with the adsorbed viruses via 
sedimentation guarantees the decrease of infectivity [1] [79] [140]. Researchers 
found that CoVs demobilization in filtered tap water resulted bigger than that in 
unfiltered samples [1]. 

Membrane bioreactors (MBRs) possess a considerable contribution in elimi-
nating particulate matter, comprising viruses [1] [83] [141]. Enveloped viruses 
could be efficiently demobilized in MBRs [1] [130] [142]. Suspended solids and 
viruses could be hold utilizing membrane filtration even if in the occurrence of 
hostile pathogens and unfavorable physicochemical circumstances (like aeration 
[143] [144] and chemical dosing [145] [146] [147]) in the MBRs [1] [129] [148]. 
Such attachment conducts to the performant demobilization of enveloped virus-
es like CoVs [1]. 

4. Conclusions 

This work discussed the fundamental comprehension of behavior and persis-
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tence of the SARS-CoV-2 in water. Further, understanding performance of the 
disinfection technologies authorizes establishing veritable hazards and the pre-
cise procedure for dealing with the expansion of virus through the water envi-
ronment. The main conclusions drawn from this review are listed below: 

1) All CoVs have a restricted stability in water media: 2 - 5 days in tap water 
and 2 - 6 days in wastewater were judged enough for 2-log reduction of 
SARS-CoV-2 titer [1]. 

2) Examining viable virus particles furnishes important data on the likely in-
fectivity of a polluted specimen. Few studies followed the infectivity of SARS- 
CoV-2 in influents and effluents of municipal WWTPs and in hospital wastewa-
ter [1]. 

3) CoVs could be spread mostly through airborne routes and the dangers 
linked with the likely water-mediated diffusion of the SARS-CoV-2 seem to be of 
low epidemiological importance. Nevertheless, circulation of SARS-CoV-2 can 
be potential through fomites, fecal-oral route and aerosolization of infected se-
wages from urinals, toilets and sewage pipeline. Thus, the preventive warnings 
relating to the observation of SARS-CoV-2 in wastewater need more tests [1]. 

4) SARS-CoV-2 is distinguished by a weak construction and is vulnerable to 
traditional disinfection technologies that have been demonstrated to be very ef-
ficient in their neutralization. Approximately 5 min of exposure to sodium hy-
pochlorite (1%), ethanol (70%), iodine (7.5%), soap solution and additional 
usual disinfectants was enough for reaching 7 - 8-log of SARS-CoV-2 titer de-
crease. Thermal treatment is efficacious in SARS-CoV-2 demobilization: 30 min 
at 56 or 5 min at 70˚C were enough for attaining the total depletion of the infec-
tivity. Further, SARS-CoV-2 remains vulnerable to sunlight and quickly demobi-
lized by UV radiation. UV-C at 254 nm and intensity of 2.2 mW/cm2 yields 3-log 
of SARS-CoV-2 titer decrease in less than 3 s of application [1]. 

5) Large use of disinfectants has been related to ecological and human health 
troubles [149]; consequently for SARS-CoV-2 disinfection, usual injections of 
killing agents remain required for sanitation and for wastewater treatment [1] 
[128] [150]. 
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